Supersymmetric 3-algebra theories in 6d

Costis Papageorgakis

KIAS, $15{ }^{\text {th }}$ October 2010

(with Neil Lambert, arXiv:1007.2982)

Motivation

Over the last two years there has been significant amount of work towards actions for multiple M2-branes.

Progress relied on the introduction of a novel algebraic structure: a 3-algebra.
[Bagger-Lambert, Gustavsson]

This is defined through

$$
\left[T^{A}, T^{B}, T^{C}\right]=f^{A B C}{ }_{D} T^{D}
$$

and satisfies the 'fundamental identity'

$$
f_{E}^{[A B C} f_{G}^{D] E F}=0
$$

BLG wrote down a real 3-algebra gauge theory in 3d with:
\diamond maximal supersymmetry $(\mathcal{N}=8)$
\diamond conformal invariance
\diamond SO(8) R-symmetry

BLG wrote down a real 3-algebra gauge theory in 3d with:
\diamond maximal supersymmetry $(\mathcal{N}=8)$
\diamond conformal invariance
\diamond SO(8) R-symmetry
\Rightarrow Right symmetries for describing M2-branes

BLG wrote down a real 3-algebra gauge theory in 3d with:
\diamond maximal supersymmetry $(\mathcal{N}=8)$
\diamond conformal invariance
\diamond SO (8) R-symmetry
\Rightarrow Right symmetries for describing M2-branes

But: \exists only one real Euclidean 3-algebra (looks like $\mathrm{SU}(2) \times \mathrm{SU}(2) \mathrm{CS}$-matter), moduli space looks like exotic M-theory orbifold, Lorentzian 3-algebras have negative norm states or look too much like 3d SYM...

BLG wrote down a real 3-algebra gauge theory in 3d with:
\diamond maximal supersymmetry $(\mathcal{N}=8)$
\diamond conformal invariance
\diamond SO(8) R-symmetry
\Rightarrow Right symmetries for describing M2-branes

But: \exists only one real Euclidean 3-algebra (looks like $\mathrm{SU}(2) \times \mathrm{SU}(2) \mathrm{CS}$-matter), moduli space looks like exotic M-theory orbifold, Lorentzian 3-algebras have negative norm states or look too much like 3d SYM...
\Rightarrow To date no known string theory interpretation of BLG

These ideas solidified in the ABJM proposal for bifundamental $\mathrm{U}(N) \times \mathrm{U}(N)$ Chern-Simons-matter theory with $\mathcal{N}=6$, describing N M2-branes on a $\mathbb{C}^{4} / \mathbb{Z}_{k}$ M-theory singularity. [Aharony-Bergman-Jafferis-Maldacena]

Important developments in $\mathrm{AdS}_{4} / \mathrm{CFT}_{3} \ldots$

3-algebra description not necessary but possible. This is a complex 3-algebra [Bagger-Lambert, Schnabl-Tachikawa]

These ideas solidified in the ABJM proposal for bifundamental $\mathrm{U}(N) \times \mathrm{U}(N)$ Chern-Simons-matter theory with $\mathcal{N}=6$, describing N M 2 -branes on a $\mathbb{C}^{4} / \mathbb{Z}_{k} \mathrm{M}$-theory singularity. [Aharony-Bergman-Jafferis-Maldacena]

Important developments in $\mathrm{AdS}_{4} / \mathrm{CFT}_{3} \ldots$

3-algebra description not necessary but possible. This is a complex 3-algebra [Bagger-Lambert, Schnabl-Tachikawa]

But what about the M5-brane??

Low-energy M5-brane dynamics governed by a theory in 6d with:
[Strominger, Witten]
$\diamond(2,0)$ supersymmetry
\diamond conformal invariance
$\diamond \mathrm{SO}(5)$ R-symmetry

The $(2,0)$ tensor multiplet contains 5 scalars and a selfdual antisymmetric 3-form field strength + fermions

But it's complicated: getting Lagrangian for single M5 difficult because of selfdual three-form field strength.

Note: \exists indirect ways of attacking the abelian problem
\diamond Sacrificing manifest 6d Lorentz invariance
\diamond Introducing auxiliary scalar field
[Aganagic-Park-Popescu-Schwarz, Pasti-Sorokin-Tonin,
Bandos et al., Belov-Moore]

Can still work at the level of susy xfms and e.o.m..

Note: \exists indirect ways of attacking the abelian problem
\diamond Sacrificing manifest 6d Lorentz invariance
\diamond Introducing auxiliary scalar field
[Aganagic-Park-Popescu-Schwarz, Pasti-Sorokin-Tonin,
Bandos et al., Belov-Moore]

Can still work at the level of susy xfms and e.o.m..
\Rightarrow Attempt a similar approach to multiple M2-branes for multiple M5-branes.

Conclusions

Conclusions

\diamond We find a nonabelian $(2,0)$ tensor multiplet

Conclusions

\diamond We find a nonabelian $(2,0)$ tensor multiplet
\diamond This 6d theory involves 3-algebras

Conclusions

\diamond We find a nonabelian $(2,0)$ tensor multiplet
\diamond This 6d theory involves 3-algebras
\diamond No manifest evidence of multiple M5-branes

Conclusions

\diamond We find a nonabelian $(2,0)$ tensor multiplet
\diamond This 6d theory involves 3-algebras
\diamond No manifest evidence of multiple M5-branes
\diamond Theory has some interesting features

Conclusions

\diamond We find a nonabelian $(2,0)$ tensor multiplet
\diamond This 6d theory involves 3-algebras
\diamond No manifest evidence of multiple M5-branes
\diamond Theory has some interesting features
\diamond A sector of the theory could be related to lightcone description of M5-branes

Outline

\diamond Set-up of the calculation
\diamond Susy closure
\diamond Spacelike reduction
\diamond Null reduction
$\diamond 5 \mathrm{~d}$ SYM $\Leftrightarrow(2,0)$

Set-up of the calculation

The steps that we will follow are:

Set-up of the calculation

The steps that we will follow are:
\diamond Start with the susy transformations for the abelian M5-brane

Set-up of the calculation

The steps that we will follow are:
\diamond Start with the susy transformations for the abelian M5-brane
\diamond Generalise this to allow for nonabelian fields and interactions

Set-up of the calculation

The steps that we will follow are:
\diamond Start with the susy transformations for the abelian M5-brane
\diamond Generalise this to allow for nonabelian fields and interactions
\diamond Investigate the closure of the susy algebra

Set-up of the calculation

The steps that we will follow are:
\diamond Start with the susy transformations for the abelian M5-brane
\diamond Generalise this to allow for nonabelian fields and interactions
\diamond Investigate the closure of the susy algebra
\diamond Obtain e.o.m. and constraints

Set-up of the calculation

The steps that we will follow are:
\diamond Start with the susy transformations for the abelian M5-brane
\diamond Generalise this to allow for nonabelian fields and interactions
\diamond Investigate the closure of the susy algebra
\diamond Obtain e.o.m. and constraints
\diamond Interpret the result

The susy transformations for the free $6 \mathbf{d}(2,0)$ tensor multiplet are

$$
\begin{aligned}
\delta X^{I} & =i \bar{\epsilon} \Gamma^{I} \Psi \\
\delta \Psi & =\Gamma^{\mu} \Gamma^{I} \partial_{\mu} X^{I} \epsilon+\frac{1}{3!} \frac{1}{2} \Gamma^{\mu \nu \lambda} H_{\mu \nu \lambda} \epsilon \\
\delta H_{\mu \nu \lambda} & =3 i \bar{\epsilon} \Gamma_{[\mu \nu} \partial_{\lambda]} \Psi
\end{aligned}
$$

with

$$
\Gamma_{012345} \epsilon=\epsilon \quad \text { and } \quad \Gamma_{012345} \Psi=-\Psi
$$

This algebra closes on-shell up to translations, with e.o.m.

$$
\partial_{\mu} \partial^{\mu} X^{I}=\Gamma^{\mu} \partial_{\mu} \Psi=\partial_{[\mu} H_{\nu \lambda \rho]}=0
$$

Make this 'nonabelian': Assume fields take values in some vector space with basis T^{A} such that $X^{I}=X_{A}^{I} T^{A}$.

Promote the derivatives to covariant derivatives

$$
D_{\mu} X_{A}^{I}=\partial_{\mu} X_{A}^{I}-\tilde{A}_{\mu}^{B}{ }_{A} X_{B}^{I}
$$

with $\tilde{A}_{\mu}^{B}{ }_{A}$ a new gauge field. \exists an associated gauge symmetry.

Propose a nonabelian ansatz analogous to that of the M2-brane.

Consider:

$$
\begin{aligned}
\delta X^{I} & =i \bar{\epsilon} \Gamma^{I} \Psi \\
\delta \Psi & =\Gamma^{\mu} \Gamma^{I} \partial_{\mu} X^{I} \epsilon+\frac{1}{3!} \frac{1}{2} \Gamma_{\mu \nu \lambda} H^{\mu \nu \lambda} \epsilon \\
\delta H_{\mu \nu \lambda} & =3 i \bar{\epsilon} \Gamma_{[\mu \nu} \partial_{\lambda]} \Psi
\end{aligned}
$$

Consider:

\[

\]

Here $f^{C D B}{ }_{A}, g^{C D B}{ }_{A}$ and $h^{C D B}{ }_{A}$ are some objects with properties to be determined.

Consider:

\[

\]

Here $f^{C D B}{ }_{A}, g^{C D B}{ }_{A}$ and $h^{C D B}{ }_{A}$ are some objects with properties to be determined.

Consistency of these transformations with respect to their scaling dimensions gives

$$
\begin{array}{rlc}
{[H]=[X]+1,} & {[\tilde{A}]=1,} & {[C]=1-[X]} \\
{[\epsilon]=-\frac{1}{2},} & {[\Psi]=[X]+\frac{1}{2},} & {[X]}
\end{array}
$$

The assignments are all related to the choice of $[X]$. For the canonical choice $[X]=2$ we have that $[C]=-1$.

Susy closure

We find that the susy algebra closes on-shell up to a translation and a gauge transformation, subject to the constraints:

$$
g^{A B C}{ }_{D}=h^{A B C}{ }_{D}=f^{A B C}{ }_{D}=f^{[A B C]}{ }_{D}
$$

and

$$
f^{[A B C}{ }_{E} f^{D] E F}{ }_{G}=0
$$

This is the fundamental identity for real 3-algebras (the $\mathcal{N}=8$ 3-algebras in 3d theories).
E.o.m. for X_{A}^{I} :
$D^{2} X^{I}=\frac{i}{2} \bar{\Psi}_{C} C_{B}^{\nu} \Gamma_{\nu} \Gamma^{I} \Psi_{D} f^{C D B}{ }_{A}+C_{B}^{\nu} C_{\nu G} X_{C}^{J} X_{E}^{J} X_{F}^{I} f^{E F G}{ }_{D} f^{C D B}{ }_{A}$
E.o.m. for Ψ_{A} :

$$
\Gamma^{\mu} D_{\mu} \Psi_{A}+X_{C}^{I} C_{B}^{\nu} \Gamma_{\nu} \Gamma^{I} \Psi_{D} f^{C D B}=0
$$

E.o.m. for $H_{\mu \nu \lambda A}$:

$$
D_{[\mu} H_{\nu \lambda \rho]}=-\frac{1}{4} \epsilon_{\mu \nu \lambda \rho \sigma \tau} C_{B}^{\sigma} f_{A}^{C D B}\left(X_{C}^{I} D^{\tau} X_{D}^{I}+\frac{i}{2} \bar{\Psi}_{C} \Gamma^{\tau} \Psi_{D}\right)
$$

E.o.m for $\tilde{A}_{\mu B}^{A}$:

$$
\tilde{F}_{\mu \nu A}^{B}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f_{A}^{B D C}
$$

\Rightarrow No new d.o.f. are introduced on-shell

Constraints on C_{A}^{μ} :

$$
D_{\nu} C_{A}^{\mu}=0, \quad C_{B}^{\lambda} C_{C}^{\rho} f_{A}^{C D B}=0
$$

and

$$
\Rightarrow C_{C}^{\rho} D_{\rho}\left\{X_{D}^{I}, \Psi_{D}, H_{\mu \nu \lambda D}\right\} f_{A}^{C D B}=0 \Leftarrow
$$

Summary thus far

\diamond Wrote ansatz for susy xfms of nonabelian $(2,0)$ theory in 6d
\diamond This involved a new nondynamical gauge field $\tilde{A}_{\mu B}^{A}$
\diamond The gauge symmetry was associated to a 3-algebra
\diamond Also introduced an auxiliary vector field C_{A}^{μ}
\diamond Obtained e.o.m and constraints that define the theory
\diamond Proceed to study the interpretation

3-algebra 101

The structure constants are those of a real 3-algebra. Endow it with a metric

$$
h^{A B}=\left(T^{A}, T^{B}\right)
$$

\exists two kinds of real 3-algebras (depending on signature):
\diamond The Euclidean \mathcal{A}_{4}-algebra, with $f^{A B C D}=\epsilon^{A B C D}$
[Papadopoulos, Gauntlett-Gutowski]
\diamond The Lorentzian algebras
[Gomis-Milanesi-Russo, Benvenuti-Rodríguez-Gómez-Tonni-Verlinde, Ho-Imamura-Matsuo]

Lorentzian 3-algebras: start with ordinary Lie algebra \mathcal{G} and add two lightlike generators $T^{ \pm}$such that $A=+,-, a, b, \ldots$ The structure constants are given by

$$
f^{A B C}{ }_{D} \rightarrow f_{c}^{+a b}=f_{c}^{a b}, f_{-}^{a b c}=f^{a b c}
$$

The metric is given by

$$
h_{A B}=\left(\begin{array}{cc|ccc}
0 & -1 & 0 & \ldots & 0 \\
-1 & 0 & 0 & \ldots & 0 \\
\hline 0 & 0 & & & \\
\vdots & \vdots & & h_{\mathcal{G}} & \\
0 & 0 & & &
\end{array}\right)
$$

Spacelike reduction

Use the Lorentzian 3-algebra and look for vacua of the theory when $\mathcal{G}=\mathfrak{s u}(N)$:

$$
X_{A}^{I} \rightarrow X_{a}^{I}, X_{ \pm}^{I}
$$

Get two abelian $(2,0)$ tensor multiplets $\left(X_{ \pm}^{I}, \Psi_{ \pm}, H_{\mu \nu \lambda \pm}\right)$

Spacelike reduction

Use the Lorentzian 3-algebra and look for vacua of the theory when $\mathcal{G}=\mathfrak{s u}(N)$:

$$
X_{A}^{I} \rightarrow X_{a}^{I}, X_{ \pm}^{I}
$$

Get two abelian $(2,0)$ tensor multiplets $\left(X_{ \pm}^{I}, \Psi_{ \pm}, H_{\mu \nu \lambda \pm}\right)$

Next, look at nonabelian piece:
\Rightarrow Expand around $\left\langle C_{A}^{\lambda}\right\rangle=g \delta_{5}^{\lambda} \delta_{A}^{+}$

We find:

We find:
$\diamond \tilde{F}_{\mu \nu A}^{B}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f^{B D C}{ }_{A} \quad \Longrightarrow \quad \tilde{F}_{\alpha \beta a}^{b}=g H_{\alpha \beta 5{ }_{d}} f^{b d}{ }_{a}$
\Rightarrow All other components give flat connections

We find:
$\diamond \tilde{F}_{\mu \nu}^{B}{ }_{A}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f^{B D C}{ }_{A} \quad \Longrightarrow \quad \tilde{F}_{\alpha \beta a}^{b}=g H_{\alpha \beta 5{ }_{d}} f^{b d}{ }_{a}$
\Rightarrow All other components give flat connections
\Rightarrow Make assumption that they have trivial topology

We find:

$$
\diamond \tilde{F}_{\mu \nu A}^{B}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f_{A}^{B D C} \quad \Longrightarrow \quad \tilde{F}_{\alpha \beta a}^{b}=g H_{\alpha \beta 5 d} f_{a}^{b d}
$$

\Rightarrow All other components give flat connections
\Rightarrow Make assumption that they have trivial topology

$$
D_{\nu} C_{A}^{\mu}=0 \quad \Longrightarrow \quad \partial_{\nu} g=0
$$

We find:

$$
\diamond \tilde{F}_{\mu \nu A}^{B}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f^{B D C}{ }_{A} \quad \Longrightarrow \quad \tilde{F}_{\alpha \beta a}^{b}=g H_{\alpha \beta 5 d} f^{b d}{ }_{a}
$$

\Rightarrow All other components give flat connections
\Rightarrow Make assumption that they have trivial topology

$$
\begin{array}{llr}
\diamond \quad D_{\nu} C_{A}^{\mu}=0 & \Longrightarrow & \partial_{\nu} g=0 \\
\diamond C_{C}^{\rho} D_{\rho} X_{D}^{I} f^{C D B}{ }_{A}=0 & \Longrightarrow \quad \partial_{5} X_{a}^{I}=0 \\
\Rightarrow \text { Nonabelian physics is five-dimensional }
\end{array}
$$

We find:
$\diamond \tilde{F}_{\mu \nu A}^{B}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f^{B D C}{ }_{A} \quad \Longrightarrow \quad \tilde{F}_{\alpha \beta a}^{b}=g H_{\alpha \beta 5{ }_{d}} f^{b d}{ }_{a}$
\Rightarrow All other components give flat connections
\Rightarrow Make assumption that they have trivial topology
$\diamond \quad D_{\nu} C_{A}^{\mu}=0$
$\Longrightarrow \quad \partial_{\nu} g=0$
$\diamond C_{C}^{\rho} D_{\rho} X_{D}^{I} f^{C D B}{ }_{A}=0$
$\Longrightarrow \quad \partial_{5} X_{a}^{I}=0$
\Rightarrow Nonabelian physics is five-dimensional
$\diamond g$ is constant and has scaling dimension -1
$\Rightarrow g^{\frac{1}{2}}$ has correct scaling dimension for $g_{Y M}$ in 5 d .

Make identifications:

$$
g=g_{Y M}^{2}, \quad H_{\alpha \beta 5}^{a}=\frac{1}{g_{Y M}^{2}} F_{\alpha \beta}^{a}
$$

...and recover e.o.m., Bianchi identity and susy xfms of five-dimensional $\mathrm{SU}(N)$ SYM theory.

Make identifications:

$$
g=g_{Y M}^{2}, \quad H_{\alpha \beta 5}^{a}=\frac{1}{g_{Y M}^{2}} F_{\alpha \beta}^{a}
$$

...and recover e.o.m., Bianchi identity and susy xfms of five-dimensional $\mathrm{SU}(N)$ SYM theory.
\Rightarrow Lorentzian theory expanded around $\left\langle C_{A}^{\lambda}\right\rangle=g \delta_{5}^{\lambda} \delta_{A}^{+}$is 5 d
SYM along with two 6d free $(2,0)$ tensor multiplets.

Make identifications:

$$
g=g_{Y M}^{2}, \quad H_{\alpha \beta 5}^{a}=\frac{1}{g_{Y M}^{2}} F_{\alpha \beta}^{a}
$$

...and recover e.o.m., Bianchi identity and susy xfms of
five-dimensional $\operatorname{SU}(N)$ SYM theory.
\Rightarrow Lorentzian theory expanded around $\left\langle C_{A}^{\lambda}\right\rangle=g \delta_{5}^{\lambda} \delta_{A}^{+}$is 5 d
SYM along with two 6d free $(2,0)$ tensor multiplets.

The off-shell $\mathrm{SO}(5,1)$ Lorentz and conformal symmetries are spontaneously broken to $\mathrm{SO}(4,1)$ Lorentz invariance.

Very similar to what happened for Lorentzian M2-brane theories in relation to D2-branes. [Gomis-Rodríguez-Gómez-Van Raamsdonk-Verlinde, Ezhuthachan-Mukhi-CP]

In that case, the Lorentzian BLG theory in 3d expanded around generic vacua was shown to be equivalent to 3d SYM. The off-shell $\mathrm{SO}(8)$ R-symmetry and conformal invariance are spontaneously broken to $\mathrm{SO}(7) \mathrm{R}$-symmetry.

Aside: Try and introduce a field $B_{\mu \nu}{ }_{A}$ such that

 $H_{\mu \nu \lambda A}=3 D_{[\mu} B_{\nu \lambda]} A$, since for abelian sector one has locally $H_{\mu \nu \lambda \pm}=3 \partial_{[\mu} B_{\nu \lambda]} \pm$Aside: Try and introduce a field $B_{\mu \nu}{ }_{A}$ such that $H_{\mu \nu \lambda A}=3 D_{[\mu} B_{\nu \lambda] A}$, since for abelian sector one has locally $H_{\mu \nu \lambda \pm}=3 \partial_{[\mu} B_{\nu \lambda] \pm}$

For the nonabelian fields we have

$$
\tilde{F}_{\mu \nu}{ }^{B}{ }_{A}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f^{C D B}{ }_{A} \quad \Longrightarrow \tilde{F}_{\alpha \beta}{ }^{b}{ }_{a}=2 g_{Y M}^{2} \tilde{D}_{[\alpha} B_{\beta] 5}{ }_{c} f^{c b}{ }_{a}
$$

Aside: Try and introduce a field $B_{\mu \nu}{ }_{A}$ such that
$H_{\mu \nu \lambda A}=3 D_{[\mu} B_{\nu \lambda]}$, since for abelian sector one has locally $H_{\mu \nu \lambda \pm}=3 \partial_{[\mu} B_{\nu \lambda]} \pm$

For the nonabelian fields we have

$$
\tilde{F}_{\mu \nu}{ }^{B}{ }_{A}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f^{C D B}{ }_{A} \quad \Longrightarrow \tilde{F}_{\alpha \beta}{ }^{b}{ }_{a}=2 g_{Y M}^{2} \tilde{D}_{[\alpha} B_{\beta] 5}{ }_{c} f^{c b}{ }_{a}
$$

and compare with

$$
\tilde{F}_{\alpha \beta b}^{a}=\partial_{\beta} \tilde{A}_{\alpha b}^{a}-\partial_{\alpha} \tilde{A}_{\beta b}^{a}-\tilde{A}_{\alpha c}^{a} \tilde{A}_{\beta b}^{c}+\tilde{A}_{\beta c}^{a} \tilde{A}_{\alpha b}^{c}
$$

and

$$
\tilde{D}_{\alpha} B_{\beta 5 a}=\partial_{\alpha} B_{\beta 5 a}-\tilde{A}_{\alpha}{ }_{a}^{b} B_{\beta 5 b}
$$

Aside: Try and introduce a field $B_{\mu \nu}{ }_{A}$ such that
$H_{\mu \nu \lambda A}=3 D_{[\mu} B_{\nu \lambda]}$, since for abelian sector one has locally $H_{\mu \nu \lambda \pm}=3 \partial_{[\mu} B_{\nu \lambda]} \pm$

For the nonabelian fields we have

$$
\tilde{F}_{\mu \nu}{ }^{B}{ }_{A}=C_{C}^{\lambda} H_{\mu \nu \lambda D} f^{C D B}{ }_{A} \quad \Longrightarrow \tilde{F}_{\alpha \beta}{ }^{b}{ }_{a}=2 g_{Y M}^{2} \tilde{D}_{[\alpha} B_{\beta] 5}{ }_{c} f^{c b}{ }_{a}
$$

and compare with

$$
\tilde{F}_{\alpha \beta b}^{a}=\partial_{\beta} \tilde{A}_{\alpha b}^{a}-\partial_{\alpha} \tilde{A}_{\beta b}^{a}-\tilde{A}_{\alpha c}^{a} \tilde{A}_{\beta b}^{c}+\tilde{A}_{\beta c}^{a} \tilde{A}_{\alpha b}^{c}
$$

and

$$
\tilde{D}_{\alpha} B_{\beta 5 a}=\partial_{\alpha} B_{\beta 5 a}-\tilde{A}_{\alpha}{ }_{a}^{b} B_{\beta 5 b}
$$

\Rightarrow It doesn't work and one can't have $H_{\mu \nu \lambda A}=3 D_{[\mu} B_{\nu \lambda] ~}$

Euclidean case

What about the Euclidean 3-algebra \mathcal{A}_{4} ? This was the example that was genuinely different to SYM in 3d and led to ABJM.

Euclidean case

What about the Euclidean 3-algebra \mathcal{A}_{4} ? This was the example that was genuinely different to SYM in 3d and led to ABJM.
\Rightarrow In 6d, Lorentzian and Euclidean cases not dramatically different:

Set $f^{A B C D}=\epsilon^{A B C D} \rightarrow \epsilon^{a b c 4} \equiv \epsilon^{a b c} \in \mathfrak{s u}(2)$ and expand theory around $\left\langle C_{A}^{\lambda}\right\rangle=g \delta_{5}^{\lambda} \delta_{A}^{4}$

$$
X_{A}^{I} \rightarrow X_{a}^{I}, X_{4}^{I}
$$

Get a single free (2,0) tensor multiplet plus $\mathrm{SU}(2) 5 \mathrm{~d}$ SYM

Null Reduction

One could also consider 6d coordinates $x^{\mu}=\left(u, v, x^{i}\right)$ where
$u=\frac{1}{\sqrt{2}}\left(x^{0}-x^{5}\right), v=\frac{1}{\sqrt{2}}\left(x^{0}+x^{5}\right)$ and $i=1,2,3,4$.

Expand around

$$
\left\langle C_{A}^{\mu}\right\rangle=g \delta_{v}^{\mu} \delta_{A}^{+}
$$

\Rightarrow Abelian sector again consists of two 6-dimensional $(2,0)$ tensor multiplets.
\Rightarrow Nonabelian sector is a susy system in effectively 4 space and 1 null dimensions with 16 susies and $\mathrm{SO}(5)$ R-symmetry.

We now have

$$
\begin{gathered}
D^{2} X_{A}^{I}=\frac{i}{2} \bar{\Psi}_{C} C_{B}^{\nu} \Gamma_{\nu} \Gamma^{I} \Psi_{D} f^{C D B}{ }_{A}+C_{B}^{\nu} C_{\nu G} X_{C}^{J} X_{E}^{J} X_{F}^{I} f^{E F G}{ }_{D} f^{C D B}{ }_{A} \\
\Longrightarrow \quad D^{2} X_{a}^{I}=\frac{i g}{2} \bar{\Psi}_{c} \Gamma_{v} \Gamma^{I} \Psi_{d} f^{c d}{ }_{a}
\end{gathered}
$$

and

$$
C_{C}^{\rho} D_{\rho} X_{D}^{I} f_{A}^{C D B}=0 \quad \Longrightarrow \quad \partial_{v} X_{a}^{I}=0
$$

\Rightarrow Note that term proportional to scalar potential absent in scalar e.o.m.

We now have

$$
\begin{gathered}
D^{2} X_{A}^{I}=\frac{i}{2} \bar{\Psi}_{C} C_{B}^{\nu} \Gamma_{\nu} \Gamma^{I} \Psi_{D} f^{C D B}{ }_{A}+C_{B}^{\nu} C_{\nu G} X_{C}^{J} X_{E}^{J} X_{F}^{I} f^{E F G}{ }_{D} f^{C D B}{ }_{A} \\
\Longrightarrow \quad D^{2} X_{a}^{I}=\frac{i g}{2} \bar{\Psi}_{c} \Gamma_{v} \Gamma^{I} \Psi_{d} f^{c d}{ }_{a}
\end{gathered}
$$

and

$$
C_{C}^{\rho} D_{\rho} X_{D}^{I} f_{A}^{C D B}=0 \quad \Longrightarrow \quad \partial_{v} X_{a}^{I}=0
$$

\Rightarrow Note that term proportional to scalar potential absent in scalar e.o.m.
\Rightarrow Tempting to speculate that this may be related to a lightcone formulation for M5-branes

BPS solutions in null reduction

\Rightarrow Abelian solutions: Right-moving ($\partial_{v} X_{a}^{I}=0$) modes of selfdual strings and their 'neutral string' generalisations [Howe-Lambert-West, Gauntlett-Lambert-West]

Selfdual strings: are $\frac{1}{2}$-BPS solutions describing the $\mathrm{M} 2 \perp \mathrm{M} 5$ intersection with

$$
H_{u v i}=\partial_{i} X^{6}, \quad \partial^{i} \partial_{i} X^{6}=0
$$

Neutral strings: are instanton-like configurations on the relative transverse M5-brane directions. They have zero H-charge

$$
H_{u i j}=\frac{1}{2} \epsilon_{i j k l} H_{u k l}
$$

\Rightarrow Nonabelian solutions: We obtain $\frac{1}{4}$-BPS solutions

$$
H_{u v i a}=D_{i} X_{a}^{6}, \quad H_{u i j a}=\frac{1}{2} \epsilon_{i j k l} H_{u k l a} \quad D^{i} D_{i} X_{a}^{6}=0
$$

\Rightarrow Nonabelian solutions: We obtain $\frac{1}{4}$-BPS solutions

$$
H_{u v i a}=D_{i} X_{a}^{6}, \quad H_{u i j a}=\frac{1}{2} \epsilon_{i j k l} H_{u k l a} \quad D^{i} D_{i} X_{a}^{6}=0
$$

M-theory version of 'dyonic instantons' in maximally Higgsed phase of 5d SYM: $\mathrm{U}(N) \rightarrow \mathrm{U}(1)^{N}$
[Lambert-Tong]

$$
E_{i a}=D_{i} X_{a}^{6}, \quad F_{i j a}=\frac{1}{2} \epsilon_{i j k l} F_{k l a} \quad D^{i} D_{i} X_{a}^{6}=0
$$

\Rightarrow Nonabelian solutions: We obtain $\frac{1}{4}$-BPS solutions

$$
H_{u v i a}=D_{i} X_{a}^{6}, \quad H_{u i j a}=\frac{1}{2} \epsilon_{i j k l} H_{u k l a} \quad D^{i} D_{i} X_{a}^{6}=0
$$

M-theory version of 'dyonic instantons' in maximally Higgsed phase of 5d SYM: $\mathrm{U}(N) \rightarrow \mathrm{U}(1)^{N}$
[Lambert-Tong]

$$
E_{i a}=D_{i} X_{a}^{6}, \quad F_{i j a}=\frac{1}{2} \epsilon_{i j k l} F_{k l a} \quad D^{i} D_{i} X_{a}^{6}=0
$$

\Rightarrow Right-movers ($\partial_{v} X_{a}^{I}=0$) of lightlike 'dyonic instanton' strings describing 'W-boson' M2's stretched between multiple M5's in the maximally Higgsed phase...

Comments on 5d SYM/(2,0)

From String Theory point of view relation between D4- and M5-brane theories given by compactification on S^{1}.

In that sense the strong-coupling dynamics of D4-theory should be encoded in M5-theory.

Comments on 5d SYM/(2,0)

From String Theory point of view relation between D4- and M5-brane theories given by compactification on S^{1}.

In that sense the strong-coupling dynamics of D4-theory should be encoded in M5-theory.

From the gauge theory point of view this looks far from trivial:

Comments on 5d SYM/(2,0)

From String Theory point of view relation between D4- and M5-brane theories given by compactification on S^{1}.

In that sense the strong-coupling dynamics of D4-theory should be encoded in M5-theory.

From the gauge theory point of view this looks far from trivial:
\diamond 5d SYM has a UV fixed-point which should correspond to the $(2,0)$ theory

Comments on 5d SYM/(2,0)

From String Theory point of view relation between D4- and M5-brane theories given by compactification on S^{1}.

In that sense the strong-coupling dynamics of D4-theory should be encoded in M5-theory.

From the gauge theory point of view this looks far from trivial:
$\diamond 5 d$ SYM has a UV fixed-point which should correspond to the $(2,0)$ theory
\diamond It is naïvely non-renormalisable and as such new d.o.f. should appear at some scale

Putting $(2,0)$ theory on a circle should result in KK spectrum of states, invisible to low-energy theory.

Putting $(2,0)$ theory on a circle should result in KK spectrum of states, invisible to low-energy theory.

String Theory input: SYM instantons (BPS particles) are candidates for the above. Just D0's in the D4 worldvolume.

Putting $(2,0)$ theory on a circle should result in KK spectrum of states, invisible to low-energy theory.

String Theory input: SYM instantons (BPS particles) are candidates for the above. Just D0's in the D4 worldvolume.

These become light at strong coupling and should give the missing momentum in the extra dimension (same as for D0-branes in M-theory) [Rozali, Berkooz-Rozali-Seiberg]

Putting $(2,0)$ theory on a circle should result in KK spectrum of states, invisible to low-energy theory.

String Theory input: SYM instantons (BPS particles) are candidates for the above. Just D0's in the D4 worldvolume.

These become light at strong coupling and should give the missing momentum in the extra dimension (same as for D0-branes in M-theory) [Rozali, Berkooz-Rozali-Seiberg]
\Rightarrow Technical hurdle in making this precise: instanton zero mode quantisation leads to continuous spectrum...

But then no new d.o.f. are needed in 5d SYM! Its strong coupling limit would give the $(2,0)$ theory.

But then no new d.o.f. are needed in 5d SYM! Its strong coupling limit would give the $(2,0)$ theory.
\Rightarrow The fact that we found no momentum in fifth direction is compatible with this statement

But then no new d.o.f. are needed in 5d SYM! Its strong coupling limit would give the $(2,0)$ theory.
\Rightarrow The fact that we found no momentum in fifth direction is compatible with this statement
\Rightarrow Implications for renormalisability of 5d SYM: Should be UV finite and well defined w/out additional d.o.f.!

Support for this conjecture comes from the fact that it is finite up to 5 loops [Bern-Dixon-Dunbar-Grant-Perelstein-Rozowsky]

But then no new d.o.f. are needed in 5d SYM! Its strong coupling limit would give the $(2,0)$ theory.
\Rightarrow The fact that we found no momentum in fifth direction is compatible with this statement
\Rightarrow Implications for renormalisability of 5d SYM: Should be UV finite and well defined w/out additional d.o.f.!

Support for this conjecture comes from the fact that it is finite up to 5 loops [Bern-Dixon-Dunbar-Grant-Perelstein-Rozowsky]

Would be interesting to see whether our formulation could shed some light in any of these directions.

Summary

\diamond Starting from abelian M5-brane susy transformations, we constructed a nonabelian $(2,0)$ tensor multiplet
\diamond We recovered the presence of 3-algebras in this 6d theory
\diamond Around $\left\langle C_{A}^{\mu}\right\rangle=g \delta_{5}^{\mu} \delta_{A}^{+}$physics were 5d SYM plus free 6d abelian $(2,0)$ tensor multiplets
\diamond Around $\left\langle C_{A}^{\mu}\right\rangle=g \delta_{v}^{\mu} \delta_{A}^{+}$physics were 4 space, 1 null direction susy system plus 6d abelian $(2,0)$ tensor multiplets
\diamond We found BPS solutions corresponding to the right-moving sector of lightlike 'dyonic instanton' strings and having interpretation as M2-branes suspended between parallel M5-branes
\diamond Although the M-theory interpretation of our $(2,0)$ tensor multiplet is unclear, interesting to see these solutions arise
\diamond Due to its potential connection with multiple M5-branes and UV finiteness of 5d SYM, this system warrants further investigation

