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1) Introduction

Clearly, string theory has lead to tremendous revolutions
on our understandings of black holes (BHs), especially for
BPS BHs.

This has been enabled essentially by using holography or
AdS/CFT.

However, this direction of study is still far from complete.
mm) Non-SUSY situations ? Dynamical evolutions ?



For example, the following problems are still open:

() Entropy of Schwarzschild BH in flat spacetime ?
mm) [S there any holography in flat spacetime ?

(i) Complete understanding on how the BH information
problem is avoided in string theory ?

mm) How to describe evaporations of BHs in holography ?



A Quick Sketch of BH Information Problem
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BH formation in AAS/CFT

Thermalization in CFT
=) BH formationin AdS

In particular, instantaneous
excitations of CFTs are called
guantum quenches.
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Entropy Puzzle in AdS/CFET

() Inthe CFT side, the von-Neumann entropy remains vanishing
under a unitary evolutions of a pure state.

P =U (L, to)| E g ><\Po |U (t, to)_1
= S (t) =—Tr ptot(t) Iog ptot(t) =3 (to)-

(i) In the gravity dual, its holographic dual inevitably includes a
black hole at late time and thus the entropy looks non-vanishing !

Thus (i) and (i) contradict !

We will resolve this issue using entanglement entropy and study
guantum quenches as CFT duals of BH creations and evaporations.
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(@ Quantum Quenches and Emergent Horizons
(2-1) What are quantum quenches ?

A quantum guench is a time-dependent process when we suddenly
change parameters of a quantum manybody system at T=0
— Cold atom experiments

This typically leads to an effective thermalization, though the
system always remains to be a pure state.

Ex. A mass quench for a scalar field
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Brief review of mass quench in free scalar

[Calabrese-Cardy 05’, Sotiriadis-Calabrese-Cardy 08’]
Consider a harmonic oscillator whose frequency is shifted
from wo to w at t=0. (The initial temperature is T, = 5,7

H, = coo(aoag +%) = H :a)(aaﬁ +%)

The creation operators are related by Bogoliubov transformation:

a® =coshga, +sinhg a,,
a=sinh¢ga, +coshg¢ a,,



The T-product correlation function reads

T{x(t)x(t,)) =T Trle " X(t,)X(t,)]
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Time translation invariance breaking term

On the other had, the thermal correlation function at T=1/3
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To analyze the free scalar field, we just need to consider the
momentum dependent frequency:

@y > 0y (K)=4/mZ +K* | @ > k) =/m* +k’

Importantly, after the Fourier transformation, we can neglect
the time translation invariant breaking term in the real space
correlation function at late time.

Finally, it approaches the thermal 2pt. function at the eff. temp.

P (K) = 1 (0(K) — 0, (K))* + e (w(k) + o, (k)
eff - a)(k) g (a)(k) + w, (k)) +eﬁ°w°(k) (a)(k) ), (k))




Note: The effective temperature is momentum dependent.
The deviation from the grand-canonical ensemble is expected
when the system is integrable.
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(2-2) Emergent Static BH from Probe D-branes

As an exercise, consider a D-string extending in the radial
direction and rotating in the 7 direction. Its action looks like

Sps = —Tpq [ tAry=G =T, [dtdry1+r*(¢')* = (¢)* /°

Assume the following profile: o(t,r)=owt+q(r), G =

AN e
W ~~~~~~~ -_
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The equation of motion leads to

0 r’e 0 plre
or \/1+r2€0-2_(p2/r2 ot \/1+I’2(0'2—gb2/r2 ’

and thus we find

g,(r):\/l—a) [r |

A2r4 . r2

A(r’ —o°
S, :—ijdtdr\/ (Ar2 =) )

To avoid a singularity at r=w, we need to simply require

A=—
i



This leads to the D-string solution

gp(t,r):a)t—$+goo, 0

Its induced metric looks like

2

2
ds® = —(r? —@®)dt? + 2 dtdr +(12+a)4Jdr2.

r2

By redefining the time coordinate

1 1 r—w
rT=t{——-— log
r 2w r+w

This leads to the "2d BTZ' blackhole (or AdS2) metric

dr?

r’—w?

ds® =—(r* —w?)dzr* +

Note: We can generalize such a solution to Dp-branes.



Claim

Thermalization in a probe D-brane
< Horizon formation in its induced metric on the D-brane

Notice: No horizon in the bulk !

© Bulk observer
Probe D-brane




(2-3) Holographic Mass Quench

Consider a probe D5-brane in AdSs5 X S°dual to a defect CFT.
The mass of hypermultiplets from D3-D5 open strings is given by
the separation between N D3-branes and the D5-brane.

Thus , the mass quantum guench is triggered by suddenly
shifting the position of D5-brane at the AdS boundary.

Wave Front_D2-brane
D3-brane - t Mass Shift
. > I
r=0

Any horizon ? =%



D5-brane Solution

Express AdSs X S° by
dr?
re

= The D5 is wrapped on (t,x1,x2,r) and Q2 .

1
rcosd

ds’, = —r2dt® +r Z._ dx’ +——+ (d@* + cos® Q> +sin’ AQ).

Define n=rsing, z=
n(t,z) = the profile of D5-brane .

We numerically solve PDEs for DBI action to find 77(t, Z) .
— Compute the induced metric of this D5-brane !



Numerical D5-brane Solution

For the time-dependent mass as m(t)

m(t) =m,(1+tanhkt) =n(t,0). J

We choose k =10, m, =0.1.



Plot of Gtt in the induced Gtt=0 Apparent horizon

metric — Thermalization
/ at late time
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@ BH formations as Pure States in AAS/CFT

(3-1) Holographic Entanglement Entropy

Divide a given quantum system into two parts A and B.
Then the total Hilbert space becomes factorized

H

We define the reduced density matrix Oafor A by

IOA = Tertot ]

taking trace over the Hilbert space of B .



Now the entanglement entropy S , is defined by the
von-Neumann entropy

Sy=—Try palogp,

In QFTs, itis defined geometrically (called geometric entropy).
N : time slice
|
[ \

B @_ 5A ¥+ GB




Holographic Formula

The holographic entanglement entropy S, is given by the
area of minimal surface whose boundary coincides with 0A.

[Ryu-TT, 06’]
CFT,.,
S _ Area(y,)
I A —
4G,
B Gravtty ,.,
/A (‘Bekenstein-Hawking formula’ when
~"(We omit the time direction. ) 7 a 1S the horizon.)




Comments

* A heuristic derivation from bulk to boundary relation is in
Many evidences and no counter examples for 4 years, in spite of
the absence of complete proof.

 We need to employ extremal surfaces in the time-dependent spacetime.

* Inthe presence of a black hole horizon, the minimal surfaces typically
wraps the horizon.
= Reduced to the Bekenstein-Hawking entropy, consistently.



EE from AdS BH

() Small A (i) Large A

Event Horizon

a0

S,#Sg If p,, Isnotpure.



(3-2) Resolution of the Puzzle via Entanglement Entropy

Our Claim: The non-vanishing entropy appears only after coase-
graining. The von-Neumann entropy itself is vanishing
even in the presence of black holes in AdS.

First, notice that the (thermal) entropy for the total system can be found
from the entanglement entropy via the formula

St = IM (S, —S5).

|B|—0

This is indeed vanishing if we assume the pure state relation SA=SB.



Indeed, we can holographically show this as follows:

/\ S, (t) = min [Area(y A(t))} |
) [olE

Time \\/ / ya(t) = extremal surfaces homotopic to A(t)
4 such that oy ,(t) = OA(t)
yA<t) [Hubeny-Rangamani-TT 07’]
~ N

; E
A A
A >
\\/ ’ o
Black hole formation B

in global Ade+2 Continuous deformation leads to SA=SB



Therefore, if the initial state does not include BHs, then always
we have SA=SBe and thus Stot=0.

In such a pure state system, the total entropy is not useful to
detect the BH formation.

Instead, the entanglement entropy SA can be used to probe
the BH formation as a coarse-grained entropy.

SA(t)-Sdiv
A

Quantum
guench

l/ } BH entropy

> 1




@ Entanglement Entropy as Coarse-grained Entropy
(4-1) Evolution of Entanglement Entropy and BH formation
As an explicit example , consider the 2D free Dirac fermion on a circle.

AdS/CFT: free CFT <= quantum gravity
with a lot of quantum corrections !

Assuming that the initial wave function “PO> flows into a boundary
fixed point as argued in , We can approximate by

w)=e[B) |

where ‘ B> IS the boundary state. The constant & is a regularization
parameter and measures the strength of the quantum quench:

Am ~ g



Calculations of EE

n-alnnin
Sy==%Tl(p)"] . . - B
N -1
2 (Bl 0 (v, %) -0 (y,,7,) B)
T N < 1 Y1 21 Y2
M(o,)" ] al_N[1 <B\e‘2‘9H\B>



The final result of entanglement entropy is given by

2 2

lo| c+it|
6| —— 1| -6, —
1 2 1 de| 2¢ 2¢ | 2¢
S,(t,o)==log —+—log — — _ — _ ,
3 m 6 7 26 +2It+1o| M 26 +2It—l1o|
n -1 o 3%
2¢& Ae 2¢& de 2¢&

where a=UVcutoff and 0<o<27 .
o)
B \

This satisfies
S,(t,0)=S,(t,2r-0)=S;(t,0). = Pure State
S,(t+7,0)=S,(t,c) = Recurrence special to the free field theory
(much shorter th an the Poincare recurrence)



Time evolution of entanglement entropy

SA(t, 7) 202 — Sy
Time
, A

°r Holography

4 -

B T T S Quanty

quend

Quantum quench in free CFT

BH formation and evaporation
In extremely quantum gravity

No information paradox at all in either side !



(4-2) More comments

First of all, we can confirm that the scalar field X
(= bosonization of the Dirac fermion) is thermally excited:

Oscillators: X(r,0) = (a,, a.).

n 1
Elm) =g gy = Ty,

= —2¢&H T~ —4emn (&'—m)n (OKm)n
/Olef't_-l-rrighte ‘B><B‘ HZe \/ﬁ ‘O><O‘ \/ﬁ

m=0 n=0



Correlation functions S'Z€ ©f BH
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® Holography and Entanglement in Flat Space

The entanglement entropy is a rather general observable in
general setup of holography as in our BH example.

This is because EE can be defined in any qguantum many body
systems.

Motivated by this, finally we would like to discuss what a
holography for flat spacetime looks like.

So, simply consider R4t - (g? =dp2 +,02dQ§

UVcutoff = p<p_



Correlation functions

We can compute the holographic n-point functions following
the bulk-boundary relation just like in AAS/CFT.

Assuming a scalar in R4*1 |ike the dilaton:

S = ﬁ dx ‘g f ()0 ,¢0" 4]

Then we find that all n-point functions scale simply:

(0:(¥1)0,(Y,)+-0, (¥,)) = (pg) g(Y1) Yore1Yn)-
N
= Only divergent terms appear !
Adding the (non-local) boundary counter term,

all correlation functions become trivial !




Holographic Entanglement Entropy (HEE)

Though this result seems at first confusing, actually it is
consistent with the holographic entanglement entropy.

It is easy to confirm that the HEE follows the volume law rather
than the standard area law !
B S d

d-1
(p,)" -(Sin gj
2 A
4G, | '
Area(y,) — Vol(A)
Inthelimit @ > 0 !

S, ~




This unusual volume law implies that the subsystem A gets
maximally entangled with B when A is infinitesimally small.

pa= D |MLM2. ,MnNYMLM2,.. ,Mn|=®,p,

M1,M2,.,Mn
Therefore, we have the trivial correlation functions:

<O102 "'On> =Tr[p,0,0,---0,]=0.

At the same time, the volume law argues that the holographic
dual of flat space is given by a highly non-local theory.

For example, a similar volume law is obtained for
2
S :J‘dxOI g [¢-e" 4] .

Note: A bit similar to the open string field theory.



Possible Relation to Schwarzschild BH Entropy

Unruh Temp. attheboundary : T, -1

27p,,
(p)' " 1 1
SA N N ' d—1
Gy G, (Ty)

This can be comparable to the Schwarzschild BH entropy:
¢ .1 1
BH ' R
Gy (Tey)

This suggests that the BH entropy may be interpreted as
the entanglement entropy......




® Conclusions

 The quantum quench is a simple and useful process to study
dynamical aspects of quantum many body systems. We identified the
holographic dual of quantum quenches in CFT with horizon formations
in the induced metric of a probe D-brane (‘emergent black holes’).

 We resolve an entropy puzzle on the thermalization in AdS/CFT by
showing the total von-Neumann entropy is always vanishing in spite

that the AdS includes BHs at late time.

 We present a toy holographic dual of BH formations and
evaporations using gquantum gquenches.

« We discussed a possible holography for flat space and argued
that the dual theory is non-local and is highly entangled.
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