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Introduction and motivation

• The AdS/CFT correspondence is a powerful tool of modern theoretical physics.

• Allows to calculate gauge theory quantities at strong coupling (for large N).

• In the other direction, allows to calculate string theory quantities at large α′.

• In very simple situations the results agree, indicating that there is a

non-renormalization principle at work.
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Introduction and motivation

• The AdS/CFT correspondence is a powerful tool of modern theoretical physics.

• Allows to calculate gauge theory quantities at strong coupling (for large N).

• In the other direction, allows to calculate string theory quantities at large α′.

• In very simple situations the results agree, indicating that there is a

non-renormalization principle at work.

• In other very specific cases one can derive (or guess) non-trivial functions that

interpolate from weak to strong coupling:

– BPS observables like Wilson loops, surface operators (topological subsectors).

– Integrability: Cusp anomalous dimension. Konishi? Scattering amplitudes?

• This has been achieved so far only for the simplest example of exact AdS/CFT

duality:

N = 4 SYM ⇐⇒ Type IIB on AdS5 × S5

Nadav Drukker 2-a Autumn Symposium, KIAS
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N = 6 super Chern-Simons-matter theory
h
Aharony, Bergman
Jafferis, Maldacena

i

• Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly

supersymmetric AdS/CFT duality

d = 3, N = 6 super Chern-Simons ⇐⇒





M-theory on AdS4 × S7/Zk

Type IIA on AdS4 × CP
3
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Aharony, Bergman
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• Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly

supersymmetric AdS/CFT duality

d = 3, N = 6 super Chern-Simons ⇐⇒





M-theory on AdS4 × S7/Zk

Type IIA on AdS4 × CP
3

• Fall 2009: Following 18 months and 390 citations: No exact interpolating functions!
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N = 6 super Chern-Simons-matter theory
h
Aharony, Bergman
Jafferis, Maldacena

i

• Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly

supersymmetric AdS/CFT duality

d = 3, N = 6 super Chern-Simons ⇐⇒





M-theory on AdS4 × S7/Zk

Type IIA on AdS4 × CP
3

• Fall 2009: Following 18 months and 390 citations: No exact interpolating functions!

• Attempt: Magnon dispersion relation:
h

Nishioka
Takayanagi

i hGaiotto
Giombi

Yin

i hGrignani
Harmark
Orselli

i

E(p) =
√
J2 + 4h2(λ) sin2 p

2 − J

– Form obeyed at weak and strong coupling (constrained by symmetry).

– In N = 4 SYM same structure with h2(λ) = λ/4π2.

– In ABJM: Unknown function

h2(λ) =





λ2 − 4λ4(4 − ζ(2)) + · · · small λ

1
2λ+ · · · large λ
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Aharony, Bergman
Jafferis, Maldacena

i
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E(p) =
√
J2 + 4h2(λ) sin2 p

2 − J

– Form obeyed at weak and strong coupling (constrained by symmetry).

– In N = 4 SYM same structure with h2(λ) = λ/4π2.

– In ABJM: Unknown function

h2(λ) =





λ2 − 4ζ(2)λ4 + · · · small λ

1
2λ+ · · · large λ
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N = 6 super Chern-Simons-matter theory
h
Aharony, Bergman
Jafferis, Maldacena

i

• Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly

supersymmetric AdS/CFT duality

d = 3, N = 6 super Chern-Simons ⇐⇒





M-theory on AdS4 × S7/Zk

Type IIA on AdS4 × CP
3

• Fall 2009: Following 18 months and 390 citations: No exact interpolating functions!

• Attempt: Magnon dispersion relation:
h

Nishioka
Takayanagi

i hGaiotto
Giombi

Yin

i hGrignani
Harmark
Orselli

i

E(p) =
√
J2 + 4h2(λ) sin2 p

2 − J

– Form obeyed at weak and strong coupling (constrained by symmetry).

– In N = 4 SYM same structure with h2(λ) = λ/4π2.

– In ABJM: Unknown function

h2(λ) =





λ2 − 4ζ(2)λ4 + · · · small λ

1
2λ+ · · · large λ

• Can BPS protected quantities be calculated exactly?
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Outline

• Introduction and motivation.

• ABJM theory.

• Wilson loops.

• Localization to a super matrix model.

• Review: 1/2 BPS Wilson loop in 4d.

• Solving the matrix model:

– Weak coupling.

– Strong coupling.

– Near CS limit.

• Summary.
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Lightning review of ABJ(M) theory

• U(N1) × U(N2) gauge symmetry.

• Chern-Simons terms at levels k and −k.
• Kinetic terms for scalars and fermions.

• Very specific sextic scalar potential and (C)2(ψ)2

terms.

• Normally 3d super Chern-Simons has N = 2 or

N = 3 SUSY.

Field content dim rep

Aµ gauge field 1 adj 1

bAµ gauge field 1 1 adj

CI scalar 1/2 N1 N2

C̄I scalar 1/2 N1 N2

ψI fermion 1 N1 N2

ψ̄I fermion 1 N1 N2

• This special quiver construction allows for N = 6 SUSY.

• For k = 1, 2 should be enhanced to N = 8 SUSY.

Nadav Drukker 6 Autumn Symposium, KIAS
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Lightning review of ABJ(M) theory

• U(N1) × U(N2) gauge symmetry.

• Chern-Simons terms at levels k and −k.
• Kinetic terms for scalars and fermions.

• Very specific sextic scalar potential and (C)2(ψ)2

terms.

• Normally 3d super Chern-Simons has N = 2 or

N = 3 SUSY.

Field content dim rep

Aµ gauge field 1 adj 1

bAµ gauge field 1 1 adj

CI scalar 1/2 N1 N2

C̄I scalar 1/2 N1 N2

ψI fermion 1 N1 N2

ψ̄I fermion 1 N1 N2

• This special quiver construction allows for N = 6 SUSY.

• For k = 1, 2 should be enhanced to N = 8 SUSY.

• Is the low energy theory of N1 M2-branes on a C
4/Zk orbifold (with N2 −N1

fractional branes).

• Gravity dual: M-theory on AdS4 × S7/Zk.

• For k5 ≫ N a better description is IIA on AdS4 × CP
3.

• Analogs of ’t Hooft coupling: λ1 = N1/k, λ2 = N2/k.
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Wilson loops

1/6 BPS
h
ND, Plefka

Young

ih
Chen
Wu

ih
Rey, Suyama
Yamaguchi

i

• Borrowing from the 4d theory, to make a BPS straight Wilson loop we can add a

scalar piece to the connection

Aµẋ
µ → A = Aµẋ

µ +
2π

k
|ẋ|M I

JCIC̄
J

• It’s a bilinear on dimensional grounds and so it’s in adjoint of U(N).

• Checking SUSY gives a unique solution

δSUSYA = 0 =⇒ M I
J =

(−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)

• Preserves two Poincaré supercharges and two superconformal ones ⇒ 1/6 BPS.

• Was calculated perturbatively to order λ2

〈W 〉 = 1 +
5π2

6
λ2 + · · ·

• There was no simple guess on how to extend to all orders.

• More generally: Loop in arbitrary representation (R1, R2) of U(N1) × U(N2).

Nadav Drukker 7 Autumn Symposium, KIAS
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Wilson loops

1/6 BPS
h
ND, Plefka

Young

ih
Chen
Wu
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Rey, Suyama
Yamaguchi
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• Borrowing from the 4d theory, to make a BPS straight Wilson loop we can add a

scalar piece to the connection

Aµẋ
µ → A = Aµẋ

µ +
2π

k
|ẋ|M I

JCIC̄
J

• It’s a bilinear on dimensional grounds and so it’s in adjoint of U(N).

• Checking SUSY gives a unique solution

δSUSYA = 0 =⇒ M I
J =

(−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)

• Preserves two Poincaré supercharges and two superconformal ones ⇒ 1/6 BPS.

• Was calculated perturbatively to order λ2

〈W 〉 = 1 +
5π2

6
λ2 + · · ·

• There was no simple guess on how to extend to all orders.

• More generally: Loop in arbitrary representation (R1, R2) of U(N1) × U(N2).

• Such Wilson loops exist in any N = 2 super Chern-Simons theory.
h
Gaiotto

Yin

i

SUSY is not enhanced in going from N = 2 to N = 6.

Nadav Drukker 7-a Autumn Symposium, KIAS
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1/2 BPS
h
ND, D. Trancanelli

i“
Initiated in discussions with
V. Niarchos, G. Michalogiorgakis

”h
Lee
Lee

i

• A Wilson loop in both gauge groups can be written in terms of an

(N1 +N2) × (N1 +N2) connection

L =



Aµẋ
µ + 2π

k |ẋ|M I
JCIC̄

J 0

0 Âµẋ
µ + 2π

k |ẋ|M̂ I
J C̄

JCI
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1/2 BPS
h
ND, D. Trancanelli

i“
Initiated in discussions with
V. Niarchos, G. Michalogiorgakis

”h
Lee
Lee

i

• A Wilson loop in both gauge groups can be written in terms of an

(N1 +N2) × (N1 +N2) connection

L =



Aµẋ
µ + 2π

k |ẋ|M I
JCIC̄

J 0

0 Âµẋ
µ + 2π

k |ẋ|M̂ I
J C̄

JCI





• Generalization: Write an (N1 +N2) × (N1 +N2) superconnection

L =



Aµẋ
µ + 2π

k |ẋ|M I
JCIC̄

J
√

2π
k |ẋ| ηα

I ψ̄
I
α√

2π
k |ẋ|ψα

I η̄
I
α Âµẋ

µ + 2π
k |ẋ|M̂ I

J C̄
JCI





The natural Wilson loop is then

WR ≡ TrRP exp

(
i

∫
Ldτ

)

R is a representation of the supergroup U(N1|N2).

Nadav Drukker 8-a Autumn Symposium, KIAS
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k |ẋ|M̂ I
J C̄

JCI





• Generalization: Write an (N1 +N2) × (N1 +N2) superconnection

L =



Aµẋ
µ + 2π

k |ẋ|M I
JCIC̄

J
√

2π
k |ẋ| ηα

I ψ̄
I
α√

2π
k |ẋ|ψα

I η̄
I
α Âµẋ

µ + 2π
k |ẋ|M̂ I

J C̄
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The natural Wilson loop is then

WR ≡ TrRP exp

(
i

∫
Ldτ

)

R is a representation of the supergroup U(N1|N2).

• To make a long story short, with the right choice of M I
J and of ηα

I , this loop preserves

12 supercharges.

Nadav Drukker 8-b Autumn Symposium, KIAS



'

&

$

%

Localization to a super matrix model
h
Kapustin, Willett, Yaakov

i

• Consider any N = 2 super Chern-Simons matter theory on S3.

• Take a Wilson loop of that theory on the equator invariant under a supercharge Q.

• Add to the action a Q-exact term of the form tQ(ΨQΨ).

• VEV of Q-invariant observables is unmodified by this insertion.

• Take t large and look at the saddle points of (QΨ)2.

• Get the VEV of the Wilson loop from the classical value at the saddle point

and the one loop determinant around that point.

Nadav Drukker 9 Autumn Symposium, KIAS
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• For a theory with one U(N) vector multiplet

Z =

∫ N∏

a=1

dµa e
ikπµ2

a

∏

a<b

sinh2(π(µa − µb))

• Wilson loop in the fundamental: Insert into the integral

N∑

a=1

e2πµa

• This is the matrix model for regular U(N) topological Chern-Simons on S3.h
Mariño

i h
Aganagic, Klemm
Mariño, C. Vafa

i h
Halmagyi
Yasnov

i

Nadav Drukker 10 Autumn Symposium, KIAS
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• For a theory with one U(N) vector multiplet

Z =

∫ N∏

a=1

dµa e
ikπµ2

a

∏

a<b

sinh2(π(µa − µb))

• Wilson loop in the fundamental: Insert into the integral

N∑

a=1

e2πµa

• This is the matrix model for regular U(N) topological Chern-Simons on S3.h
Mariño

i h
Aganagic, Klemm
Mariño, C. Vafa

i h
Halmagyi
Yasnov

i

• Applying this to ABJ(M) theory one finds the partition function

Z =

∫ N1∏

a=1

dµa e
ikπµ2

a

N2∏

â=1

dνâ e
−ikπν2

â

∏
a<b sinh2(π(µa − µb))

∏
â<b̂ sinh2(π(νâ − νb̂))∏

a,â cosh2(π(µa − νâ))

• 1/6 BPS Wilson loop in the fundamental of first group is same insertion as above.

Nadav Drukker 10-a Autumn Symposium, KIAS
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• For a theory with one U(N) vector multiplet

Z =

∫ N∏

a=1

dµa e
ikπµ2

a

∏

a<b

sinh2(π(µa − µb))

• Wilson loop in the fundamental: Insert into the integral

N∑

a=1

e2πµa

• This is the matrix model for regular U(N) topological Chern-Simons on S3.h
Mariño

i h
Aganagic, Klemm
Mariño, C. Vafa

i h
Halmagyi
Yasnov

i

• Applying this to ABJ(M) theory one finds the partition function

Z =

∫ N1∏

a=1

dµa e
ikπµ2

a

N2∏

â=1

dνâ e
−ikπν2

â

∏
a<b sinh2(π(µa − µb))

∏
â<b̂ sinh2(π(νâ − νb̂))∏

a,â cosh2(π(µa − νâ))

• 1/6 BPS Wilson loop in the fundamental of first group is same insertion as above.

What about the 1/2 BPS loop?

What is this matrix model?

How do we solve it?

Nadav Drukker 10-b Autumn Symposium, KIAS



'

&

$

%

Review: 1/2 BPS Wilson loop in 4d
h
Erickson, Semenoff, Zarembo

ih
ND, Gross

ih
Pestun

i

• In N = 4 SYM can take the circular Wilson loop

W =
1

N
TrP exp

[
i

∫
(Aµẋ

µ + iΦ|ẋ|)dt
]

• Sum over ladder graphs given by a Gaussian matrix

model!

〈W 〉 =
1

Z

∫
DM 1

N
Tr eM e

− 2

g2
Tr M2

• Proven to be exact.

• In the planar limit the eigenvalues condense to a cut

〈W 〉 =

∫ √
λ

−
√

λ

dµ ρ0(µ)eµ = 2√
λ
I1
(√
λ
)

−→
λ→∞

e
√

λ ρ0(µ) = 2
πλ

√
λ− µ2

• Exactly matches the action for the corresponding

classical string in AdS5 × S5.

• Generalized to theories with N = 2 supersymmetry.

• By using D3 or D5 brane can also match 1/N terms.

Nadav Drukker 11 Autumn Symposium, KIAS
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Localization for 1/2 BPS Wilson loop

• Can use the same localization term for the 1/2 BPS loop (they share the

supercharges).

• Take a 1/6 BPS Wilson loop of the form (R is a rep of U(N1|N2))

W
(1/6)
R ≡ TrRP exp

(
i

∫
L(1/6) dτ

)
, L(1/6) =



A(1/6) 0

0 Â(1/6)
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Localization for 1/2 BPS Wilson loop

• Can use the same localization term for the 1/2 BPS loop (they share the

supercharges).

• Take a 1/6 BPS Wilson loop of the form (R is a rep of U(N1|N2))

W
(1/6)
R ≡ TrRP exp

(
i

∫
L(1/6) dτ

)
, L(1/6) =



A(1/6) 0

0 Â(1/6)





The difference between the 1/2 BPS Wilson loop

and this specific 1/6 BPS loop is Q-exact.
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Localization for 1/2 BPS Wilson loop

• Can use the same localization term for the 1/2 BPS loop (they share the

supercharges).

• Take a 1/6 BPS Wilson loop of the form (R is a rep of U(N1|N2))

W
(1/6)
R ≡ TrRP exp

(
i

∫
L(1/6) dτ

)
, L(1/6) =



A(1/6) 0

0 Â(1/6)





The difference between the 1/2 BPS Wilson loop

and this specific 1/6 BPS loop is Q-exact.

• The Wilson loop in the fundamental of U(N1|N2) inserts into the matrix model

W =

N1∑

a=1

e2πµa +

N2∑

â=1

e2πνâ

• For a general representation the insertion is

WR = TrR



diag(e2πµa) 0

0 diag(e2πνâ)



 = sTrR



diag(e2πµa) 0

0 − diag(e2πνâ)





• These are the natural observables in this super matrix model!
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What is this matrix model

• From localization U(N) Chern Simons theory on S3 is captured by the matrix model

Z =

∫ N∏

a=1

dµa e
ikπµ2

a

∏

a<b

sinh2(π(µa − µb))

Same result can be found by doing a semiclassical expansion.

Nadav Drukker 13 Autumn Symposium, KIAS
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What is this matrix model

• From localization U(N) Chern Simons theory on S3 is captured by the matrix model

Z =

∫ N∏

a=1

dµa e
ikπµ2

a

∏

a<b

sinh2(π(µa − µb))

Same result can be found by doing a semiclassical expansion.

• On S3/Z2 there are different saddle points to expand around, with different Wilson

loops around the non-contractible cycle. This breaks U(N) → U(N1) × U(N2). The

relevant matrix model is

Z =

∫ N1∏

a=1

dµa e
ikπµ2

a

N2∏

â=1

dνâ e
ikπν2

â

∏

a<b

sinh2(π(µa − µb))
∏

â<b̂

sinh2(π(νâ − νb̂))

×
∏

a,â

cosh2(π(µa − νâ))

The ν eigenvalues are effectively shifted by πi from the real line.

Nadav Drukker 13-a Autumn Symposium, KIAS
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What is this matrix model

• From localization U(N) Chern Simons theory on S3 is captured by the matrix model

Z =

∫ N∏

a=1

dµa e
ikπµ2

a

∏

a<b

sinh2(π(µa − µb))

Same result can be found by doing a semiclassical expansion.

• On S3/Z2 there are different saddle points to expand around, with different Wilson

loops around the non-contractible cycle. This breaks U(N) → U(N1) × U(N2). The

relevant matrix model is

Z =

∫ N1∏

a=1

dµa e
ikπµ2

a

N2∏

â=1

dνâ e
ikπν2

â

∏

a<b

sinh2(π(µa − µb))
∏

â<b̂

sinh2(π(νâ − νb̂))

×
∏

a,â

cosh2(π(µa − νâ))

The ν eigenvalues are effectively shifted by πi from the real line.

• Replacing U(N1 +N2) → U(N1) × U(N2) by U(N1|N2) → U(N1) × U(N2) gives the

cosh in the denominator and the ABJM matrix model.
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What is this matrix model

• From localization U(N) Chern Simons theory on S3 is captured by the matrix model

Z =

∫ N∏

a=1

dµa e
ikπµ2

a

∏

a<b

sinh2(π(µa − µb))

Same result can be found by doing a semiclassical expansion.

• On S3/Z2 there are different saddle points to expand around, with different Wilson

loops around the non-contractible cycle. This breaks U(N) → U(N1) × U(N2). The

relevant matrix model is

Z =

∫ N1∏

a=1

dµa e
ikπµ2

a

N2∏

â=1

dνâ e
ikπν2

â

∏

a<b

sinh2(π(µa − µb))
∏

â<b̂

sinh2(π(νâ − νb̂))

×
∏

a,â

cosh2(π(µa − νâ))

The ν eigenvalues are effectively shifted by πi from the real line.

• Replacing U(N1 +N2) → U(N1) × U(N2) by U(N1|N2) → U(N1) × U(N2) gives the

cosh in the denominator and the ABJM matrix model.

• Same is achieved by doing the calculation for U(N1 +N2) and analytically continuing

to negative N2.

Nadav Drukker 13-c Autumn Symposium, KIAS
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Solving the matrix model
Z = ez

−b −1/b 1/a a

C1C1
C2

C2

D

D z

A−A

πi+Bπi−B

• Using the matrix

U =



e
µi 0

0 −eνj



 ,

we define the resolvent

ω(z) = gs

〈
tr

(
Z + U

Z − U

)〉
= gs

〈
N1∑

i=1

coth

(
z − µi

2

)〉
+ gs

〈
N2∑

j=1

tanh

(
z − νj

2

)〉

• It is possible to show that in the planar approximation the resolvent is
h
Halmagyi
Yasnov

i

ω0(z) = 2 log

(
1

2
√
β

[√
(Z + b)(Z + 1/b) −

√
(Z − a)(Z − 1/a)

])

with

ζ =
1

2

(
a+

1

a
− b− 1

b

)
, β =

1

4

(
a+

1

a
+ b+

1

b

)
.

Nadav Drukker 14 Autumn Symposium, KIAS
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• The C cycles give the ’t Hooft couplings

ti =
1

4πi

∮

Ci

ω0(z) dz, i = 1, 2.

ti = ±gsNi = ±2πλi , gs =
2πi

k

• A simple quantity is t = t1 + t2 = 2πi(λ1 − λ2).

Z = ez

−b −1/b 1/a a

C1C2
D

• It can be found from the asymptotics of ω0 at infinity

ω0 = log β +
ζ

Z
+ · · ·

• Useful also to define

B = λ1 − λ2 + 1
2 , κ = e−πiBζ .

• It is harder to calculate λ1 and λ2 independently.

• The D-cycle integral gives the derivative of the planar free energy

I ≡ ∂F0

∂t1
− ∂F0

∂t2
− πit = −1

2

∮

D
ω0(z) dz, Z = exp

[
g−2

s F0 +O(g0
s)
]

Nadav Drukker 15 Autumn Symposium, KIAS
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Wilson loops

• Wilson loops are also C-cycle integrals

〈
W

1/6
�

〉
=

∮

C1

dz

4πi
ω(z) ez =

∮

C1

dZ

4πi
ω(Z).

〈
W

1/2
�

〉
=

∮

C1+C2

dz

4πi
ω(z) ez =

∮

C1+C2

dZ

4πi
ω(Z).

Nadav Drukker 16 Autumn Symposium, KIAS
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Wilson loops

• Wilson loops are also C-cycle integrals

〈
W

1/6
�

〉
=

∮

C1

dz

4πi
ω(z) ez =

∮

C1

dZ

4πi
ω(Z).

〈
W

1/2
�

〉
=

∮

C1+C2

dz

4πi
ω(z) ez =

∮

C1+C2

dZ

4πi
ω(Z).

• The 1/6 BPS Wilson loop is complicated.

• The 1/2 BPS Wilson loop is much simpler. Can be calculated from the asymptotics of

ω0 at infinity. 〈
W

1/2
�

〉
=
ζ

2
.
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Wilson loops

• Wilson loops are also C-cycle integrals

〈
W

1/6
�

〉
=

∮

C1

dz

4πi
ω(z) ez =

∮

C1

dZ

4πi
ω(Z).

〈
W

1/2
�

〉
=

∮

C1+C2

dz

4πi
ω(z) ez =

∮

C1+C2

dZ

4πi
ω(Z).

• The 1/6 BPS Wilson loop is complicated.

• The 1/2 BPS Wilson loop is much simpler. Can be calculated from the asymptotics of

ω0 at infinity. 〈
W

1/2
�

〉
=
ζ

2
.

To evaluate the 1/2 BPS Wilson loop we “just” need to relate ζ to λi. . .
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Weak coupling

• Can expand around ζ = 0 (or a ∼ b ∼ 1). And calculate the different quantities.

• Inverting the C-cycle integrals we get

κ = − 2i(t1 − t2) −
i

12

(
t31 + 3t21t2 − 3t1t

2
2 − t32

)

− i

960

(
t51 + 5t41t2 − 10t31t

2
2 + 10t21t

3
2 − 5t1t

4
2 − t52

)
+O(t7).

• κ is the same as ζ, up to a phase. So this is the VEV of the 1/2 BPS Wilson loop.

• likewise for the 1/6 BPS loop

〈
W

1/6
�

〉
= eπiλ12πiλ1

(
1 − π2

6
λ1(λ1 − 6λ2) −

π3i

2
λ1λ

2
2 +

π4

120
λ1

(
λ3

1 − 10λ2
1λ2 − 20λ3

2

)
+ · · ·

)

• The free energy is

F =
N2

1

2
log

(
2πiN1

k

)
+
N2

2

2
log

(
−2πiN2

k

)
− 3

4
(N2

1 +N2
2 ) − log(4)N1N2 + · · ·

Nadav Drukker 17 Autumn Symposium, KIAS
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Strong coupling

• Differentiating with respect to ζ or β gives elliptic integrals

dt1,2

dζ
= − 1

4πi

∮

C1,2

dZ√
(Z2 − ζZ + 1)2 − 4β2Z2

= ±
√
ab

π(1 + ab)
K(k), k2 = 1−

(
a+b
1+ab

)2
.

• Similar expressions exist for the free energy and to the 1/6 BPS Wilson loop.

• Useful fancy machinery: Picard-Fuchs equations.
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Strong coupling

• Differentiating with respect to ζ or β gives elliptic integrals

dt1,2

dζ
= − 1

4πi

∮

C1,2

dZ√
(Z2 − ζZ + 1)2 − 4β2Z2

= ±
√
ab

π(1 + ab)
K(k), k2 = 1−

(
a+b
1+ab

)2
.

• Similar expressions exist for the free energy and to the 1/6 BPS Wilson loop.

• Useful fancy machinery: Picard-Fuchs equations.

• For β = 1 (λ1 = λ2) this is

λ(κ) =
κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
.

• The full solution for all ζ, β is known too. The large λ behavior is

λ1(κ,B) =
1

2

(
B2 − 1

4

)
+

1

24
+

log2 κ

2π2
+ · · ·

• The natural variable has a shift

λ̂ = λ1 −
1

2

(
B2 − 1

4

)
− 1

24
=

1

2
(λ1 + λ2) −

1

2
(λ1 − λ2)

2 − 1

24
.

Same shift arises in calculating the D2-brane charge in the supergravity background!
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• After the shift we have

λ̂(κ,B) =
log2 κ

2π2
+ · · ·

• Inverting this we get

κ = eπ
√

2λ̂

• κ is the same as ζ, up to a phase. So this is the VEV of the 1/2 BPS Wilson loop.
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• After the shift we have

λ̂(κ,B) =
log2 κ

2π2
+ · · ·

• Inverting this we get

κ = eπ
√

2λ̂

• κ is the same as ζ, up to a phase. So this is the VEV of the 1/2 BPS Wilson loop.

Same as a classical string in AdS4 × CP
3!
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• After the shift we have

λ̂(κ,B) =
log2 κ

2π2
+ · · ·

• Inverting this we get

κ = eπ
√

2λ̂

• κ is the same as ζ, up to a phase. So this is the VEV of the 1/2 BPS Wilson loop.

Same as a classical string in AdS4 × CP
3!

• Including subleading terms we get instanton corrections

κ(λ̂, B) = eπ
√

2λ̂



1 +
∑

ℓ≥1

cℓ

(
1

π
√

2λ̂
, β

)
e−2ℓπ

√
2λ̂





c1(x, β) = −
(
β + β−1

) (
1 − x

2

)
,

• Instanton action agrees with a string wrapping a CP
1 ⊂ CP

3.

• Can also calculate the 1/6 BPS loop.

• Also non-planar corrections.
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Free energy

• Similarly can calculate the D period.

∂λ̂F0(λ1, λ2) = 2π2 log κ− 2π3i

(
B − 1

2

)
+ · · ·

• Using the expression fo κ in terms of λ̂ and integrating gives

F0(λ̂, B) =
4π3

√
2

3
λ̂3/2 +

∑

ℓ≥1

e−2πℓ
√

2λ̂fℓ

(
1

π
√

2λ̂
, β

)
− π3i(λ2

1 − λ2
2),

f1(x, β) = −1

2

(
β + β−1

)
,
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Free energy

• Similarly can calculate the D period.

∂λ̂F0(λ1, λ2) = 2π2 log κ− 2π3i

(
B − 1

2

)
+ · · ·

• Using the expression fo κ in terms of λ̂ and integrating gives

F0(λ̂, B) =
4π3

√
2

3
λ̂3/2 +

∑

ℓ≥1

e−2πℓ
√

2λ̂fℓ

(
1

π
√

2λ̂
, β

)
− π3i(λ2

1 − λ2
2),

f1(x, β) = −1

2

(
β + β−1

)
,

• Leading term can be written as

F =
F0

g2
s

= −π
√

2

3
k2λ̂3/2 = −π

√
2

3

√
kN3/2
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Free energy

• Similarly can calculate the D period.

∂λ̂F0(λ1, λ2) = 2π2 log κ− 2π3i

(
B − 1

2

)
+ · · ·

• Using the expression fo κ in terms of λ̂ and integrating gives

F0(λ̂, B) =
4π3

√
2

3
λ̂3/2 +

∑

ℓ≥1

e−2πℓ
√

2λ̂fℓ

(
1

π
√

2λ̂
, β

)
− π3i(λ2

1 − λ2
2),

f1(x, β) = −1

2

(
β + β−1

)
,

• Leading term can be written as

F =
F0

g2
s

= −π
√

2

3
k2λ̂3/2 = −π

√
2

3

√
kN3/2

Same as a classical SUGRA action on AdS4 × CP
3!
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Free energy

• Similarly can calculate the D period.

∂λ̂F0(λ1, λ2) = 2π2 log κ− 2π3i

(
B − 1

2

)
+ · · ·

• Using the expression fo κ in terms of λ̂ and integrating gives

F0(λ̂, B) =
4π3

√
2

3
λ̂3/2 +

∑

ℓ≥1

e−2πℓ
√

2λ̂fℓ

(
1

π
√

2λ̂
, β

)
− π3i(λ2

1 − λ2
2),

f1(x, β) = −1

2

(
β + β−1

)
,

• Leading term can be written as

F =
F0

g2
s

= −π
√

2

3
k2λ̂3/2 = −π

√
2

3

√
kN3/2

Same as a classical SUGRA action on AdS4 × CP
3!

• Subleading corrections are world-sheet instantons.

• Can calculate non-planar corrections efficiently to high-genus.

• Large N expansion seems to be Borel resummable.
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Near CS limit

• Can consider the case of finite λ1 infinitesimal λ2.

• λ2 → 0 is pure CS theory.

• Can work perturbatively in λ2 and reduce all calculations to correlation functions of

Wilson loops in CS theory.
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Near CS limit

• Can consider the case of finite λ1 infinitesimal λ2.

• λ2 → 0 is pure CS theory.

• Can work perturbatively in λ2 and reduce all calculations to correlation functions of

Wilson loops in CS theory.

• In the matrix model: Reduce to a single cut.

• This is the matrix model for pure CS.

• Can write full matrix model correlators perturbatively in the single cut model.
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Near CS limit

• Can consider the case of finite λ1 infinitesimal λ2.

• λ2 → 0 is pure CS theory.

• Can work perturbatively in λ2 and reduce all calculations to correlation functions of

Wilson loops in CS theory.

• In the matrix model: Reduce to a single cut.

• This is the matrix model for pure CS.

• Can write full matrix model correlators perturbatively in the single cut model.

• Would be interesting to explore this for non-protected operators.
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Summary

• The 1/2 BPS is the natural dual of the fundamental string in AdS4.

– Has a very natural expression in the supergroup Chern-Simons matrix model.

• The BPS Wilson loop provide the first weak to strong coupling interpolating function

in ABJM theory.

• 1/6 BPS loop (without a 1/2 BPS completion) can also be calculated exactly.

• The vacuum is another BPS protected state and we can calculate it

– We find exact expression for all λ.

– Agrees with AdS action and gives the N3/2 scaling.

– World-sheet instantons contribute to it.
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Summary

• The 1/2 BPS is the natural dual of the fundamental string in AdS4.

– Has a very natural expression in the supergroup Chern-Simons matrix model.

• The BPS Wilson loop provide the first weak to strong coupling interpolating function

in ABJM theory.

• 1/6 BPS loop (without a 1/2 BPS completion) can also be calculated exactly.

• The vacuum is another BPS protected state and we can calculate it

– We find exact expression for all λ.

– Agrees with AdS action and gives the N3/2 scaling.

– World-sheet instantons contribute to it.

• Could h2(λ) in the magnon dispersion relation be related to κ, a, b?
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Summary

• The 1/2 BPS is the natural dual of the fundamental string in AdS4.

– Has a very natural expression in the supergroup Chern-Simons matrix model.

• The BPS Wilson loop provide the first weak to strong coupling interpolating function

in ABJM theory.

• 1/6 BPS loop (without a 1/2 BPS completion) can also be calculated exactly.

• The vacuum is another BPS protected state and we can calculate it

– We find exact expression for all λ.

– Agrees with AdS action and gives the N3/2 scaling.

– World-sheet instantons contribute to it.

• Could h2(λ) in the magnon dispersion relation be related to κ, a, b?

• Other exactly calculable theories/quantities — “AGT for 3d theories”?
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Summary

• The 1/2 BPS is the natural dual of the fundamental string in AdS4.

– Has a very natural expression in the supergroup Chern-Simons matrix model.

• The BPS Wilson loop provide the first weak to strong coupling interpolating function

in ABJM theory.

• 1/6 BPS loop (without a 1/2 BPS completion) can also be calculated exactly.

• The vacuum is another BPS protected state and we can calculate it

– We find exact expression for all λ.

– Agrees with AdS action and gives the N3/2 scaling.

– World-sheet instantons contribute to it.

• Could h2(λ) in the magnon dispersion relation be related to κ, a, b?

• Other exactly calculable theories/quantities — “AGT for 3d theories”?

• ABJM theory is harder than N = 4 SYM, but not impossible!
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The end
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