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Why 3D QCD?
High temperature limit of 4D QCD.

Toy model for QCD

Universality class with strongly coupled planar
systems (e.g. Hubbard model at half filling or
High Tc cuprates)

U(2n) 7→ U(n)× U(n)

In this talk I discuss the parity anomaly, the LE
effective lagrangian and baryons in 3d QCD.
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Planar fermions:
In 3D spin-1/2 fermions are described by
two-component (Weyl) spinors:

Lfree = ψ̄
(
iγµ2×2∂µ −m

)
ψ . (1)

The 2× 2 Dirac matrices are given as:

γ0
2×2 = σ3, γ1

2×2 = iσ1, γ2
2×2 = iσ2

There is no γ5 in odd dimensions and the
fermion mass term is therefore real.
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Planar fermions:
Under the parity, P2,
x = (t, x1, x2) 7→ x′ = (t,−x1, x2), the
fermions transform to

ψ′(x′) = eiδγ1
2×2ψ(x) .

The mass term changes its sign:

P−1
2 LfreeP2 = ψ̄′(x′)

(
iγµ2×2∂

′
µ +m

)
ψ′(x′) .

Lagrangian is P2-invariant, if m = 0.
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Parity Anomaly:
However the parity is broken at the quantum
level,

Aµ !A

It contains at low energy a CS term,

LCS =
e2

8π

Λ

|Λ|
εµνρAµ∂νAρ
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Parity Anomaly in QCD3:
Effective action is not gauge-invariant:

det (6∂+ 6A) −→ (−1)n det (6∂+ 6A)

 = oooo =
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Parity Anomaly in QCD3:
To restore the gauge invariance one should add
a term which cancels (−1)n,

Sct = π

∫
ω3(A) −→ Sct(A) + nπ .

For even number of flavors, one can define a
Dirac spinor, Ψ = (ψL, ψR)T , which has a
parity-invariant Dirac mass. The effective
action is hence parity-invariant.
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Dynamical mass generation
For an even number (2n) of flavors

Ψi =

(
ψi
ψi+n

)
, γµ = γµ2×2 ⊗

(
1 0
0 −1

)
.

We have U(2) ‘chiral symmetry’, generated by
14×4, γ3, γ5,

[
γ3, γ5

]
.
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Dynamical mass generation
For 2n massless flavors we have U(2n) ‘chiral’
symmetry and non-anomalous P4 parity:

Ψi(x) 7−→
P4

Ψ′i(x
′) = eiδ

(
0 γ1

2×2

γ1
2×2 0

)
Ψi(x) .
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Symmetry breaking pattern
QCD3 is strongly coupled at low energy and
confining. (KKN)

Schwinger-Dyson analysis shows quarks get
dynamical mass (Appelquist and Nash ’90).

The chiral symmetry is spontaneously broken
and quarks get dynamical mass:
U(2n) 7→ U(n)× U(n).

Half of them get mass mdyn and the other half
get −mdyn.
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Vafa-Witten:
The gauge-invariant regularization gives
non-positive measure:

det (i 6D) = ±
√

det (i 6D4) .

But, for Nf = 2n flavors the quark
determinant is positive (m→ 0):

det [(i 6D+im)(i 6D−im)]
Nf
2 =det

[
−(6D)2+m2

]Nf
2 ≥ 0

The vector symmetry U(n)× U(n) can not be
spontaneously broken in P4 invariant 3D
theory. (Vafa-Witten ’84)
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Coleman-Witten:
Suppose the order parameter is a quark
bilinear, M j

i =
〈
ψ̄iψ

j
〉
, g ∈ U(2n):

M 7−→ g†Mg ; M 7−→
P4

P−1
4 MP4 = −I1MI1 .

The vacuum energy in the large Nc limit

V = Nc TrF (M 2) = Nc

∑
i

F (λi) ,

The minimum occurs at λi = κ2 and P4

invariance requires TrM = 0. The unbroken
symmetry is U(n)× U(n), if κ 6= 0.
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Low Energy Effective Lagrangian of QCD3

Consider composite fields for g ∈ U(2n)

φ(x) = lim
y→x

|x− y|γ

κ
ψ(y)ψ̄(x) 7−→ gφg† .

Ground state: 〈φ〉 = I3 = diag (1n×n,−1n×n)
Nambu-Goldstone bosons are described by

LB =
f 2
π

2
Tr(∂µφ)2 = Tr

[(
∂µ− iĀµ

)
g†
(
∂µ+ iĀµ

)
g
]
.

Redundancy of g(x) is removed by gauge sym.:

Āµ 7−→ u†Āµu− i∂µu† , u ∈ SU(n)1 × SU(n)2 × U(1)3
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Effective Largangian
The effective Lagrangian should match
P2-anomaly. Consider two-point functions of
jµi = ψ̄iγ

µ
2×2ψi (i = 1, · · · , 2n):〈

jµi (k) jνj (−k)
〉

= lim
m→0

mi

|mi|
δij
Nc

4π
εµλν kλ ,

To match the parity anomaly we need to
include CS terms such a way that preserves P4

parity (Rajeev et al ’92),

Leff = LB +
Nc

4π
LCS

(
Ā1

)
− Nc

4π
LCS

(
Ā2

)
+ · · · ,
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Baryon as a vortex
The manifold of Nambu-Goldstone fields of 3d
QCD has a nontrivial topology

Π2

(
SU(2n)

SU(n)× SU(n)× U(1)3

)
= Π1 (U(1)3) = Z .

It should allow a vortex (baby Skyrmion),

Q =

∫
d2x J0 =

1

2π

∫
d2x ε0ij∂iĀ3j .

U(1)3 vorticity is the baryon number:

〈Jµ (k) Jν35 (−k)〉 =
Nc

2π
εµλν kλ +O(k2) .
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Baryon as a vortex
The Lagrangian should have a mutual CS term
to match the discrete anomaly,

Leff 3 LmCS =
Nc

2π
εµνλAµ∂νĀ3λ

The quark number current becomes

〈Jµ〉 =
δSeff(A)

δAµ
=
Nc

2π
εµνλ∂νĀ3λ + · · ·
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Brane setup and geometry
Nc D3 branes wrapping S1 and Nf probe D7:

0 1 2 3 4 5 6 7 8 9
D3 ◦ ◦ ◦ ◦ × × × × × ×
D7 ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦ ×

ds2=
r2

L2

(
f(r)

(
dx3
)2

+ (dxµ)2
)

+
L2

r2

dr2

f(r)
+ L2dΩ2

5

FRR
5 =

(2πls)
4Nc

Vol(S5)
ε5 , eφ = gs .

(ε5 = sin4 θ dθ ∧ ε4)
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Brane setup and geometry

L4 = 4πgsNcl
4
s , f(r) = 1−M

4
KKL

8

16r4
, x3 ∼ x3+

2π

MKK
.

VOID

S5

rr=rc

x3

x9

x 4,5,6,7,8

R1,2(x0,1,2)
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Brane setup and geometry
D7 embedding:

D7 brane
x9

x 4,5,6,7,8

x3

S5

r=rc

D7 brane

(a)

x9=0

x9

x 4,5,6,7,8

x3

r=rc

D7 brane

x9

S5

=0

D7 brane

(b)
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Holographic parity anomaly:
Holographic parity anomaly:

(a) (b)

D7

D7

S5

S5

(c)

D7 D7
S5

S5
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Holographic parity anomaly:
A D7 wrapping S5 and sitting at r = rc
introduces one unit of CRR

0 monodromy along
x3: D3 worldvolume action contains for k units
(uv data)

µ3
(2πl2s)

2

2!

∫
D3

CRR
0 ∧ F ∧ F =

k

4π

∫
R1,2

A ∧ F .

The upper embedding and lower embedding of
D7 brane differ by a single unit of CS term in
QCD3: The CS coefficient is therefore
quantized.
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The upper embedding and lower embedding of
D7 brane differ by a single unit of CS term in
QCD3: The CS coefficient is therefore
quantized.
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Weak-coupling D-brane picture
Another view of our D-brane setup:

x3x3
x9 x9

C1

C2

(a) (b)

D7

D7

D3
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Weak-coupling D-brane picture of parity
anomaly:

C1 − C2 is homological to a circle on (x3, x9)
around D7:∫

C1

FRR
1 −

∫
C2

FRR
1 = 1

The D3 world-volume gauge theory contains a
piece induced by background CRR

0

1

4π

∫
D3

FRR
1 ∧ A ∧ F =

1

4π

[∫
C1orC2

FRR
1

] ∫
R1,2

A ∧ F
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Baryons as D5 wrapping S5

x3

X9=0

D7

D7
D5

D5

D7

F1

r=rc

x3

r

S4

S5

2 D7’s

2 D7’s

S5 wrapped by D5 carries
∫
S5 F

RR
5 = Nc

fundamental string charges. D7 wraps S4

inside S5. (Nf = 2n from now on.)
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Baryons as D5 wrapping S5

D5 wrapping S5 at rc ends on D7 at two
intersecting points, as monopoles in D3/D1
(Callan+Maldacena, ’97)

D5, suspended between two sets of D7 branes
at r > rc, can be identified as carrying a
monopole charge (+1,−1) with respect to
U(n)× U(n) gauge symmetry on the D7
branes world-volume, where the charges sit in
the trace part of U(n).

Since S4 is common, D5 is a monopole in
(r, x0,1,2) on D7 after integrating over S4 ⊂ S5 .
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Baryons as D5 wrapping S5

θ(r) describe D7 emb. (dΩ2
5 =dθ2 + sin2θdΩ2

4)

Induced metric on D7 is

g∗=
r2

L2
(dxµ)2+

(
L2

r2f
+ L2

(
dθ

dr

)2
)
dr2 + L2 sin2 θdΩ2

4

Worldvolume action on D7 is

S = SDBI + µ7
(2πl2s)

2

2!

∫
CRR

4 ∧ F ∧ F

CRR
4 ∼ Nc

[(
θ −π

2
± π

2

)
− 1

4
sin 2θ +

1

32
sin 4θ

]
ε4
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Electric charge of Monopole
Consider a D7, embedded in the upper
hemisphere of S5 (x9 > 0). (0 ≤ θ ≤ π

2 ) with

µ̃7

∫
S4

CRR
4 ∧ F ∧ F =

Θ(r)

8π2
F ∧ F

Θ(r) =
16

3
Nc

(
3

8
θ − 1

4
sin 2θ +

1

32
sin 4θ

)
Integrating Θ over r, it leads to (flavor) CS
term of boundary theory:

Θ(∞)

8π2
A ∧ F =

Nc

8π
A ∧ F

∣∣∣∣∣
r=∞
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Electric charge of Monopole
Electric charge due to Witten effect plus
medium (Lee) effect:

ρe = −~∇ · ~Π = −~∇ ·

(
~E

e2
+

Θ

4π2
~B

)

r=rc

B flux

Monopole

UV boundary
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Electric charge of Monopole
The magnetic monopole is a dyonic object:

~∇ ·

(
~E

e2

)
=−Qbδ

3(~x− ~x0) , ~∇ · ~B = 2πδ3(~x− ~x0) .

The physical charge density of the system is

ρe=−~∇ · ~Π=− 1

4π2
(~∇Θ)· ~B +

(
Qb −

Θ(~x0)

2π

)
δ(~x− ~x0) .

Electric charge deposited in medium is

∆Q = −
[∫

d2x
Br

4π2

] ∫ r

rc

dr′ ∂r′Θ(r′) =
Θ(r)

2π
,
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Electric charge of Monopole
Applying to our situation of U(1)×U(1) gauge
theory of (Θ(r),−Θ(r)) angle, a monopole of
charge (+1,−1) will have a total charge under
the diagonal U(1) given by, since Θ(rc) = 0,

Q = −Nc

Baryons are therefore realized as dyonic
monopoles in hQCD3.

They are equivalent to (dyonic) ’t
Hooft-Polyakov monopoles in a different gauge,
where X9 has a nontrival configuration.
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Conclusion
We have constructed a holographic dual of
QCD3 with D3/D7.

Brane realization of parity anomaly: CS level
number is the number of D7 branes.

For even flavors quarks get dynamical mass,
breaking U(2n) to U(n)× U(n).

Bulk D7 action gives the UV complete effective
action for QCD3.

Baryons are (dyonic) mag. monopole with Nc

electric charge by Witten effect.

As applications, one needs T, µ,B,E and
study phase diagram and transport.
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