From Weak to Strong Coupling in ABJM Theory

Nadav Drukker Imperial College
London
Based on arXiv：1007．3837：ND，M．Mariño，P．Putrov
and many other papers．．．
Autumn Symposium on String／M Theory
KI／AS
ドロRER INSTITUTE FロR RLツRトLEED STUL＇，

October 17， 2010

Introduction and motivation

- The $A d S /$ CFT correspondence is a powerful tool of modern theoretical physics.
- Allows to calculate gauge theory quantities at strong coupling (for large N).
- In the other direction, allows to calculate string theory quantities at large α^{\prime}.
- In very simple situations the results agree, indicating that there is a non-renormalization principle at work.

Introduction and motivation

- The $A d S /$ CFT correspondence is a powerful tool of modern theoretical physics.
- Allows to calculate gauge theory quantities at strong coupling (for large N).
- In the other direction, allows to calculate string theory quantities at large α^{\prime}.
- In very simple situations the results agree, indicating that there is a non-renormalization principle at work.
- In other very specific cases one can derive (or guess) non-trivial functions that interpolate from weak to strong coupling:
- BPS observables like Wilson loops, surface operators (topological subsectors).
- Integrability: Cusp anomalous dimension. Konishi? Scattering amplitudes?
- This has been achieved so far only for the simplest example of exact $A d S /$ CFT duality:

$$
\mathcal{N}=4 \mathrm{SYM} \quad \Longleftrightarrow \quad \text { Type IIB on } A d S_{5} \times S^{5}
$$

$\mathcal{N}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly supersymmetric $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \text { super Chern-Simons } \Longleftrightarrow\left\{\begin{array}{l}
\text { M-theory on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly supersymmetric $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \text { super Chern-Simons } \Longleftrightarrow\left\{\begin{array}{l}
\text { M-theory on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

- Fall 2009: Following 18 months and 390 citations: No exact interpolating functions!

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly supersymmetric $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \text { super Chern-Simons } \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\text { M-theory on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

- Fall 2009: Following 18 months and 390 citations: No exact interpolating functions!
- Attempt: Magnon dispersion relation:

$$
E(p)=\sqrt{J^{2}+4 h^{2}(\lambda) \sin ^{2} \frac{p}{2}}-J
$$

- Form obeyed at weak and strong coupling (constrained by symmetry).
$-\operatorname{In} \mathcal{N}=4$ SYM same structure with $h^{2}(\lambda)=\lambda / 4 \pi^{2}$.
- In ABJM: Unknown function

$$
h^{2}(\lambda)= \begin{cases}\lambda^{2}-4 \lambda^{4}(4-\zeta(2))+\cdots & \text { small } \lambda \\ \frac{1}{2} \lambda+\cdots & \text { large } \lambda\end{cases}
$$

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly supersymmetric $A d S /$ CFT duality
$d=3, \quad \mathcal{N}=6$ super Chern-Simons $\quad \Longleftrightarrow\left\{\begin{array}{l}\text { M-theory on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\ \text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}\end{array}\right.$
- Fall 2009: Following 18 months and 390 citations: No exact interpolating functions!
- Attempt: Magnon dispersion relation:

$$
E(p)=\sqrt{J^{2}+4 h^{2}(\lambda) \sin ^{2} \frac{p}{2}}-J
$$

- Form obeyed at weak and strong coupling (constrained by symmetry).
$-\operatorname{In} \mathcal{N}=4$ SYM same structure with $h^{2}(\lambda)=\lambda / 4 \pi^{2}$.
- In ABJM: Unknown function

$$
h^{2}(\lambda)= \begin{cases}\lambda^{2}-4 \zeta(2) \lambda^{4}+\cdots & \text { small } \lambda \\ \frac{1}{2} \lambda+\cdots & \text { large } \lambda\end{cases}
$$

$\underline{\mathcal{N}}=6$ super Chern-Simons-matter theory

- Spring 2008: Building on Bagger-Lambert-Gustavsson, a new proposal for a highly supersymmetric $A d S /$ CFT duality

$$
d=3, \quad \mathcal{N}=6 \text { super Chern-Simons } \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
\text { M-theory on } A d S_{4} \times S^{7} / \mathbb{Z}_{k} \\
\text { Type IIA on } A d S_{4} \times \mathbb{C P}^{3}
\end{array}\right.
$$

- Fall 2009: Following 18 months and 390 citations: No exact interpolating functions!
- Attempt: Magnon dispersion relation:

$$
E(p)=\sqrt{J^{2}+4 h^{2}(\lambda) \sin ^{2} \frac{p}{2}}-J
$$

- Form obeyed at weak and strong coupling (constrained by symmetry).
$-\operatorname{In} \mathcal{N}=4$ SYM same structure with $h^{2}(\lambda)=\lambda / 4 \pi^{2}$.
- In ABJM: Unknown function

$$
h^{2}(\lambda)= \begin{cases}\lambda^{2}-4 \zeta(2) \lambda^{4}+\cdots & \text { small } \lambda \\ \frac{1}{2} \lambda+\cdots & \text { large } \lambda\end{cases}
$$

- Can BPS protected quantities be calculated exactly?

Outline

- Introduction and motivation.
- ABJM theory.
- Wilson loops.
- Localization to a super matrix model.
- Review: $1 / 2$ BPS Wilson loop in 4d.
- Solving the matrix model:
- Weak coupling.
- Strong coupling.
- Near CS limit.
- Summary.

$\underline{\text { Lightning review of } \mathrm{ABJ}(\mathrm{M}) \text { theory }}$

- $U\left(N_{1}\right) \times U\left(N_{2}\right)$ gauge symmetry.
- Chern-Simons terms at levels k and $-k$.
- Kinetic terms for scalars and fermions.
- Very specific sextic scalar potential and $(C)^{2}(\psi)^{2}$ terms.
- Normally 3d super Chern-Simons has $\mathcal{N}=2$ or $\mathcal{N}=3$ SUSY.

Field content		dim	rep	
A_{μ}	gauge field	1	adj	1
\widehat{A}_{μ}	gauge field	1	1	adj
C_{I}	scalar	$1 / 2$	N_{1}	\bar{N}_{2}
\bar{C}^{I}	scalar	$1 / 2$	\bar{N}_{1}	N_{2}
ψ_{I}	fermion	1	\bar{N}_{1}	N_{2}
$\bar{\psi}_{I}$	fermion	1	N_{1}	\bar{N}_{2}

- This special quiver construction allows for $\mathcal{N}=6$ SUSY.
- For $k=1,2$ should be enhanced to $\mathcal{N}=8$ SUSY.

$\underline{\text { Lightning review of } \mathrm{ABJ}(\mathrm{M}) \text { theory }}$

- $U\left(N_{1}\right) \times U\left(N_{2}\right)$ gauge symmetry.
- Chern-Simons terms at levels k and $-k$.
- Kinetic terms for scalars and fermions.
- Very specific sextic scalar potential and $(C)^{2}(\psi)^{2}$ terms.
- Normally 3d super Chern-Simons has $\mathcal{N}=2$ or $\mathcal{N}=3$ SUSY.

Field content		dim	rep	
A_{μ}	gauge field	1	adj	1
\widehat{A}_{μ}	gauge field	1	1	adj
C_{I}	scalar	$1 / 2$	N_{1}	\bar{N}_{2}
\bar{C}^{I}	scalar	$1 / 2$	\bar{N}_{1}	N_{2}
ψ_{I}	fermion	1	\bar{N}_{1}	N_{2}
$\bar{\psi}_{I}$	fermion	1	N_{1}	\bar{N}_{2}

- This special quiver construction allows for $\mathcal{N}=6$ SUSY.
- For $k=1,2$ should be enhanced to $\mathcal{N}=8$ SUSY.
- Is the low energy theory of N_{1} M2-branes on a $\mathbb{C}^{4} / \mathbb{Z}_{k}$ orbifold (with $N_{2}-N_{1}$ fractional branes).
- Gravity dual: M-theory on $A d S_{4} \times S^{7} / \mathbb{Z}_{k}$.
- For $k^{5} \gg N$ a better description is IIA on $A d S_{4} \times \mathbb{C P}^{3}$.
- Analogs of 't Hooft coupling: $\lambda_{1}=N_{1} / k, \lambda_{2}=N_{2} / k$.

Wilson loops

$\underline{1 / 6 \mathrm{BPS}}$

- Borrowing from the 4 d theory, to make a BPS straight Wilson loop we can add a scalar piece to the connection

$$
A_{\mu} \dot{x}^{\mu} \quad \rightarrow \quad \mathcal{A}=A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J}
$$

- It's a bilinear on dimensional grounds and so it's in adjoint of $U(N)$.
- Checking SUSY gives a unique solution

$$
\delta_{\mathrm{SUSY}} \mathcal{A}=0 \quad \Longrightarrow \quad M_{J}^{I}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Preserves two Poincaré supercharges and two superconformal ones $\Rightarrow 1 / 6 \mathrm{BPS}$.
- Was calculated perturbatively to order λ^{2}

$$
\langle W\rangle=1+\frac{5 \pi^{2}}{6} \lambda^{2}+\cdots
$$

- There was no simple guess on how to extend to all orders.
- More generally: Loop in arbitrary representation $\left(R_{1}, R_{2}\right)$ of $U\left(N_{1}\right) \times U\left(N_{2}\right)$.

Wilson loops

$\underline{1 / 6 \mathrm{BPS}}$

- Borrowing from the 4 d theory, to make a BPS straight Wilson loop we can add a scalar piece to the connection

$$
A_{\mu} \dot{x}^{\mu} \quad \rightarrow \quad \mathcal{A}=A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J}
$$

- It's a bilinear on dimensional grounds and so it's in adjoint of $U(N)$.
- Checking SUSY gives a unique solution

$$
\delta_{\mathrm{SUSY}} \mathcal{A}=0 \quad \Longrightarrow \quad M_{J}^{I}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Preserves two Poincaré supercharges and two superconformal ones $\Rightarrow 1 / 6 \mathrm{BPS}$.
- Was calculated perturbatively to order λ^{2}

$$
\langle W\rangle=1+\frac{5 \pi^{2}}{6} \lambda^{2}+\cdots
$$

- There was no simple guess on how to extend to all orders.
- More generally: Loop in arbitrary representation $\left(R_{1}, R_{2}\right)$ of $U\left(N_{1}\right) \times U\left(N_{2}\right)$.
- Such Wilson loops exist in any $\mathcal{N}=2$ super Chern-Simons theory.

SUSY is not enhanced in going from $\mathcal{N}=2$ to $\mathcal{N}=6$.

1/2 BPS

$$
[\text { ND, D. Trancanelli }]\binom{\text { Initiated in discussions with }}{\text { V. Niarchos, G. Michalogiorgakis }}\left[\begin{array}{l}
\text { Lee } \\
\text { Lee }
\end{array}\right]
$$

- A Wilson loop in both gauge groups can be written in terms of an $\left(N_{1}+N_{2}\right) \times\left(N_{1}+N_{2}\right)$ connection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & 0 \\
0 & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

$1 / 2$ BPS

$$
[\text { ND, D. Trancanelli }]\binom{\text { Initiated in discussions with }}{\text { V. Niarchos, G. Michalogiorgakis }}\left[\begin{array}{l}
\text { Lee } \\
\text { Lee }
\end{array}\right]
$$

- A Wilson loop in both gauge groups can be written in terms of an $\left(N_{1}+N_{2}\right) \times\left(N_{1}+N_{2}\right)$ connection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & 0 \\
0 & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

- Generalization: Write an $\left(N_{1}+N_{2}\right) \times\left(N_{1}+N_{2}\right)$ superconnection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & \sqrt{\frac{2 \pi}{k}}|\dot{x}| \eta_{I}^{\alpha} \bar{\psi}_{\alpha}^{I} \\
\sqrt{\frac{2 \pi}{k}}|\dot{x}| \psi_{I}^{\alpha} \bar{\eta}_{\alpha}^{I} & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

The natural Wilson loop is then

$$
W_{\mathcal{R}} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L d \tau\right)
$$

\mathcal{R} is a representation of the supergroup $U\left(N_{1} \mid N_{2}\right)$.

$1 / 2$ BPS

$$
[\text { ND, D. Trancanelli }]\binom{\text { Initiated in discussions with }}{\text { V. Niarchos, G. Michalogiorgakis }}\left[\begin{array}{l}
\text { Lee } \\
\text { Lee }
\end{array}\right]
$$

- A Wilson loop in both gauge groups can be written in terms of an $\left(N_{1}+N_{2}\right) \times\left(N_{1}+N_{2}\right)$ connection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & 0 \\
0 & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

- Generalization: Write an $\left(N_{1}+N_{2}\right) \times\left(N_{1}+N_{2}\right)$ superconnection

$$
L=\left(\begin{array}{cc}
A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| M_{J}^{I} C_{I} \bar{C}^{J} & \sqrt{\frac{2 \pi}{k}}|\dot{x}| \eta_{I}^{\alpha} \bar{\psi}_{\alpha}^{I} \\
\sqrt{\frac{2 \pi}{k}}|\dot{x}| \psi_{I}^{\alpha} \bar{\eta}_{\alpha}^{I} & \widehat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k}|\dot{x}| \widehat{M}_{J}^{I} \bar{C}^{J} C_{I}
\end{array}\right)
$$

The natural Wilson loop is then

$$
W_{\mathcal{R}} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L d \tau\right)
$$

\mathcal{R} is a representation of the supergroup $U\left(N_{1} \mid N_{2}\right)$.

- To make a long story short, with the right choice of M_{J}^{I} and of η_{I}^{α}, this loop preserves 12 supercharges.

Localization to a super matrix model

- Consider any $\mathcal{N}=2$ super Chern-Simons matter theory on S^{3}.
- Take a Wilson loop of that theory on the equator invariant under a supercharge Q.
- Add to the action a Q-exact term of the form $t Q(\Psi Q \Psi)$.
- VEV of Q-invariant observables is unmodified by this insertion.
- Take t large and look at the saddle points of $(Q \Psi)^{2}$.
- Get the VEV of the Wilson loop from the classical value at the saddle point and the one loop determinant around that point.
- For a theory with one $U(N)$ vector multiplet

$$
Z=\int \prod_{a=1}^{N} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right)
$$

- Wilson loop in the fundamental: Insert into the integral

$$
\sum_{a=1}^{N} e^{2 \pi \mu_{a}}
$$

- This is the matrix model for regular $U(N)$ topological Chern-Simons on S^{3}.

$$
[\text { Mariño }]\left[\begin{array}{c}
\text { Aganagic, Klemm } \\
\text { Mariño, C. Vafa }
\end{array}\right]\left[\begin{array}{c}
\text { Halmagyi } \\
\text { Yasnov }
\end{array}\right]
$$

- For a theory with one $U(N)$ vector multiplet

$$
Z=\int \prod_{a=1}^{N} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right)
$$

- Wilson loop in the fundamental: Insert into the integral

$$
\sum_{a=1}^{N} e^{2 \pi \mu_{a}}
$$

- This is the matrix model for regular $U(N)$ topological Chern-Simons on S^{3}.

$$
\left[\begin{array}{l}
\text { Mariño }
\end{array}\right]\left[\begin{array}{c}
\text { Aganagic, Klemm } \\
\text { Mariño, C. Vafa }
\end{array}\right]\left[\begin{array}{c}
\text { Halmagyi } \\
\text { Yasnov }
\end{array}\right]
$$

- Applying this to $\operatorname{ABJ}(\mathrm{M})$ theory one finds the partition function

$$
Z=\int \prod_{a=1}^{N_{1}} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{\hat{a}=1}^{N_{2}} d \nu_{\hat{a}} e^{-i k \pi \nu_{\hat{a}}^{2}} \frac{\prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right) \prod_{\hat{a}<\hat{b}} \sinh ^{2}\left(\pi\left(\nu_{\hat{a}}-\nu_{\hat{b}}\right)\right)}{\prod_{a, \hat{a}} \cosh ^{2}\left(\pi\left(\mu_{a}-\nu_{\hat{a}}\right)\right)}
$$

- $1 / 6$ BPS Wilson loop in the fundamental of first group is same insertion as above.
- For a theory with one $U(N)$ vector multiplet

$$
Z=\int \prod_{a=1}^{N} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right)
$$

- Wilson loop in the fundamental: Insert into the integral

$$
\sum_{a=1}^{N} e^{2 \pi \mu_{a}}
$$

- This is the matrix model for regular $U(N)$ topological Chern-Simons on S^{3}.

$$
[\text { Mariño }]\left[\begin{array}{c}
\text { Aganagic, Klemm } \\
\text { Mariño, C. Vafa }
\end{array}\right]\left[\begin{array}{c}
\text { Halmagyi } \\
\text { Yasnov }
\end{array}\right]
$$

- Applying this to $\operatorname{ABJ}(\mathrm{M})$ theory one finds the partition function

$$
Z=\int \prod_{a=1}^{N_{1}} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{\hat{a}=1}^{N_{2}} d \nu_{\hat{a}} e^{-i k \pi \nu_{\hat{a}}^{2}} \frac{\prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right) \prod_{\hat{a}<\hat{b}} \sinh ^{2}\left(\pi\left(\nu_{\hat{a}}-\nu_{\hat{b}}\right)\right)}{\prod_{a, \hat{a}} \cosh ^{2}\left(\pi\left(\mu_{a}-\nu_{\hat{a}}\right)\right)}
$$

- $1 / 6$ BPS Wilson loop in the fundamental of first group is same insertion as above.

What about the $1 / 2$ BPS loop?
What is this matrix model?
How do we solve it?

Review: 1/2 BPS Wilson loop in 4d

$$
[\text { Erickson, Semenoff, Zarembo }][\text { ND, Gross }][\text { Pestun }]
$$

- In $\mathcal{N}=4$ SYM can take the circular Wilson loop

$$
W=\frac{1}{N} \operatorname{Tr} \mathcal{P} \exp \left[i \int\left(A_{\mu} \dot{x}^{\mu}+i \Phi|\dot{x}|\right) d t\right]
$$

- Sum over ladder graphs given by a Gaussian matrix model!

$$
\langle W\rangle=\frac{1}{Z} \int \mathcal{D} M \frac{1}{N} \operatorname{Tr} e^{M} e^{-\frac{2}{g^{2}} \operatorname{Tr} M^{2}}
$$

- Proven to be exact.
- In the planar limit the eigenvalues condense to a cut

$$
\langle W\rangle=\int_{-\sqrt{\lambda}}^{\sqrt{\lambda}} d \mu \rho_{0}(\mu) e^{\mu}=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda}) \underset{\lambda \rightarrow \infty}{\longrightarrow} e^{\sqrt{\lambda}}
$$

$$
\rho_{0}(\mu)=\frac{2}{\pi \lambda} \sqrt{\lambda-\mu^{2}}
$$

- Exactly matches the action for the corresponding classical string in $A d S_{5} \times S^{5}$.
- Generalized to theories with $\mathcal{N}=2$ supersymmetry.
- By using D3 or D5 brane can also match $1 / N$ terms.

Localization for 1/2 BPS Wilson loop

- Can use the same localization term for the $1 / 2$ BPS loop (they share the supercharges).
- Take a $1 / 6$ BPS Wilson loop of the form (\mathcal{R} is a rep of $U\left(N_{1} \mid N_{2}\right)$)

$$
W_{\mathcal{R}}^{(1 / 6)} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L^{(1 / 6)} d \tau\right), \quad L^{(1 / 6)}=\left(\begin{array}{cc}
\mathcal{A}^{(1 / 6)} & 0 \\
0 & \widehat{\mathcal{A}}^{(1 / 6)}
\end{array}\right)
$$

Localization for 1/2 BPS Wilson loop

- Can use the same localization term for the $1 / 2$ BPS loop (they share the supercharges).
- Take a $1 / 6$ BPS Wilson loop of the form (\mathcal{R} is a rep of $U\left(N_{1} \mid N_{2}\right)$)

$$
W_{\mathcal{R}}^{(1 / 6)} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L^{(1 / 6)} d \tau\right), \quad L^{(1 / 6)}=\left(\begin{array}{cc}
\mathcal{A}^{(1 / 6)} & 0 \\
0 & \widehat{\mathcal{A}}^{(1 / 6)}
\end{array}\right)
$$

> | The difference between the $1 / 2$ BPS Wilson loop |
| :--- |
| and this specific $1 / 6$ BPS loop is Q-exact. |

Localization for $1 / 2$ BPS Wilson loop

- Can use the same localization term for the $1 / 2$ BPS loop (they share the supercharges).
- Take a $1 / 6$ BPS Wilson loop of the form (\mathcal{R} is a rep of $U\left(N_{1} \mid N_{2}\right)$)

$$
W_{\mathcal{R}}^{(1 / 6)} \equiv \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left(i \int L^{(1 / 6)} d \tau\right), \quad L^{(1 / 6)}=\left(\begin{array}{cc}
\mathcal{A}^{(1 / 6)} & 0 \\
0 & \widehat{\mathcal{A}}^{(1 / 6)}
\end{array}\right)
$$

The difference between the $1 / 2$ BPS Wilson loop and this specific $1 / 6 \mathrm{BPS}$ loop is Q-exact.

- The Wilson loop in the fundamental of $U\left(N_{1} \mid N_{2}\right)$ inserts into the matrix model

$$
W=\sum_{a=1}^{N_{1}} e^{2 \pi \mu_{a}}+\sum_{\hat{a}=1}^{N_{2}} e^{2 \pi \nu_{\hat{a}}}
$$

- For a general representation the insertion is

$$
W_{\mathcal{R}}=\operatorname{Tr}_{\mathcal{R}}\left(\begin{array}{cc}
\operatorname{diag}\left(e^{2 \pi \mu_{a}}\right) & 0 \\
0 & \operatorname{diag}\left(e^{2 \pi \nu_{\hat{a}}}\right)
\end{array}\right)=\operatorname{s\operatorname {Tr}_{\mathcal {R}}}\left(\begin{array}{cc}
\operatorname{diag}\left(e^{2 \pi \mu_{a}}\right) & 0 \\
0 & -\operatorname{diag}\left(e^{2 \pi \nu_{\hat{a}}}\right)
\end{array}\right)
$$

- These are the natural observables in this super matrix model!

What is this matrix model

- From localization $U(N)$ Chern Simons theory on S^{3} is captured by the matrix model

$$
Z=\int \prod_{a=1}^{N} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right)
$$

Same result can be found by doing a semiclassical expansion.

What is this matrix model

- From localization $U(N)$ Chern Simons theory on S^{3} is captured by the matrix model

$$
Z=\int \prod_{a=1}^{N} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right)
$$

Same result can be found by doing a semiclassical expansion.

- On S^{3} / \mathbb{Z}_{2} there are different saddle points to expand around, with different Wilson loops around the non-contractible cycle. This breaks $U(N) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right)$. The relevant matrix model is

$$
\begin{aligned}
Z=\int \prod_{a=1}^{N_{1}} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{\hat{a}=1}^{N_{2}} d \nu_{\hat{a}} e^{i k \pi \nu_{\hat{a}}^{2}} & \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right) \prod_{\hat{a}<\hat{b}} \sinh ^{2}\left(\pi\left(\nu_{\hat{a}}-\nu_{\hat{b}}\right)\right) \\
& \times \prod_{a, \hat{a}} \cosh ^{2}\left(\pi\left(\mu_{a}-\nu_{\hat{a}}\right)\right)
\end{aligned}
$$

The ν eigenvalues are effectively shifted by πi from the real line.

What is this matrix model

- From localization $U(N)$ Chern Simons theory on S^{3} is captured by the matrix model

$$
Z=\int \prod_{a=1}^{N} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right)
$$

Same result can be found by doing a semiclassical expansion.

- On S^{3} / \mathbb{Z}_{2} there are different saddle points to expand around, with different Wilson loops around the non-contractible cycle. This breaks $U(N) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right)$. The relevant matrix model is

$$
\begin{aligned}
Z=\int \prod_{a=1}^{N_{1}} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{\hat{a}=1}^{N_{2}} d \nu_{\hat{a}} e^{i k \pi \nu_{\hat{a}}^{2}} & \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right) \prod_{\hat{a}<\hat{b}} \sinh ^{2}\left(\pi\left(\nu_{\hat{a}}-\nu_{\hat{b}}\right)\right) \\
& \times \prod_{a, \hat{a}} \cosh ^{2}\left(\pi\left(\mu_{a}-\nu_{\hat{a}}\right)\right)
\end{aligned}
$$

The ν eigenvalues are effectively shifted by πi from the real line.

- Replacing $U\left(N_{1}+N_{2}\right) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right)$ by $U\left(N_{1} \mid N_{2}\right) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right)$ gives the cosh in the denominator and the ABJM matrix model.

What is this matrix model

- From localization $U(N)$ Chern Simons theory on S^{3} is captured by the matrix model

$$
Z=\int \prod_{a=1}^{N} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right)
$$

Same result can be found by doing a semiclassical expansion.

- On S^{3} / \mathbb{Z}_{2} there are different saddle points to expand around, with different Wilson loops around the non-contractible cycle. This breaks $U(N) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right)$. The relevant matrix model is

$$
\begin{aligned}
Z=\int \prod_{a=1}^{N_{1}} d \mu_{a} e^{i k \pi \mu_{a}^{2}} \prod_{\hat{a}=1}^{N_{2}} d \nu_{\hat{a}} e^{i k \pi \nu_{\hat{a}}^{2}} & \prod_{a<b} \sinh ^{2}\left(\pi\left(\mu_{a}-\mu_{b}\right)\right) \prod_{\hat{a}<\hat{b}} \sinh ^{2}\left(\pi\left(\nu_{\hat{a}}-\nu_{\hat{b}}\right)\right) \\
& \times \prod_{a, \hat{a}} \cosh ^{2}\left(\pi\left(\mu_{a}-\nu_{\hat{a}}\right)\right)
\end{aligned}
$$

The ν eigenvalues are effectively shifted by πi from the real line.

- Replacing $U\left(N_{1}+N_{2}\right) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right)$ by $U\left(N_{1} \mid N_{2}\right) \rightarrow U\left(N_{1}\right) \times U\left(N_{2}\right)$ gives the cosh in the denominator and the ABJM matrix model.
- Same is achieved by doing the calculation for $U\left(N_{1}+N_{2}\right)$ and analytically continuing to negative N_{2}.

Solving the matrix model

- Using the matrix

$$
U=\left(\begin{array}{cc}
e^{\mu_{i}} & 0 \\
0 & -e^{\nu_{j}}
\end{array}\right)
$$

we define the resolvent

$$
\omega(z)=g_{s}\left\langle\operatorname{tr}\left(\frac{Z+U}{Z-U}\right)\right\rangle=g_{s}\left\langle\sum_{i=1}^{N_{1}} \operatorname{coth}\left(\frac{z-\mu_{i}}{2}\right)\right\rangle+g_{s}\left\langle\sum_{j=1}^{N_{2}} \tanh \left(\frac{z-\nu_{j}}{2}\right)\right\rangle
$$

- It is possible to show that in the planar approximation the resolvent is
[Halmagyi

$$
\omega_{0}(z)=2 \log \left(\frac{1}{2 \sqrt{\beta}}[\sqrt{(Z+b)(Z+1 / b)}-\sqrt{(Z-a)(Z-1 / a)}]\right)
$$

with

$$
\zeta=\frac{1}{2}\left(a+\frac{1}{a}-b-\frac{1}{b}\right), \quad \beta=\frac{1}{4}\left(a+\frac{1}{a}+b+\frac{1}{b}\right) .
$$

- The \mathcal{C} cycles give the 't Hooft couplings

$$
\begin{aligned}
t_{i} & =\frac{1}{4 \pi i} \oint_{\mathcal{C}_{i}} \omega_{0}(z) d z,
\end{aligned} \quad i=1,2 .
$$

- A simple quantity is $t=t_{1}+t_{2}=2 \pi i\left(\lambda_{1}-\lambda_{2}\right)$.
- It can be found from the asymptotics of ω_{0} at infinity

$$
\omega_{0}=\log \beta+\frac{\zeta}{Z}+\cdots
$$

- Useful also to define

$$
B=\lambda_{1}-\lambda_{2}+\frac{1}{2}, \quad \kappa=e^{-\pi i B} \zeta .
$$

- It is harder to calculate λ_{1} and λ_{2} independently.
- The \mathcal{D}-cycle integral gives the derivative of the planar free energy

$$
\mathcal{I} \equiv \frac{\partial F_{0}}{\partial t_{1}}-\frac{\partial F_{0}}{\partial t_{2}}-\pi i t=-\frac{1}{2} \oint_{\mathcal{D}} \omega_{0}(z) d z, \quad Z=\exp \left[g_{s}^{-2} F_{0}+O\left(g_{s}^{0}\right)\right]
$$

Wilson loops

- Wilson loops are also \mathcal{C}-cycle integrals

$$
\begin{aligned}
\left\langle W_{\square}^{1 / 6}\right\rangle & =\oint_{\mathcal{C}_{1}} \frac{d z}{4 \pi i} \omega(z) e^{z}=\oint_{\mathcal{C}_{1}} \frac{d Z}{4 \pi i} \omega(Z) \\
\left\langle W_{\square}^{1 / 2}\right\rangle & =\oint_{\mathcal{C}_{1}+\mathcal{C}_{2}} \frac{d z}{4 \pi i} \omega(z) e^{z}=\oint_{\mathcal{C}_{1}+\mathcal{C}_{2}} \frac{d Z}{4 \pi i} \omega(Z)
\end{aligned}
$$

Wilson loops

- Wilson loops are also \mathcal{C}-cycle integrals

$$
\begin{aligned}
\left\langle W_{\square}^{1 / 6}\right\rangle & =\oint_{\mathcal{C}_{1}} \frac{d z}{4 \pi i} \omega(z) e^{z}=\oint_{\mathcal{C}_{1}} \frac{d Z}{4 \pi i} \omega(Z) \\
\left\langle W_{\square}^{1 / 2}\right\rangle & =\oint_{\mathcal{C}_{1}+\mathcal{C}_{2}} \frac{d z}{4 \pi i} \omega(z) e^{z}=\oint_{\mathcal{C}_{1}+\mathcal{C}_{2}} \frac{d Z}{4 \pi i} \omega(Z)
\end{aligned}
$$

- The $1 / 6$ BPS Wilson loop is complicated.
- The $1 / 2$ BPS Wilson loop is much simpler. Can be calculated from the asymptotics of ω_{0} at infinity.

$$
\left\langle W_{\square}^{1 / 2}\right\rangle=\frac{\zeta}{2}
$$

Wilson loops

- Wilson loops are also \mathcal{C}-cycle integrals

$$
\begin{aligned}
\left\langle W_{\square}^{1 / 6}\right\rangle & =\oint_{\mathcal{C}_{1}} \frac{d z}{4 \pi i} \omega(z) e^{z}=\oint_{\mathcal{C}_{1}} \frac{d Z}{4 \pi i} \omega(Z) \\
\left\langle W_{\square}^{1 / 2}\right\rangle & =\oint_{\mathcal{C}_{1}+\mathcal{C}_{2}} \frac{d z}{4 \pi i} \omega(z) e^{z}=\oint_{\mathcal{C}_{1}+\mathcal{C}_{2}} \frac{d Z}{4 \pi i} \omega(Z)
\end{aligned}
$$

- The $1 / 6$ BPS Wilson loop is complicated.
- The $1 / 2$ BPS Wilson loop is much simpler. Can be calculated from the asymptotics of ω_{0} at infinity.

$$
\left\langle W_{\square}^{1 / 2}\right\rangle=\frac{\zeta}{2} .
$$

To evaluate the $1 / 2$ BPS Wilson loop we "just" need to relate ζ to $\lambda_{i} \ldots$

Weak coupling

- Can expand around $\zeta=0$ (or $a \sim b \sim 1$). And calculate the different quantities.
- Inverting the \mathcal{C}-cycle integrals we get

$$
\begin{aligned}
\kappa= & -2 i\left(t_{1}-t_{2}\right)-\frac{i}{12}\left(t_{1}^{3}+3 t_{1}^{2} t_{2}-3 t_{1} t_{2}^{2}-t_{2}^{3}\right) \\
& -\frac{i}{960}\left(t_{1}^{5}+5 t_{1}^{4} t_{2}-10 t_{1}^{3} t_{2}^{2}+10 t_{1}^{2} t_{2}^{3}-5 t_{1} t_{2}^{4}-t_{2}^{5}\right)+O\left(t^{7}\right)
\end{aligned}
$$

- κ is the same as ζ, up to a phase. So this is the VEV of the $1 / 2$ BPS Wilson loop.
- likewise for the $1 / 6 \mathrm{BPS}$ loop

$$
\left\langle W_{\square}^{1 / 6}\right\rangle=e^{\pi i \lambda_{1}} 2 \pi i \lambda_{1}\left(1-\frac{\pi^{2}}{6} \lambda_{1}\left(\lambda_{1}-6 \lambda_{2}\right)-\frac{\pi^{3} i}{2} \lambda_{1} \lambda_{2}^{2}+\frac{\pi^{4}}{120} \lambda_{1}\left(\lambda_{1}^{3}-10 \lambda_{1}^{2} \lambda_{2}-20 \lambda_{2}^{3}\right)+\cdots\right)
$$

- The free energy is

$$
F=\frac{N_{1}^{2}}{2} \log \left(\frac{2 \pi i N_{1}}{k}\right)+\frac{N_{2}^{2}}{2} \log \left(-\frac{2 \pi i N_{2}}{k}\right)-\frac{3}{4}\left(N_{1}^{2}+N_{2}^{2}\right)-\log (4) N_{1} N_{2}+\cdots
$$

Strong coupling

- Differentiating with respect to ζ or β gives elliptic integrals

$$
\frac{d t_{1,2}}{d \zeta}=-\frac{1}{4 \pi i} \oint_{\mathcal{C}_{1,2}} \frac{d Z}{\sqrt{\left(Z^{2}-\zeta Z+1\right)^{2}-4 \beta^{2} Z^{2}}}= \pm \frac{\sqrt{a b}}{\pi(1+a b)} K(k), \quad k^{2}=1-\left(\frac{a+b}{1+a b}\right)^{2} .
$$

- Similar expressions exist for the free energy and to the $1 / 6$ BPS Wilson loop.
- Useful fancy machinery: Picard-Fuchs equations.

Strong coupling

- Differentiating with respect to ζ or β gives elliptic integrals

$$
\frac{d t_{1,2}}{d \zeta}=-\frac{1}{4 \pi i} \oint_{\mathcal{C}_{1,2}} \frac{d Z}{\sqrt{\left(Z^{2}-\zeta Z+1\right)^{2}-4 \beta^{2} Z^{2}}}= \pm \frac{\sqrt{a b}}{\pi(1+a b)} K(k), \quad k^{2}=1-\left(\frac{a+b}{1+a b}\right)^{2}
$$

- Similar expressions exist for the free energy and to the $1 / 6$ BPS Wilson loop.
- Useful fancy machinery: Picard-Fuchs equations.
- For $\beta=1\left(\lambda_{1}=\lambda_{2}\right)$ this is

$$
\lambda(\kappa)=\frac{\kappa}{8 \pi}{ }_{3} F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} ; 1, \frac{3}{2} ;-\frac{\kappa^{2}}{16}\right) .
$$

- The full solution for all ζ, β is known too. The large λ behavior is

$$
\lambda_{1}(\kappa, B)=\frac{1}{2}\left(B^{2}-\frac{1}{4}\right)+\frac{1}{24}+\frac{\log ^{2} \kappa}{2 \pi^{2}}+\cdots
$$

- The natural variable has a shift

$$
\hat{\lambda}=\lambda_{1}-\frac{1}{2}\left(B^{2}-\frac{1}{4}\right)-\frac{1}{24}=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)-\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}-\frac{1}{24} .
$$

Same shift arises in calculating the D2-brane charge in the supergravity background!

- After the shift we have

$$
\hat{\lambda}(\kappa, B)=\frac{\log ^{2} \kappa}{2 \pi^{2}}+\cdots
$$

- Inverting this we get

$$
\kappa=e^{\pi \sqrt{2 \hat{\lambda}}}
$$

- κ is the same as ζ, up to a phase. So this is the VEV of the $1 / 2$ BPS Wilson loop.
- After the shift we have

$$
\hat{\lambda}(\kappa, B)=\frac{\log ^{2} \kappa}{2 \pi^{2}}+\cdots
$$

- Inverting this we get

$$
\kappa=e^{\pi \sqrt{2 \hat{\lambda}}}
$$

- κ is the same as ζ, up to a phase. So this is the VEV of the $1 / 2$ BPS Wilson loop.

Same as a classical string in $A d S_{4} \times \mathbb{C P}^{3}$!

- After the shift we have

$$
\hat{\lambda}(\kappa, B)=\frac{\log ^{2} \kappa}{2 \pi^{2}}+\cdots
$$

- Inverting this we get

$$
\kappa=e^{\pi \sqrt{2 \hat{\lambda}}}
$$

- κ is the same as ζ, up to a phase. So this is the VEV of the $1 / 2$ BPS Wilson loop.

$$
\text { Same as a classical string in } A d S_{4} \times \mathbb{C P}^{3} \text { ! }
$$

- Including subleading terms we get instanton corrections

$$
\begin{gathered}
\kappa(\hat{\lambda}, B)=e^{\pi \sqrt{2 \hat{\lambda}}}\left(1+\sum_{\ell \geq 1} c_{\ell}\left(\frac{1}{\pi \sqrt{2 \hat{\lambda}}}, \beta\right) e^{-2 \ell \pi \sqrt{2 \hat{\lambda}}}\right) \\
c_{1}(x, \beta)=-\left(\beta+\beta^{-1}\right)\left(1-\frac{x}{2}\right)
\end{gathered}
$$

- Instanton action agrees with a string wrapping a $\mathbb{C P}^{1} \subset \mathbb{C P}^{3}$.
- Can also calculate the $1 / 6$ BPS loop.
- Also non-planar corrections.

Free energy

- Similarly can calculate the \mathcal{D} period.

$$
\partial_{\hat{\lambda}} F_{0}\left(\lambda_{1}, \lambda_{2}\right)=2 \pi^{2} \log \kappa-2 \pi^{3} i\left(B-\frac{1}{2}\right)+\cdots
$$

- Using the expression fo κ in terms of $\hat{\lambda}$ and integrating gives

$$
\begin{gathered}
F_{0}(\hat{\lambda}, B)=\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{3 / 2}+\sum_{\ell \geq 1} e^{-2 \pi \ell \sqrt{2 \hat{\lambda}}} f_{\ell}\left(\frac{1}{\pi \sqrt{2 \hat{\lambda}}}, \beta\right)-\pi^{3} i\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) \\
f_{1}(x, \beta)=-\frac{1}{2}\left(\beta+\beta^{-1}\right)
\end{gathered}
$$

Free energy

- Similarly can calculate the \mathcal{D} period.

$$
\partial_{\hat{\lambda}} F_{0}\left(\lambda_{1}, \lambda_{2}\right)=2 \pi^{2} \log \kappa-2 \pi^{3} i\left(B-\frac{1}{2}\right)+\cdots
$$

- Using the expression fo κ in terms of $\hat{\lambda}$ and integrating gives

$$
\begin{gathered}
F_{0}(\hat{\lambda}, B)=\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{3 / 2}+\sum_{\ell \geq 1} e^{-2 \pi \ell \sqrt{2 \hat{\lambda}}} f_{\ell}\left(\frac{1}{\pi \sqrt{2 \hat{\lambda}}}, \beta\right)-\pi^{3} i\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) \\
f_{1}(x, \beta)=-\frac{1}{2}\left(\beta+\beta^{-1}\right)
\end{gathered}
$$

- Leading term can be written as

$$
F=\frac{F_{0}}{g_{s}^{2}}=-\frac{\pi \sqrt{2}}{3} k^{2} \hat{\lambda}^{3 / 2}=-\frac{\pi \sqrt{2}}{3} \sqrt{k} N^{3 / 2}
$$

Free energy

- Similarly can calculate the \mathcal{D} period.

$$
\partial_{\hat{\lambda}} F_{0}\left(\lambda_{1}, \lambda_{2}\right)=2 \pi^{2} \log \kappa-2 \pi^{3} i\left(B-\frac{1}{2}\right)+\cdots
$$

- Using the expression fo κ in terms of $\hat{\lambda}$ and integrating gives

$$
\begin{gathered}
F_{0}(\hat{\lambda}, B)=\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{3 / 2}+\sum_{\ell \geq 1} e^{-2 \pi \ell \sqrt{2 \hat{\lambda}}} f_{\ell}\left(\frac{1}{\pi \sqrt{2 \hat{\lambda}}}, \beta\right)-\pi^{3} i\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) \\
f_{1}(x, \beta)=-\frac{1}{2}\left(\beta+\beta^{-1}\right)
\end{gathered}
$$

- Leading term can be written as

$$
F=\frac{F_{0}}{g_{s}^{2}}=-\frac{\pi \sqrt{2}}{3} k^{2} \hat{\lambda}^{3 / 2}=-\frac{\pi \sqrt{2}}{3} \sqrt{k} N^{3 / 2}
$$

Same as a classical SUGRA action on $A d S_{4} \times \mathbb{C P}^{3}$!

Free energy

- Similarly can calculate the \mathcal{D} period.

$$
\partial_{\hat{\lambda}} F_{0}\left(\lambda_{1}, \lambda_{2}\right)=2 \pi^{2} \log \kappa-2 \pi^{3} i\left(B-\frac{1}{2}\right)+\cdots
$$

- Using the expression fo κ in terms of $\hat{\lambda}$ and integrating gives

$$
\begin{gathered}
F_{0}(\hat{\lambda}, B)=\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{3 / 2}+\sum_{\ell \geq 1} e^{-2 \pi \ell \sqrt{2 \hat{\lambda}}} f_{\ell}\left(\frac{1}{\pi \sqrt{2 \hat{\lambda}}}, \beta\right)-\pi^{3} i\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) \\
f_{1}(x, \beta)=-\frac{1}{2}\left(\beta+\beta^{-1}\right)
\end{gathered}
$$

- Leading term can be written as

$$
F=\frac{F_{0}}{g_{s}^{2}}=-\frac{\pi \sqrt{2}}{3} k^{2} \hat{\lambda}^{3 / 2}=-\frac{\pi \sqrt{2}}{3} \sqrt{k} N^{3 / 2}
$$

Same as a classical SUGRA action on $A d S_{4} \times \mathbb{C P}^{3}$!

- Subleading corrections are world-sheet instantons.
- Can calculate non-planar corrections efficiently to high-genus.
- Large N expansion seems to be Borel resummable.

Near CS limit

- Can consider the case of finite λ_{1} infinitesimal λ_{2}.
- $\lambda_{2} \rightarrow 0$ is pure CS theory.
- Can work perturbatively in λ_{2} and reduce all calculations to correlation functions of Wilson loops in CS theory.

Near CS limit

- Can consider the case of finite λ_{1} infinitesimal λ_{2}.
- $\lambda_{2} \rightarrow 0$ is pure CS theory.
- Can work perturbatively in λ_{2} and reduce all calculations to correlation functions of Wilson loops in CS theory.
- In the matrix model: Reduce to a single cut.
- This is the matrix model for pure CS.
- Can write full matrix model correlators perturbatively in the single cut model.

Near CS limit

- Can consider the case of finite λ_{1} infinitesimal λ_{2}.
- $\lambda_{2} \rightarrow 0$ is pure CS theory.
- Can work perturbatively in λ_{2} and reduce all calculations to correlation functions of Wilson loops in CS theory.
- In the matrix model: Reduce to a single cut.
- This is the matrix model for pure CS.
- Can write full matrix model correlators perturbatively in the single cut model.
- Would be interesting to explore this for non-protected operators.

Summary

- The $1 / 2 \mathrm{BPS}$ is the natural dual of the fundamental string in $A d S_{4}$.
- Has a very natural expression in the supergroup Chern-Simons matrix model.
- The BPS Wilson loop provide the first weak to strong coupling interpolating function in ABJM theory.
- $1 / 6$ BPS loop (without a $1 / 2$ BPS completion) can also be calculated exactly.
- The vacuum is another BPS protected state and we can calculate it
- We find exact expression for all λ.
- Agrees with $A d S$ action and gives the $N^{3 / 2}$ scaling.
- World-sheet instantons contribute to it.

Summary

- The $1 / 2 \mathrm{BPS}$ is the natural dual of the fundamental string in $A d S_{4}$.
- Has a very natural expression in the supergroup Chern-Simons matrix model.
- The BPS Wilson loop provide the first weak to strong coupling interpolating function in ABJM theory.
- $1 / 6$ BPS loop (without a $1 / 2$ BPS completion) can also be calculated exactly.
- The vacuum is another BPS protected state and we can calculate it
- We find exact expression for all λ.
- Agrees with $A d S$ action and gives the $N^{3 / 2}$ scaling.
- World-sheet instantons contribute to it.
- Could $h^{2}(\lambda)$ in the magnon dispersion relation be related to κ, a, b ?

Summary

- The $1 / 2 \mathrm{BPS}$ is the natural dual of the fundamental string in $A d S_{4}$.
- Has a very natural expression in the supergroup Chern-Simons matrix model.
- The BPS Wilson loop provide the first weak to strong coupling interpolating function in ABJM theory.
- $1 / 6$ BPS loop (without a $1 / 2$ BPS completion) can also be calculated exactly.
- The vacuum is another BPS protected state and we can calculate it
- We find exact expression for all λ.
- Agrees with $A d S$ action and gives the $N^{3 / 2}$ scaling.
- World-sheet instantons contribute to it.
- Could $h^{2}(\lambda)$ in the magnon dispersion relation be related to κ, a, b ?
- Other exactly calculable theories/quantities - "AGT for 3d theories"?

Summary

- The $1 / 2 \mathrm{BPS}$ is the natural dual of the fundamental string in $A d S_{4}$.
- Has a very natural expression in the supergroup Chern-Simons matrix model.
- The BPS Wilson loop provide the first weak to strong coupling interpolating function in ABJM theory.
- $1 / 6$ BPS loop (without a $1 / 2$ BPS completion) can also be calculated exactly.
- The vacuum is another BPS protected state and we can calculate it
- We find exact expression for all λ.
- Agrees with $A d S$ action and gives the $N^{3 / 2}$ scaling.
- World-sheet instantons contribute to it.
- Could $h^{2}(\lambda)$ in the magnon dispersion relation be related to κ, a, b ?
- Other exactly calculable theories/quantities - "AGT for 3d theories"?
- ABJM theory is harder than $\mathcal{N}=4$ SYM, but not impossible!

The end

