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Motivation

Over the last two years there has been significant amount of

work towards actions for multiple M2-branes.

Progress relied on the introduction of a novel algebraic

structure: a 3-algebra. [Bagger-Lambert, Gustavsson]

This is defined through

[TA, TB, TC ] = fABCDT
D

and satisfies the ‘fundamental identity’

f [ABCEf
D]EF

G = 0 .



BLG wrote down a real 3-algebra gauge theory in 3d with:

� maximal supersymmetry (N = 8)

� conformal invariance

� SO(8) R-symmetry

⇒ Right symmetries for describing M2-branes

But: ∃ only one real Euclidean 3-algebra (looks like

SU(2)× SU(2) CS-matter), moduli space looks like exotic

M-theory orbifold, Lorentzian 3-algebras have negative norm

states or look too much like 3d SYM...

⇒ To date no known string theory interpretation of BLG
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These ideas solidified in the ABJM proposal for bifundamental

U(N)×U(N) Chern-Simons-matter theory with N = 6,

describing N M2-branes on a C4/Zk M-theory singularity.

[Aharony-Bergman-Jafferis-Maldacena]

Important developments in AdS4/CFT3...

3-algebra description not necessary but possible. This is a

complex 3-algebra [Bagger-Lambert, Schnabl-Tachikawa]

But what about the M5-brane??
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Low-energy M5-brane dynamics governed by a theory in 6d

with: [Strominger, Witten]

� (2, 0) supersymmetry

� conformal invariance

� SO(5) R-symmetry

The (2, 0) tensor multiplet contains 5 scalars and a selfdual

antisymmetric 3-form field strength + fermions

But it’s complicated: getting Lagrangian for single M5 difficult

because of selfdual three-form field strength.



Note: ∃ indirect ways of attacking the abelian problem

� Sacrificing manifest 6d Lorentz invariance

� Introducing auxiliary scalar field

[Aganagic-Park-Popescu-Schwarz, Pasti-Sorokin-Tonin,

Bandos et al., Belov-Moore]

Can still work at the level of susy xfms and e.o.m..

⇒ Attempt a similar approach to multiple M2-branes for

multiple M5-branes.
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Conclusions

� We find a nonabelian (2, 0) tensor multiplet

� This 6d theory involves 3-algebras

� No manifest evidence of multiple M5-branes

� Theory has some interesting features

� A sector of the theory could be related to lightcone

description of M5-branes
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Outline

� Set-up of the calculation

� Susy closure

� Spacelike reduction

� Null reduction

� 5d SYM⇔ (2,0)



Set-up of the calculation

The steps that we will follow are:

� Start with the susy transformations for the abelian

M5-brane

� Generalise this to allow for nonabelian fields and

interactions

� Investigate the closure of the susy algebra

� Obtain e.o.m. and constraints

� Interpret the result
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The susy transformations for the free 6d (2, 0) tensor multiplet

are

δXI = iε̄ΓIΨ

δΨ = ΓµΓI∂µX
Iε+

1

3!

1

2
ΓµνλHµνλε

δHµνλ = 3iε̄Γ[µν∂λ]Ψ

with

Γ012345ε = ε and Γ012345Ψ = −Ψ

This algebra closes on-shell up to translations, with e.o.m.

∂µ∂
µXI = Γµ∂µΨ = ∂[µHνλρ] = 0



Make this ‘nonabelian’: Assume fields take values in some

vector space with basis TA such that XI = XI
AT

A.

Promote the derivatives to covariant derivatives

DµX
I
A = ∂µX

I
A − ÃBµ AXI

B

with ÃBµ A a new gauge field. ∃ an associated gauge symmetry.

Propose a nonabelian ansatz analogous to that of the

M2-brane.
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Consider:

δXI
A = iε̄ΓIΨA

δΨA = ΓµΓIDµX
I
Aε+

1

3!

1

2
ΓµνλH

µνλ
A ε

−1

2
ΓλΓIJCλBX

I
CX

J
Df

CDB
Aε

δHµνλ A = 3iε̄Γ[µνDλ]ΨA + iε̄ΓIΓµνλκC
κ
BX

I
CΨDg

CDB
A

δÃ B
µ A = iε̄ΓµλC

λ
CΨDh

CDB
A

δCµA = 0

Here fCDBA, gCDBA and hCDBA are some objects with

properties to be determined.
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Consistency of these transformations with respect to their

scaling dimensions gives

[H] = [X] + 1 , [Ã] = 1 , [C] = 1− [X]

[ε] = −1
2 , [Ψ] = [X] + 1

2 , [X]

The assignments are all related to the choice of [X]. For the

canonical choice [X] = 2 we have that [C] = −1.



Susy closure

We find that the susy algebra closes on-shell up to a translation

and a gauge transformation, subject to the constraints:

gABCD = hABCD = fABCD = f [ABC]
D

and

f [ABCEf
D]EF

G = 0

This is the fundamental identity for real 3-algebras (the N = 8

3-algebras in 3d theories).



E.o.m. for XI
A:

D2XI =
i

2
Ψ̄CC

ν
BΓνΓIΨDf

CDB
A+CνBCνGX

J
CX

J
EX

I
F f

EFG
Df

CDB
A

E.o.m. for ΨA:

ΓµDµΨA +XI
CC

ν
BΓνΓIΨDf

CDB
A = 0

E.o.m. for Hµνλ A:

D[µHνλρ] A = −1

4
εµνλρστC

σ
Bf

CDB
A

(
XI
CD

τXI
D +

i

2
Ψ̄CΓτΨD

)



E.o.m for ÃAµ B:

F̃ B
µν A = CλCHµνλ Df

BDC
A

⇒ No new d.o.f. are introduced on-shell

Constraints on CµA:

DνC
µ
A = 0 , CλBC

ρ
Cf

CDB
A = 0

and

⇒ CρCDρ

{
XI
D,ΨD, Hµνλ D

}
fCDBA = 0⇐



Summary thus far

� Wrote ansatz for susy xfms of nonabelian (2,0) theory in 6d

� This involved a new nondynamical gauge field ÃAµ B

� The gauge symmetry was associated to a 3-algebra

� Also introduced an auxiliary vector field CµA

� Obtained e.o.m and constraints that define the theory

� Proceed to study the interpretation



3-algebra 101

The structure constants are those of a real 3-algebra. Endow it

with a metric

hAB = (TA, TB)

∃ two kinds of real 3-algebras (depending on signature):

� The Euclidean A4-algebra, with fABCD = εABCD

[Papadopoulos, Gauntlett-Gutowski]

� The Lorentzian algebras

[Gomis-Milanesi-Russo,

Benvenuti-Rodrı́guez-Gómez-Tonni-Verlinde,

Ho-Imamura-Matsuo]



Lorentzian 3-algebras: start with ordinary Lie algebra G and

add two lightlike generators T± such that A = +,−, a, b, .... The

structure constants are given by

fABCD → f+abc = fabc , f
abc
− = fabc ,

The metric is given by

hAB =



0 −1 0 . . . 0

−1 0 0 . . . 0

0 0
...

... hG

0 0


.



Spacelike reduction

Use the Lorentzian 3-algebra and look for vacua of the theory

when G = su(N):

XI
A → XI

a , X
I
±

Get two abelian (2, 0) tensor multiplets (XI
±,Ψ±, Hµνλ ±)

Next, look at nonabelian piece:

⇒ Expand around 〈CλA〉 = gδλ5 δ
+
A
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We find:

� F̃ B
µν A = CλCHµνλ Df

BDC
A =⇒ F̃ b

αβ a = gHαβ5 df
bd
a

⇒ All other components give flat connections

⇒ Make assumption that they have trivial topology

� DνC
µ
A = 0 =⇒ ∂νg = 0

� CρCDρX
I
Df

CDB
A = 0 =⇒ ∂5X

I
a = 0

⇒ Nonabelian physics is five-dimensional

� g is constant and has scaling dimension −1

⇒ g
1
2 has correct scaling dimension for gYM in 5d.
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Make identifications:

g = g2YM , Ha
αβ5 =

1

g2YM
F aαβ

...and recover e.o.m., Bianchi identity and susy xfms of

five-dimensional SU(N) SYM theory.

⇒ Lorentzian theory expanded around 〈CλA〉 = gδλ5 δ
+
A is 5d

SYM along with two 6d free (2, 0) tensor multiplets.

The off-shell SO(5, 1) Lorentz and conformal symmetries are

spontaneously broken to SO(4, 1) Lorentz invariance.
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Very similar to what happened for Lorentzian M2-brane theories

in relation to D2-branes. [Gomis-Rodrı́guez-Gómez-Van

Raamsdonk-Verlinde, Ezhuthachan-Mukhi-CP]

In that case, the Lorentzian BLG theory in 3d expanded around

generic vacua was shown to be equivalent to 3d SYM. The

off-shell SO(8) R-symmetry and conformal invariance are

spontaneously broken to SO(7) R-symmetry.



Aside: Try and introduce a field Bµν A such that

Hµνλ A = 3D[µBνλ] A, since for abelian sector one has locally

Hµνλ ± = 3∂[µBνλ] ±

For the nonabelian fields we have

F̃µν
B
A = CλCHµνλ Df

CDB
A =⇒ F̃αβ

b
a = 2g2YMD̃[αBβ]5 cf

cb
a

and compare with

F̃ a
αβ b = ∂βÃ

a
α b − ∂αÃ a

β b − Ã a
α cÃ

c
β b + Ã a

β cÃ
c
α b

and

D̃αBβ5 a = ∂αBβ5 a − ÃαbaBβ5 b

⇒ It doesn’t work and one can’t have Hµνλ A = 3D[µBνλ] A
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c
β b + Ã a
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Euclidean case

What about the Euclidean 3-algebra A4? This was the example

that was genuinely different to SYM in 3d and led to ABJM.

⇒ In 6d, Lorentzian and Euclidean cases not dramatically

different:

Set fABCD = εABCD → εabc4 ≡ εabc ∈ su(2) and expand theory

around 〈CλA〉 = gδλ5 δ
4
A

XI
A → XI

a , X
I
4

Get a single free (2, 0) tensor multiplet plus SU(2) 5d SYM
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Null Reduction

One could also consider 6d coordinates xµ = (u, v, xi) where

u = 1√
2
(x0 − x5), v = 1√

2
(x0 + x5) and i = 1, 2, 3, 4.

Expand around

〈CµA〉 = gδµv δ
+
A

⇒ Abelian sector again consists of two 6-dimensional (2, 0)

tensor multiplets.

⇒ Nonabelian sector is a susy system in effectively 4 space

and 1 null dimensions with 16 susies and SO(5) R-symmetry.



We now have

D2XI
A =

i

2
Ψ̄CC

ν
BΓνΓIΨDf

CDB
A+CνBCνGX

J
CX

J
EX

I
F f

EFG
Df

CDB
A

=⇒ D2XI
a =

ig

2
Ψ̄cΓvΓ

IΨdf
cd
a

and

CρCDρX
I
Df

CDB
A = 0 =⇒ ∂vX

I
a = 0

⇒ Note that term proportional to scalar potential absent in

scalar e.o.m.

⇒ Tempting to speculate that this may be related to a lightcone

formulation for M5-branes
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BPS solutions in null reduction
⇒ Abelian solutions: Right-moving (∂vXI

a = 0) modes of

selfdual strings and their ‘neutral string’ generalisations

[Howe-Lambert-West, Gauntlett-Lambert-West]

Selfdual strings: are 1
2 -BPS solutions describing the M2⊥M5

intersection with

Huvi = ∂iX
6 , ∂i∂iX

6 = 0

Neutral strings: are instanton-like configurations on the relative

transverse M5-brane directions. They have zero H-charge

Huij =
1

2
εijklHukl



⇒ Nonabelian solutions: We obtain 1
4 -BPS solutions

Huvi a = DiX
6
a , Huij a =

1

2
εijklHukl a DiDiX

6
a = 0

M-theory version of ‘dyonic instantons’ in maximally Higgsed

phase of 5d SYM: U(N)→ U(1)N [Lambert-Tong]

Ei a = DiX
6
a , Fij a =

1

2
εijklFkl a DiDiX

6
a = 0

⇒ Right-movers (∂vXI
a = 0) of lightlike ‘dyonic instanton’

strings describing ‘W-boson’ M2’s stretched between multiple

M5’s in the maximally Higgsed phase...
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Comments on 5d SYM/(2,0)

From String Theory point of view relation between D4- and

M5-brane theories given by compactification on S1.

In that sense the strong-coupling dynamics of D4-theory should

be encoded in M5-theory.

From the gauge theory point of view this looks far from trivial:

� 5d SYM has a UV fixed-point which should correspond to

the (2,0) theory

� It is naı̈vely non-renormalisable and as such new d.o.f.

should appear at some scale
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Putting (2,0) theory on a circle should result in KK spectrum of

states, invisible to low-energy theory.

String Theory input: SYM instantons (BPS particles) are

candidates for the above. Just D0’s in the D4 worldvolume.

These become light at strong coupling and should give the

missing momentum in the extra dimension (same as for

D0-branes in M-theory) [Rozali, Berkooz-Rozali-Seiberg]

⇒ Technical hurdle in making this precise: instanton zero mode

quantisation leads to continuous spectrum...
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But then no new d.o.f. are needed in 5d SYM! Its strong

coupling limit would give the (2,0) theory.

⇒ The fact that we found no momentum in fifth direction is

compatible with this statement

⇒ Implications for renormalisability of 5d SYM: Should be UV

finite and well defined w/out additional d.o.f.!

Support for this conjecture comes from the fact that it is finite

up to 5 loops [Bern-Dixon-Dunbar-Grant-Perelstein-Rozowsky]

Would be interesting to see whether our formulation could shed

some light in any of these directions.
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Summary

� Starting from abelian M5-brane susy transformations, we

constructed a nonabelian (2, 0) tensor multiplet

� We recovered the presence of 3-algebras in this 6d theory

� Around 〈CµA〉 = gδµ5 δ
+
A physics were 5d SYM plus free 6d

abelian (2, 0) tensor multiplets

� Around 〈CµA〉 = gδµv δ
+
A physics were 4 space, 1 null

direction susy system plus 6d abelian (2, 0) tensor

multiplets



� We found BPS solutions corresponding to the right-moving

sector of lightlike ‘dyonic instanton’ strings and having

interpretation as M2-branes suspended between parallel

M5-branes

� Although the M-theory interpretation of our (2, 0) tensor

multiplet is unclear, interesting to see these solutions arise

� Due to its potential connection with multiple M5-branes

and UV finiteness of 5d SYM, this system warrants further

investigation


