On Large N Solution of
 Gaiotto-Tomasiello Theory

Takao Suyama (SNU)

Ref: arXiv:1008.3950
to appear in JHEP

Introduction

Question: What happens in AdS/CFT correspondence in the presence of (fundamental) flavors?
E.g. Flavors added to $\mathrm{N}=4 \mathrm{SYM}_{4}$

$\underset{\text { (\# of flavors) }}{M \ll} \underset{\text { (rank) }}{N} \quad \longleftrightarrow \quad$| Flavors are introduced |
| :--- |
| by M probe D7-branes. |

Dual geometry is still $\operatorname{AdS}_{5} \times S^{5}$.

For a large M, i.e. $M=(N)$, the back-reaction of D7 to geometry becomes relevant.
$\longmapsto \quad$ What happens in such cases ?

Conformal SQCD

$\mathrm{N}=2$ SYM with flavors with $M=O(N)$ is generically non-conformal even in large N limit.

Conformal for $M=2 N \quad \stackrel{? ? ?}{\longleftrightarrow}$ Another AdS $_{5}$ solution

A useful viewpoint:

Conformal SQCD is obtained from $\mathrm{N}=2$ quiver theory in a limit.

s
$\mathrm{AdS}_{5} \times S^{5} / Z_{2} \quad \xrightarrow{\text { B-field }}$
??? stringy?? non-critical??

Another approach to gravity dual

Conformal SQCD can be realized in terms of M5-branes wrapping on a Riemann surface.
$\longmapsto \quad$ Near-horizon geometry is schematically

$$
\mathrm{AdS}_{5} \times \Sigma_{2} \times S^{4} . \quad \text { (not a direct product) }
$$

Riemann surface

It is observed that the dual geometry has

- $A_{2 N-1}$ singularity in the bulk,
- Type IIA reduction with stringy curvature.

Wilson loops in AdS/CFT

Wilson loops are nice observables to probe dual geometry.

$$
\langle W[C]\rangle \sim e^{-S_{N G}[A]}, \quad S_{N G} \propto \operatorname{Area}[A]
$$

Typically, $\operatorname{Area}[A] \propto \sqrt{\lambda} . \quad\left(\lambda=g_{Y M}^{2} N\right)$

\longmapsto

$$
\langle W[C]\rangle \sim e^{c \sqrt{\lambda}}
$$

in large N, large λ.
"AdS behavior"

In fact, $\langle W[C]\rangle$ can be calculated exactly for

$$
\left\{\begin{array}{c}
\mathrm{N}=4 \mathrm{SYM}_{4} \\
\text { ABJM }
\end{array}\right.
$$

\longmapsto SUGRA results including c are reproduced.

Wilson loop in conformal SQCD

Localization formulae for Wilson loops are available for all $\mathrm{N}=2$ (Lagrangian) gauge theories with matters.

$$
\left\langle W_{R}[C]\right\rangle=\frac{1}{Z} \int d M e^{-\frac{1}{g^{2}} \operatorname{tr} M^{2}} Z_{1-\text { loop }}(M) Z_{\text {inst }}(M) \operatorname{tr}_{R} e^{M}
$$

This can be evaluated by saddle-point approximation. (exact in large N limit)
Schematic form of saddle-point equation for conformal SQCD:

$$
\frac{1}{\lambda} \phi_{i}+V_{F}\left(\phi_{i}\right)=V_{a d}\left(\phi_{i}\right)
$$

???
Eigenvalues are confined even in large λ.

$$
\langle W[C]\rangle \stackrel{? ?}{\sim} O(1) \quad \text { non-AdS?? }
$$

Our observation : AdS behavior of Wilson loop seems to disappear in the presence of many flavors.

Possibly related to singular natures of the dual geometries proposed so far.

However, our analysis is not precise enough to conclude.

Find an analogous setup where a more precise calculations can be performed.

In the following, we consider Gaiotto-Tomasiello theory with the help of localization technique.

Gaiotto-Tomasiello theory

$\mathrm{ABJ}(\mathrm{M})$ theory is specified by integers $\left(N_{1}, N_{2}, k\right)$.
\longleftrightarrow Generalization in which two Chern-Simons level may differ, i.e. parametrized by ($\left.N_{1}, N_{2}, k_{1}, k_{2}\right), k_{1}+k_{2} \neq 0$.

SUSY is reduced to $\mathrm{N} \leq 3$.

We focus on an $\mathrm{N}=3$ Chern-Simons-matter theory (GT theory) whose field content coincides with ABJM.

- conformal quantum mechanically.
- couplings : $\frac{N_{1}}{k_{1}}, \frac{N_{2}}{k_{2}}$ and $\frac{k_{1}}{k 2}$ in planar limit.
- There might exist a choice of parameters for which the theory would not exist (like ABJ).
$\Longleftrightarrow \quad N_{1}=N_{2}, \quad k_{1} \leq\left|k_{2}\right| \quad$ should exist.

Gravity dual : AdS_{4} solution in massive Type IIA.
To see a piece of evidence, consider a D0-brane.

$$
\exists \text { CS-coupling } \quad \int_{D 0} F_{10} A
$$

\longmapsto IIA strings must be attached.
Opposite endpoints form a state with a non-zero charge.
s 5
A local operator : monopole operator (string $=$ Wilson line)
In $\mathrm{U}(1)_{k_{1}} \times \mathrm{U}(1)_{k_{2}}$ theory, monopole op. with charge $(1,1)$ is equivalent to Wilson line with charge $\left(k_{1}, k_{2}\right)$.

$$
k_{1}+k_{2}=F_{10}
$$

A brane construction of $(\mathrm{N}=0) \mathrm{CSM}$ with $F_{10} \quad$ [Bergman, Lifschytz] In Type IIB picture,

$\longmapsto \quad k_{2}$ changes while k_{1} fixed.

cut induces a shift in k_{2}
through $\int_{D 3} d C_{0} \cdot C S(A)$

Take a limit $\left|k_{2}\right| \rightarrow \infty \quad \longrightarrow \frac{N_{2}}{k_{2}} \rightarrow 0$.
One set of gauge fields decouple, bi-fund. become fund.
$\longleftrightarrow \quad$ Analogy to conformal SQCD !!

Localization in CSM

Localization formula for GT theory :

$$
\begin{aligned}
Z_{G T}=\int & \prod_{i=1}^{N_{1}} d \phi_{i} \prod_{a=1}^{N_{2}} d \tilde{\phi}_{a} e^{i \pi\left(k_{1} \sum_{i} \phi_{i}+k_{2} \sum_{a} \tilde{\phi}_{a}\right)} \\
& \times \frac{\prod_{i<j} \sinh ^{2} \pi\left(\phi_{i}-\phi_{j}\right) \prod_{a<b} \sinh ^{2} \pi\left(\tilde{\phi}_{a}-\tilde{\phi}_{b}\right)}{\prod_{i, a} \cosh ^{2} \pi\left(\phi_{i}-\tilde{\phi}_{a}\right)}
\end{aligned}
$$

Difference from ABJ : $\left(k_{1}, k_{2}\right)$ instead of $(k,-k)$
No dependence on superpotential
Wilson loop \Longleftrightarrow insertion of $\sum_{i} e^{2 \pi \phi_{i}}$ (1/3-BPS)

Note: The decoupling limit sets $\tilde{\phi}_{a}=0$ by the stationary phase.
$\longmapsto \quad \mathrm{N}=3$ Chern-Simons with flavors

Large N Solution of GT theory

Take a limit: ($N_{1}, N_{2}, k_{1}, k_{2}$) all proportional to $k, k \rightarrow \infty$.
\longmapsto saddle-point approx. is exact.
Saddle-point eqs.

$$
\begin{aligned}
& \frac{k_{1}}{2 \pi} u_{i}=\sum_{j \neq i}^{N_{1}} \operatorname{coth} \frac{u_{i}-u_{j}}{2}+\sum_{a=1}^{N_{2}} \tanh \frac{u_{i}-v_{a}}{2}, \\
& \frac{k_{2}}{2 \pi} v_{a}=\sum_{b \neq a}^{N_{2}} \operatorname{coth} \frac{v_{a}-v_{b}}{2}+\sum_{i=1}^{N_{1}} \tanh \frac{v_{a}-u_{i}}{2} .
\end{aligned}
$$

Introducing new variables $z_{i}=e^{u_{i}}, w_{a}=e^{v_{a}}$, these become

$$
\begin{array}{ll}
\kappa_{1} \log z_{i}=t_{1}+t_{2}+\frac{2 \mathrm{t}_{1}}{N_{1}} \sum_{j \neq i}^{N_{1}} \frac{z_{j}}{z_{i}-z_{j}}-\frac{2 \mathrm{t}_{2}}{N_{2}} \sum_{a=1}^{N_{2}} \frac{w_{a}}{z_{i}+w_{a},} & \kappa_{1,2}=\frac{k_{1,2}}{k} \\
\kappa_{2} \log w_{a}=t_{1}+t_{2}+\frac{2 \mathrm{t}_{2}}{N_{2}} \sum_{b \neq a}^{N_{2}} \frac{w_{b}}{w_{a}-w_{b}}-\frac{2 \mathrm{t}_{1}}{N_{1}} \sum_{i=1}^{N_{1}} \frac{z_{i}}{w_{a}+z_{i} .} & t_{1,2}=\frac{N_{1,2}}{k}
\end{array}
$$

Resolvent: $\quad v(z)=t_{1} \int d x \rho_{4}(x) \frac{x}{z-x}-t_{2} \int d x \tilde{\rho}(x) \frac{x}{z+x}$.
e.v. density for z 's
e.v. density for w 's

$$
\begin{aligned}
\kappa_{1} \log y-t & =v(y+i 0)+v(y-i 0), & & (c<y<d) \\
\kappa_{2} \log (-y)-t & =v(y+i 0)+v(y-i 0), & & (a<y<b)
\end{aligned}
$$

$$
\left(t=t_{1}+t_{2}\right)
$$

Here we assumed the eigenvalue distribution like this.

Boundary conditions :

$$
v(z) \rightarrow\left\{\begin{array}{cc}
O\left(z^{-1}\right), & (z \rightarrow \infty) \\
-t . & (z=0)
\end{array}\right.
$$

\exists An analytic function satisfying the saddle-point equations and the boundary conditions !!!

$$
\begin{aligned}
\frac{v(z)}{\sqrt{(z-a)(z-b)(z-c)(z-d)}=} & \frac{\kappa_{1}}{2 \pi} \int_{c}^{d} d x \frac{f_{+}\left(x, t / \kappa_{1}\right)}{z-x} \\
& +\frac{\kappa_{2}}{2 \pi} \int_{a}^{b} d x \frac{f_{-}\left(x, t / \kappa_{2}\right)}{z-x}
\end{aligned}
$$

where $\quad f_{ \pm}(x, s)=\frac{ \pm \log \left(\pm e^{-s} x\right)}{\sqrt{\mid(x-a)(x-b)(x-c)(x-d)}}$.
It can be shown that $a b=1, c d=1$ are consistent, and then

$$
\oint_{C_{12}} \frac{d z}{2 \pi i} \frac{v(z)}{z}=t_{1,2}
$$

determine the remaining parameters.
Note : The solution is reduced to ABJM solution when $k_{1}+k_{2}=0$.

$\underline{\text { Large }\left|k_{2}\right| \text { limit }}$

If $N_{1}=N_{2}$ and $k_{1}+k_{2}=0$, then Wilson loop is known to have AdS behavior. What happens in the limit $\left|k_{2}\right| \rightarrow \infty$?

Easy way to see : Take the limit at the level of partition function.

$$
u_{i}+t_{2} \tanh \frac{u_{i}}{2}=\frac{t_{1}}{N_{1}} \sum_{j \neq i}^{N} \operatorname{coth} \frac{u_{i}-u_{j}}{2} .
$$

Define the resolvent : $\quad v(z)=t_{1} \int d x \rho(x) \frac{x}{z-x}$.
The solution is

$$
\begin{aligned}
v(z)= & \frac{1}{2} \log \left[\frac{e^{-t_{1}}}{2+a+a^{-1}}\left(z+1-\sqrt{(z-a)\left(z-a^{-1}\right)}\right)^{2}\right] \\
& +\frac{t_{2}}{2} \frac{z-1}{z+1}-\frac{t_{2}}{\sqrt{2+a+a^{-1}}} \frac{\sqrt{(z-a)\left(z-a^{-1}\right)}}{z+1}
\end{aligned}
$$

Wilson loop is obtained from the resolvent as

$$
\begin{aligned}
\left\langle\sum_{i} e^{u_{i}}\right\rangle & =\frac{1}{t_{1}} \lim _{z \rightarrow \infty} z \cdot v(z) \\
& =\frac{1}{t_{1}} \sinh ^{2} u+\cosh u-1, \quad\left(a=e^{2 u}\right)
\end{aligned}
$$

where $2 \cosh u \cdot \log \cosh u=t_{1}$.

Therefore, we find

$$
\left\langle\sum_{i} e^{u_{i}}\right\rangle=o\left(t_{1}\right) . \quad \begin{aligned}
& \text { power-like }! \\
& \text { non-ADS ! }
\end{aligned}
$$

The non-exponential behavior of Wilson loop discussed in 4-dim. is shown to exist rigorously in a 3-dim. analogue.

Summary

- AdS/CFT correspondence in the presence of many flavors are discussed, focusing on Wilson loops.
- In 4-dim. it was suggested that Wilson loop would not exhibit the AdS behavior.
- Gaiotto-Tomasiello theory is discussed as 3-dim. analogue. Planar resolvent is obtained.
- In the decoupling limit, AdS behavior is shown to disappear.

What do they mean ??

Possible interpretations:

- No AdS dual ?
- Stringy AdS factor?
- Classical AdS with stringy cycles in internal space?
- etc. ?

