Brane Tilings and Smooth Toric Fano's

Amihay Hanany

• M2 brane probes a singular CY4

- M2 brane probes a singular CY4
- What is the gauge theory on its world volume?

- M2 brane probes a singular CY4
- What is the gauge theory on its world volume?
- A lot of progress has been made

- M2 brane probes a singular CY4
- What is the gauge theory on its world volume?
- A lot of progress has been made
- Many Quiver CS theories

M2 branes and CY4

M2 branes and CY4

• For given CY4 find the CS theory on M2

M2 branes and CY4

- For given CY4 find the CS theory on M2
- Are there any special CY4 we should pay attention to?

• D3 brane probing singular CY3

• D3 brane probing singular CY3

special attention to

- D3 brane probing singular CY3
- special attention to
- Orbifolds

- D3 brane probing singular CY3
- special attention to
- Orbifolds
- toric CY3

- D3 brane probing singular CY3
- special attention to
- Orbifolds
- toric CY3
- dP's (del Pezzo surfaces)

Tuesday, October 19, 2010

• 2d surfaces with positive curvature

- 2d surfaces with positive curvature
- special attention since there are finitely many of them

- 2d surfaces with positive curvature
- special attention since there are finitely many of them
- each dP: take a line bundle with negative curvature such that in total CY3

• What is the analog for CY4?

- What is the analog for CY4?
- Take a 3d complex space with positive curvature

- What is the analog for CY4?
- Take a 3d complex space with positive curvature
- A line bundle with negative curvature

- What is the analog for CY4?
- Take a 3d complex space with positive curvature
- A line bundle with negative curvature
- Total space is a CY4

- What is the analog for CY4?
- Take a 3d complex space with positive curvature
- A line bundle with negative curvature
- Total space is a CY4
- 3d space is called Fano 3-fold

Tuesday, October 19, 2010

• To understand this point better

- To understand this point better
- back up to lower dimensions

- To understand this point better
- back up to lower dimensions
- in Id classification of Riemann surfaces

- To understand this point better
- back up to lower dimensions
- in Id classification of Riemann surfaces
- only I complex line with positive curvature

- To understand this point better
- back up to lower dimensions
- in Id classification of Riemann surfaces
- only I complex line with positive curvature
- Sphere P^I

- To understand this point better
- back up to lower dimensions
- in Id classification of Riemann surfaces
- only I complex line with positive curvature
- Sphere P^I
- corresponding CY2: well studied C^2/Z_2

Tuesday, October 19, 2010

In 2d - 10 smooth surfaces with positive curvature

- In 2d 10 smooth surfaces with positive curvature
- $P^1 x P^1$, P^2 , blowups of P^2 by n points

- In 2d 10 smooth surfaces with positive curvature
- $P^1 x P^1$, P^2 , blowups of P^2 by n points
- n=0,1,...,8
Del Pezzo Surfaces

- In 2d 10 smooth surfaces with positive curvature
- $P^1 x P^1$, P^2 , blowups of P^2 by n points
- n=0,1,...,8
- Out of them 5 are toric and 5 are not.

Tuesday, October 19, 2010

 Physically toric means that there are continuous isometries - global symmetries

- Physically toric means that there are continuous isometries - global symmetries
- The rank of the symmetry group equals the dimension of the CY

- Physically toric means that there are continuous isometries - global symmetries
- The rank of the symmetry group equals the dimension of the CY
- non-toric means the rank is less than the dimension harder

- Physically toric means that there are continuous isometries - global symmetries
- The rank of the symmetry group equals the dimension of the CY
- non-toric means the rank is less than the dimension harder
- Use Toric Geometry

• There are the order of 1000 smooth Fano's

- There are the order of 1000 smooth Fano's
- Large but still finite..

- There are the order of 1000 smooth Fano's
- Large but still finite..
- Only 18 are toric!

Study smooth toric Fano 3-folds

Examples of Smooth Toric Fano's

Examples of Smooth Toric Fano's

• P^3 , P^2xP^1 , $P^1xP^1xP^1$, dP_nxP^1 , etc

	Sym	Toric Data	Geometry	Id of $[58]$	(b_2,g)
\mathbb{P}^3	U(4)	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix}$	\mathbb{P}^3	4	(1, 33)
\mathcal{B}_4	[3, 2, 1]	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}^2 imes \mathbb{P}^1$	24	(2, 28)
\mathcal{B}_1	$[3, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(2))$	35	(2, 32)
\mathcal{B}_2	$[3, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^2}\oplus\mathcal{O}_{\mathbb{P}^2}(1))$	36	(2, 29)
\mathcal{C}_3	$[2^3, 1]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1$	62	(3, 25)
\mathcal{C}_4	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & 0 & 0 \end{pmatrix}$	$dP_1 \times \mathbb{P}^1$	123	(3, 25)
\mathcal{C}_5	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, -1))$	68	(3, 23)
\mathcal{B}_3	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$	37	(2, 28)
\mathcal{C}_1	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^1}\oplus\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^1}(1,1))$	105	(3, 27)
\mathcal{C}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{dP_1} \oplus \mathcal{O}_{dP_1}(\ell)), \ell^2 _{dP_1} = 1$	136	(3, 26)
\mathcal{D}_1	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	\mathbb{P}^1 -blowup of \mathcal{B}_2	131	(3, 26)
\mathcal{D}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{pmatrix}$	\mathbb{P}^1 -blowup of \mathcal{B}_4	139	(3, 24)
\mathcal{E}_1	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$	dP_2 bundle over \mathbb{P}^1	218	(4, 24)
\mathcal{E}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	dP_2 bundle over \mathbb{P}^1	275	(4, 23)
\mathcal{E}_3	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{pmatrix}$	$dP_2 \times \mathbb{P}^1$	266	(4, 22)
\mathcal{E}_4	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{pmatrix}$	dP_2 bundle over \mathbb{P}^1	271	(4, 21)
\mathcal{F}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$	dP_3 bundle over \mathbb{P}^1	369	(5, 19)
\mathcal{F}_1	$[2, 1^3]$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$dP_3 \times \mathbb{P}^1$	324	(5, 19)

Tuesday, October 19, 2010

 To think about toric diagrams let us return to lower dimensions

- To think about toric diagrams let us return to lower dimensions
- The toric diagram for a CY in d dimensions is a polygon in d-1 dimensions

- To think about toric diagrams let us return to lower dimensions
- The toric diagram for a CY in d dimensions is a polygon in d-1 dimensions
- d=2 a line

- To think about toric diagrams let us return to lower dimensions
- The toric diagram for a CY in d dimensions is a polygon in d-1 dimensions
- d=2 a line

- To think about toric diagrams let us return to lower dimensions
- The toric diagram for a CY in d dimensions is a polygon in d-1 dimensions
- d=2 a line

- To think about toric diagrams let us return to lower dimensions
- The toric diagram for a CY in d dimensions is a polygon in d-1 dimensions
- d=2 a line

- To think about toric diagrams let us return to lower dimensions
- The toric diagram for a CY in d dimensions is a polygon in d-1 dimensions
- d=2 a line

• 2d polygon with vertices on a 2d lattice

- 2d polygon with vertices on a 2d lattice
- I internal point

- 2d polygon with vertices on a 2d lattice
- I internal point
- No points on an edge of the polygon

- 2d polygon with vertices on a 2d lattice
- I internal point
- No points on an edge of the polygon
- Precisely 5 such polygons

5 diagrams I internal point

- 3d polyhedron
- I internal point

- 3d polyhedron
- I internal point
- no points on edges

- 3d polyhedron
- I internal point
- no points on edges
- no points on faces

- 3d polyhedron
- I internal point
- no points on edges
- no points on faces
- precisely 18 such polyhedrons

	Sym	Toric Data	Geometry	Id of $[58]$	(b_2,g)
\mathbb{P}^3	U(4)	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix}$	\mathbb{P}^3	4	(1, 33)
\mathcal{B}_4	[3, 2, 1]	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}^2 imes \mathbb{P}^1$	24	(2, 28)
\mathcal{B}_1	$[3, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(2))$	35	(2, 32)
\mathcal{B}_2	$[3, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^2}\oplus\mathcal{O}_{\mathbb{P}^2}(1))$	36	(2, 29)
\mathcal{C}_3	$[2^3, 1]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}^1 imes \mathbb{P}^1 imes \mathbb{P}^1$	62	(3, 25)
\mathcal{C}_4	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & 0 & 0 \end{pmatrix}$	$dP_1 \times \mathbb{P}^1$	123	(3, 25)
\mathcal{C}_5	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, -1))$	68	(3, 23)
\mathcal{B}_3	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$	37	(2, 28)
\mathcal{C}_1	$[2^2, 1^2]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^1}\oplus\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^1}(1,1))$	105	(3, 27)
\mathcal{C}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & -1 & 1 & 0 \end{pmatrix}$	$\mathbb{P}(\mathcal{O}_{dP_1} \oplus \mathcal{O}_{dP_1}(\ell)), \ell^2 _{dP_1} = 1$	136	(3, 26)
\mathcal{D}_1	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	\mathbb{P}^1 -blowup of \mathcal{B}_2	131	(3, 26)
\mathcal{D}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{pmatrix}$	\mathbb{P}^1 -blowup of \mathcal{B}_4	139	(3, 24)
\mathcal{E}_1	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$	dP_2 bundle over \mathbb{P}^1	218	(4, 24)
\mathcal{E}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix}$	dP_2 bundle over \mathbb{P}^1	275	(4, 23)
\mathcal{E}_3	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{pmatrix}$	$dP_2 \times \mathbb{P}^1$	266	(4, 22)
\mathcal{E}_4	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{pmatrix}$	dP_2 bundle over \mathbb{P}^1	271	(4, 21)
\mathcal{F}_2	$[2, 1^3]$	$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 & 0 \end{pmatrix}$	dP_3 bundle over \mathbb{P}^1	369	(5, 19)
\mathcal{F}_1	$[2, 1^3]$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$dP_3 \times \mathbb{P}^1$	324	(5, 19)

Tuesday, October 19, 2010

Construct the gauge theory dual to Fano's
Construct the gauge theory dual to Fano's

Given by a Brane Tiling with CS levels on edges

Construct the gauge theory dual to Fano's

- Given by a Brane Tiling with CS levels on edges
- A combinatorial formalism to compute the toric data

 $W = \operatorname{Tr}\left(\epsilon_{ijk}X_{12}^{i}X_{23}^{j}X_{31}^{k}\right)$

 $\vec{k} = (1, -2, 1)$

3

Combinatorial data

$k_a = \sum_i d_{ai} n_i$

$$k_{1} = n_{12}^{1} + n_{12}^{2} + n_{12}^{3} - n_{31}^{1} - n_{31}^{2} - n_{31}^{3} k_{2} = n_{23}^{1} + n_{23}^{2} + n_{23}^{3} - n_{12}^{1} - n_{12}^{2} - n_{12}^{3} k_{3} = n_{31}^{1} + n_{31}^{2} + n_{31}^{3} - n_{23}^{1} - n_{23}^{2} - n_{23}^{3}$$

$$n_{12}^1 = -n_{23}^1 = 1, \qquad n_{jk}^i = 0$$
 otherwise

$$K = \begin{pmatrix} w_1 & w_2 & w_3 \\ \hline b_1 & z^{n_{31}^1} & z^{n_{12}^3} & yz^{n_{23}^2} \\ b_2 & \frac{1}{x} z^{n_{23}^3} & z^{n_{31}^2} & z^{n_{12}^1} \\ b_3 & z^{n_{12}^2} & \frac{x}{y} z^{n_{23}^1} & z^{n_{31}^3} \end{pmatrix}$$

$$perm(K) = xy^{-1}z^{(n_{12}^1 + n_{23}^1 + n_{31}^1)} + yz^{(n_{12}^2 + n_{23}^2 + n_{31}^2)} + x^{-1}z^{(n_{12}^3 + n_{23}^3 + n_{31}^3)} + z^{(n_{12}^1 + n_{12}^2 + n_{12}^3)} + z^{(n_{23}^1 + n_{23}^2 + n_{23}^3)} + z^{(n_{31}^1 + n_{31}^2 + n_{31}^3)} = xy^{-1} + y + x^{-1} + z + z^{-1} + 1$$

Tuesday, October 19, 2010

Toric Diagram

Figure 2: The toric diagram of the $M^{1,1,1}$ theory.

Hilbert Series

$$g^{\rm mes}(t; \mathcal{B}_4) = \frac{1 + 26t^{18} + 26t^{36} + t^{54}}{(1 - t^{18})^4}$$

$$= \sum_{n=0}^{\infty} \left[3n, 0; 2n \right] t^{18n}$$

Tuesday, October 19, 2010

Lattice of generators

Figure 3: The lattice of generators of the $M^{1,1,1}$ theory.

Table of R charges

Quiver fields	R-charge
X_{12}^{i}	7/9
X_{23}^{i}	7/9
X_{31}^{i}	4/9

Table 4: R-charges of the quiver fields for the $M^{1,1,1}$ theory.

Tuesday, October 19, 2010

I8 smooth toric Fano 3-folds

- I8 smooth toric Fano 3-folds
- translate toric data to brane tilings

- 18 smooth toric Fano 3-folds
- translate toric data to brane tilings
- known for 14 cases, first 4:

- I8 smooth toric Fano 3-folds
- translate toric data to brane tilings
- known for 14 cases, first 4:
- \mathbb{P}^3 , $\mathbb{P}^2 \times \mathbb{P}^1$, $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, $dP_1 \times \mathbb{P}^1$

 Have introduced Fano 3-folds into M theory backgrounds

- Have introduced Fano 3-folds into M theory backgrounds
- 18 smooth toric Fano's

- Have introduced Fano 3-folds into M theory backgrounds
- 18 smooth toric Fano's
- Find the CS brane tiling for 14 out of 18

- Have introduced Fano 3-folds into M theory backgrounds
- 18 smooth toric Fano's
- Find the CS brane tiling for 14 out of 18
- Compute various properties

Tuesday, October 19, 2010

Moduli Space of Vacua - CY4 over a Fano base

Moduli Space of Vacua - CY4 over a Fano base

• Hilbert Series - BPS KK spectrum

- Moduli Space of Vacua CY4 over a Fano base
- Hilbert Series BPS KK spectrum
- Lattice of generators

- Moduli Space of Vacua CY4 over a Fano base
- Hilbert Series BPS KK spectrum
- Lattice of generators
- Spectrum of R charges

Thank you