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Motivation

Brane tilings have met with a lot of interest in the past few years.

A brane tiling is the dual description of a quiver gauge theory,

D3 branes probing a toric Calabi–Yau-three singularity

M2 branes probing a toric Calabi–Yau-four singularity

We would like to have a classification of all possible tilings.
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Today’s talk

For the moment a complete classification seems too ambitious

We consider a simpler problem: counting Abelian orbifolds of a given
theory

An orbifold is described by a repetition of the fundamental domain

This is the definition of a sublattice of the initial lattice

We map our orbifold counting problem to a sublattice enumeration. We
can use methods from crystallography

We find a number theoretical description for the generating functions.
Asymptotically

f(n) ∼ σ(n)
|G|
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How do you do that?

Find the symmetries of a given lattice (cycle index)

Decompose the counting function on the symmetries (Burnside’s lemma)

Count the sublattices for each symmetry (Hermite normal form)

Study the structure (Dirichlet convolution)

Write in a compact form (Dirichlet series)

Analysis (Asymptotic behaviour)
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String theory setup

Consider a Calabi-Yau three-fold X and let S ⊂ X be a surface shrinking
to a point
Placing D-branes on S we expect:

An enhanced gauge symmetry because some open strings will shrink to
zero length
The branes are marginally stable against the decay into fractional branes

These fractional branes are rigid branes generating the BPS states in the
theory as bound states.

The description of the brane as a manifold breaks down

Geometric description: language of categories.

For our purposes we can use quiver gauge theories.
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D-branes at singularities
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Orbifolds: algebraic construction

Let us consider Zn orbifolds of C3

Let us denote the coordinates of C3 by { z1, z2, z3 }, and the orbifold
action by (a1, a2, a3):

{ z1, z2, z3 } ∼ {ωa1z1,ωa2z2,ωa3z3 }

withωn = 1 and a1 + a2 + a3 = 0 mod n.

In this notation, the problem is to find all triples (a1, a2, a3) that give
inequivalent orbifolds of C3.
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Orbifolds: toric diagrams

An alternative way of formulating the problem is by looking at the toric
diagrams of these orbifolds.

The toric diagram of C3 is a triangle of unit area

the toric diagram of an orbifold of C3 by an Abelian group of order n is
again a triangle but with an area which is n times larger.

The problem of counting all inequivalent orbifolds of C3 is therefore
equivalent to the problem of finding all triangles with vertices on integral
points and area n.

Since these are toric diagrams, two triangles which are related by a
GL(2,Z) are equivalent
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Orbifolds: brane tilings

Think of the brane tiling as forming a bipartite hexagonal lattice

the problem of finding inequivalent toric diagrams is mapped to the
problem of finding its sublattices

n 1 2 3 3

brane tiling

1 1 1 1

1 1 1

1 1 1 1

1 1

2

1

2

1

2

1 1 1 1

1

2

3

1

2

3

1

2

3

1

2

3

2

3

1 1 1 1

1 1

2

3

1

2

3

2

3

1

3

1

2

3

2

3

1 1

2

3

1

2

3

2

1 1

geometry C3 C2/Z2 × C C2/Z3 × C C3/Z3
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Cycle notation

We need a way to capture the symmetries of a given lattice.

Label the vertices of the fundamental cell by the numbers { 1, . . . ,m }.
We want to describe the group of permutations G of the set
X = { 1, . . . ,m } which result in the same fundamental cell.

1 2

3
identity

3 reflections

2 rotations by 2π/3
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Cycle notation

Cycles of g ∈ G are the orbits of the elements ε ∈ X under g.

For each group element g we start with ε1 ∈ X and write down its orbit
in parentheses, (ε1 g(ε1) g2(ε1) . . . gk−1(ε1)), where gk(ε1) = ε1.

We continue with the next element that has not yet appeared in an orbit
until we have exhausted all the elements of X.

Each g ∈ G can be expressed in terms ofαk disjoint cycles of length k

The type of g is given by the partition of m [1α12α2 . . . lαl ], where
m =α1 + 2α2 + ...+ lαl.

The partition is represented by the expression

ζg(x1, . . . , xl) = xα1
1 xα2

2 . . . xαl
l .
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Cycle index

g α1 α2 α3 c(αi) ζ

1 2

3

1 3 - - 1 x3
1

2 1

3

(12) 1 1 - 3 x1x2

3 1

2

(123) - - 1 2 x3

.
The cycle index of G
..

.

. ..

.

.

ZG(x1, . . . , xl) =
1
|G|

∑
g∈G

ζg(x1, . . . , xl) =
1
|G|

∑
α

c(α1, . . . ,αl) xα1
1 · · · x

αl
l
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Cycle index, examples

Cyclic group Cm: symmetries of a circular object without reflections:

Z(Cm) =
1
m

∑
d|m

ϕ(d)xm/d
d ,

whereϕ(d) is the totient function.
Dihedral group Dm: symmetries of a circular object:

Z(Dm) =
1
2

Z(Cm) +

{
1
2x1x(m−1)/2

2 , if m is odd,
1
4

(
x2

1x(m−2)/2
2 + xm/2

2

)
, if m is even.

The symmetric group Sm is the group of all permutations:

Z(Sm) =
∑

α1+2α2+···+kjk=m

1∏m
k=1 kαkαk!

m∏
k=1

xαk
k .
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Central point

.
Burnside’s lemma
..

.

. ..

.

.

Let G be a group of permutations of the set X. The number N(G) of orbits of
G is given by the average over G of the sizes of the fixed sets:

N(G) =
1
|G|

∑
g∈G

∣∣Fg
∣∣ ; Fg = { x ∈ X | g(x) = x } .

The number f(n) of sublattices of index n is the number of orbits of the
symmetry group G when acting on the set Xn of sublattices of index n.

This can be written as the average of the number of elements in Xn that
are left invariant by the action of g ∈ G:

f(G) =
1
|G|

∑
g∈G

fg(n) ; fg(n) = |{ x ∈ Xn | g(x) = x }|
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Decomposition of the counting function

Using the cycle decomposition we can rewrite this expression as a sum
over the types of the elements g, indexed by partitionsα:

f(n) =
1
|G|

∑
α

c(α)fxα(n) .

there is a subsequence for each monomial in the cycle index ZG.

ZG(x1, . . . , xl) =
1
|G|

∑
α

c(α) xα1
1 · · · x

αl
l

we have decomposed the counting problem into subproblems fixed by
the symmetry groups.

.
Recipe
..

.

. ..

.

.

For a given lattice, find the symmetry group G, write the cycle index ZG and
identify the counting functions for each of the terms.
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The hexagonal lattice

Consider the bipartite hexagonal lattice corresponding to the geometry
of C3.

Because of the bipartiteness, the symmetry group is S3 (equilateral
triangle)

From the cycle decomposition above:

ZS3 =
1
6

(
x3

1 + 3 x1x2 + 2 x3

)
.

Using Burnside’s lemma, the number of sublattices of index n can be
decomposed as:

f△(n) =
1
6

(
f△
x3

1
(n) + 3 f△x1x2

(n) + 2 f△x3
(n)

)

Domenico Orlando What is the next number in the sequence?



. . .
Why

. . . . .
Brane tilings

. . . . . . . . . .
Symmetries

. . . . .
Some number theory

. . . . . . . . .
Generating functions

. . . .
Conclusions

The hexagonal lattice

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f△
x3
1

1 3 4 7 6 12 8 15 13 18 12 28 14 24 24 31

f△x1x2 1 1 2 3 2 2 2 5 3 2 2 6 2 2 4 7
f△x3 1 0 1 1 0 0 2 0 1 0 0 1 2 0 0 1

f△ 1 1 2 3 2 3 3 5 4 4 3 8 4 5 6 9

æææ
ææææ

ææææ

æ

ææ
æ
æ

æ

æ
æ

æ
ææ
æ

æ

ææ
æ

æ

æ

æ

æ

æ

æææ

æ

æ
ææ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ààààààààà àà àààà à àà ààà àà à
àààààà

àà àà àà à àà à àà àààà
à

àààà àà à à à àà ààà à
àààà

à à ààà à
à à àà à

àà
à àà àà àà à

àààà
à

àà
à

100 200 300 400 500
n

50

100

150

200

250

f

Scatter plot of the sequence f△
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Hermite normal form

The problem of counting sublattices with a given symmetry can be
mapped to the problem of counting a set of matrices
We learn what is the general structure
We obtain an algorithm to count the sublattices
Consider a lattice Ld generated by the d vectors ⟨y1, . . . , yd⟩. Any
sublattice L′ of Ld is generated by d vectors ⟨x1, . . . , xd⟩

x1 = a11y1

x2 = a21y1 + a22y2

. . .

xd = ad1y1 + ad2y2 + · · ·+ addyd ,

The integer coefficients aij satisfy the conditions

0 ≤ aij < aii ∀j < i n =
d∏

i=1

aii .
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Hermite normal form

For a two dimensional lattice the coeficients are
(

a11 0
a21 a22

)
.

From the condition a11a22 = n we choose a22 = m and a11 = n/m,
where m is a divisor of n.

To count the number of sublattices invariant under the symmetry xα we
enumerate the possible values of a21.

The constraint a21 < a22 introduces a dependence of the number of
possible values of a21, # { a21 } = gxα(a22), on a22

The total number of sublattices fxα(n) is given by summing gxα(m) over
all the divisors of n:

fxα(n) =
∑
m|n

gxα(m) .
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Multiplicative functions

Prime numbers play a special role.

This is one of the clues that point to the sequences being multiplicative.

.
Multiplicative sequence
..

.

. ..

.

.

A sequence f is multiplicative if

f(nm) = f(n)f(m) , when (n,m) = 1 ,

where (n,m) is the greatest common divisor between n and m.

f is completely determined by its values for primes and their powers

for any n = pa1
1 pa2

2 . . . par
r , the sequence decomposes as

f(n) = f(pa1
1 )f(pa2

2 ) . . . f(par
r )
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Dirichlet convolution
.
Dirichlet convolution
..

.

. ..

.

.

The Dirichlet convolution of two sequences g and h is

f(n) = (g ∗ h)(n) =
∑
m|n

g(m) h(
n
m
) ,

where the sum runs over all the divisors m of n.

Commutative, f ∗ g = g ∗ f,
Associative, f ∗ (g ∗ h) = (f ∗ g) ∗ h
Has an identity f ∗ Id = f defined by

Id(n) = { 1, 0, 0, . . . }

to each sequence f one can associate its inverse f−1 satisfying

f ∗ f−1 = f−1 ∗ f = Id .
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Möbius function

We have seen that the counting functions have the structure

fxα(n) =
∑
m|n

gxα(m) .

In terms of Dirichlet convolution: fxα = gxα ∗ u where:

u(n) = { 1, 1, 1, . . . } .

its inverse is the Möbius function defined by

μ(n) =

{
(−1)k if n is square-free,

0 otherwise.

where k is the number of distinct prime factors of n.

It follows that if f = g ∗ u, then g =μ ∗ f.
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The hexagonal lattice

The sequence f△
x3

1
= { 1, 3, 4, 7, 6, 12, 8, 15, . . . } corresponds to the

identity permutation x3
1

f△
x3

1
= u ∗N ,

where
N(n) = { 1, 2, 3, . . . } .

The sequence f△x1x2
= { 1, 1, 2, 3, 2, 2, 2, 5, . . . } can be written as the

convolution of a periodic sequence of period 4 and the unit:

f△x1x2
= { 1, 0, 1, 2, 1, 0, 1, 2, 1, . . . } ∗ u .

g△x1x2
is in turn the convolution of a finite sequence and u:

f△x1x2
= { 1, 0, 1, 2, 1, 0, 1, 2, 1, . . . } ∗ u = { 1,−1, 0, 2 } ∗ u ∗ u .
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The hexagonal lattice

The last sequence f△x3
= { 1, 0, 1, 1, 0, 0, 2, 0, . . . } also has the form of

the convolution of the unity with a periodic sequence of period 3:

f△x3
= { 1,−1, 0, 1,−1, 0, 1,−1, 0, . . . } ∗ u .

The periodic sequence is the (non-principal) Dirichlet character of
modulus three:

g△x3
=χ3,2(n) = { 1,−1, 0, 1,−1, 0, . . . } .

Putting all together we find that the sequence f△ can be written as

f△ =
1
6

(
f△
x3

1
+ 3 f△x1x2

+ 2 f△x3

)
=

1
6

(
N+3 { 1, 0,−1, 2 } ∗ u+2χ3,2

)
∗ u
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Generating functions

Now that we have the numbers we need a good way to encode them in a
compact form.

the formal power series (partition function)

F(t) =
∞∑

n=1

f(n)tn ;

the Dirichlet series

F(s) =
∞∑

n=1

f(n)
ns .

The corresponding inverse transformations are given by

f(n) =
1

2πı

∮
F(t)
tn+1 d t , f(n) = lim

T→∞

1
2T

∫ T

−T
F(s)ns|s=σ+ıτ dτ .
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Generating functions and Dirichlet convolution

Both types of generating functions have a simple behavior under Dirichlet
convolution.

Let f, g and h be such that
f = g ∗ h .

The power series for h reads:

F(t) =
∞∑

n=1

f(n)tn =
∞∑

n=1

∑
m|n

g(m) h(
n
m
) tn =

∞∑
k=1

∞∑
m=1

g(m) h(k) tmk .

This can be expressed in two ways, using the generating function for g or
for h:

F(t) =
∞∑

m=1

g(m)H(tm) =
∞∑

k=1

h(k)G(tk) .
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Generating functios and Dirichlet convolution

All our sequences are sums over divisors (or equivalently as Dirichlet
convolutions with the unit), we will always write

F(t) =
∞∑

k=1

G(tk) .

It is also possible to write the power series for the inverse of the
Dirichlet convolution as follows. Let

f(t) =
∞∑

k,m=1

g(m) h(k) tmk ,

then

H(t) =
∞∑

k=1

h(k) tk =
∞∑

m=1

μ(k) g(k) F(tk) ,

whereμ is the Möbius function.
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Dirichlet series

The Dirichlet series is even more adapted to these structures.

if f is multiplicative, the series can be expanded in terms of an infinite
product over the primes, the Euler product:

F(s) =
∞∑

n=1

f(n)
ns =

∏
p

(
1 +

f(p)
ps +

f(p2)

p2s + . . .

)
.

remember that a multiplicative sequence is determined by the values
taken for powers of prime numbers.
the Dirichlet series of a convolution is decomposed as

F(s) =
∞∑

n=1

f(n)
ns =

∞∑
n=1

∑
m|n

g(m) h( n
m)

ns =

∞∑
k=1

∞∑
m=1

g(m) h(k)
msks = G(s)H(s) .

The Dirichlet series is the Laplace transform of a discrete measure. It
exchanges convolution and pointwise products.
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The hexagonal lattice

The generating series are linear transformations. The decomposition in
terms of symmetries remains the same.

We can calculate explicitly the generating series for each term

symmetry Dirichlet series G(s) power series G(t)

x3
1 ζ(s− 1)

1 + t3

(1− t) (1− t2)
− 1

x1x2
(
1− 2−s + 21−2s)ζ(s)

1 + t3

(1− t) (1 + t2)
− 1

x3 L(s,χ3,2)
(1 + t)

(
1− t2

)
1− t3

− 1

Domenico Orlando What is the next number in the sequence?



. . .
Why

. . . . .
Brane tilings

. . . . . . . . . .
Symmetries

. . . . .
Some number theory

. . . . . . . . .
Generating functions

. . . .
Conclusions

The hexagonal lattice

Collecting all the terms we find:

For the power series:

F△(t) =
∞∑

m=1

∞∑
n1,n2,n3=0
̸=(0,0,0)

(−)n2 tm(n1+2n2+3n3) .

For the Dirichlet series:

F△(s) =
ζ(s)

6

(
ζ(s− 1) + 3

(
1− 1

2s +
2

22s

)
ζ(s) + 2L(s,χ3,2)

)
.
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Asymptotic behaviour

The asymptotic behavior of a sequence can be derived by looking at the
corresponding Dirichlet series.
.
Asymptotic behaviour
..

.

. ..

.

.

Let F(s) be a Dirichlet series with non-negative coefficients that converges for
ℜ(s) >α > 0. If F(s) is holomorphic in all points of the line ℜ(s) =α,
except for s =α and

F(s) ∼ A(s) +
B(s)

(s−α)m+1 ,

where m ∈ N, then the partial sum of the coefficients is asymptotic to:

N∑
n=1

f(n) ∼ B(α)

αm!
Nα logm(N) .
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Asymptotic behaviour

We just need to know the analytic properties of some functions:

The Riemann zeta functionζ(s) is analytic everywhere, except for a
simple pole at s = 1 with residue 1;

The L-function L(s,χ) is analytic everywhere, except for a simple pole
at s = 1 ifχ is a principal character.

Also useful is:
.
Robin’s inequality
..

.

. ..

.

.

σ(n) < eγn log log n , n large,

whereγ is Euler’s constant. This is true for large n, where large means
n ≥ 5041, and if and only if Riemann’s hypothesis is true
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Hexagonal lattice

The rightmost pole of the Dirichlet series F△(s) is found for s = 2

The pole has order 1 and its residue isζ(2)/6.

The partial sum of the terms in the sequence f△ behaves asymptotically
as

N∑
n=1

f△(n) ∼ ζ(2)
12

N2 =
π2

72
N2 ,

for large n, the leading term isζ(s)ζ(s− 1)/6, hence

f△(n) <
eγn log log n

6
, n large.
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How do you do that?

Find the symmetries of a given lattice (cycle index)

Decompose the counting function on the symmetries (Burnside’s lemma)

Count the sublattices for each symmetry (Hermite normal form)

Study the structure (Dirichlet convolution)

Write in a compact form (Dirichlet series)

Analysis (Asymptotic behaviour)
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Results

We have seen the construction for the orbifolds of C3.

In the paper:

the conifold

2 2 2

1

2

1

2

1

2

1 1 1

Laba

C4

These exhausts all the symmetries in the plane

Classification of string vacua
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Results

Brane tilings describe quiver gauge theories obtained by placing branes at
CY singularities

We would like to obtain a complete classification

We started by studying a subclass: Abelian orbifolds of a given geometry

The problem is the same as counting sublattices of a given lattice

Techniques from number theory

Generating functions for any given geometry
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The end

.

.

. ..

.

.

Thank you

for your attention
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