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① Introduction

Clearly, string theory has lead to tremendous revolutions 
on our understandings of black holes (BHs), especially for 
BPS BHs. 

This has been enabled essentially by using holography or 
AdS/CFT.

However, this direction of study is still far from complete.
Non-SUSY situations ?  Dynamical evolutions ? 



For example, the following problems are still open:

(i) Entropy of Schwarzschild BH in flat spacetime ?
Is there any holography in flat spacetime ?

(ii)  Complete understanding on how the BH information 
problem is avoided in string theory ?

[For static BH, there have been considerable developments:  
e.g. Maldacena 01’, Festuccia-Liu 07’, Hayden-Preskill 07’,

Sekino-Susskind 08’, Iizuka-Polchinski 08’ …] 

How to describe evaporations of BHs in holography ?



A Quick Sketch of  BH Information Problem

A lot of matter
⇒Pure state

Black hole formation

Thermal radiations
(BH evaporation)
⇒Mixed state ??

Contradict
with QM !Gravitational collapse



BH formation in AdS/CFT  

Thermalization in CFT   
BH formation in AdS

In particular, instantaneous
excitations of CFTs are called 
quantum quenches.

[e.g. Calabrese-Cardy 05’-10’]

e.g. Mass quench 

Time

BH

AdS
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m(t)
m(t)=m

m(t)=0:  CFT



Entropy Puzzle in AdS/CFT

(i) In the CFT side, the von-Neumann entropy remains vanishing 
under a unitary evolutions of a pure state.

(ii)   In the gravity dual, its holographic dual inevitably includes a 
black  hole at late time and thus the entropy looks non-vanishing !

Thus  (i) and (ii)  contradict !

We will resolve this issue using entanglement entropy and study 
quantum quenches as CFT duals of BH creations and evaporations.
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② Quantum Quenches and Emergent Horizons
(2-1) What  are quantum quenches ?

A quantum quench is a time-dependent process when we suddenly 
change parameters of a quantum manybody system at T=0 

→ Cold atom experiments 

This typically leads to an effective thermalization, though the 
system always remains to be a pure state.

Ex.   A mass quench for a scalar field 
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Brief review of mass quench in free scalar
[Calabrese-Cardy 05’,  Sotiriadis-Calabrese-Cardy 08’]

Consider a harmonic oscillator whose frequency is shifted 
from ω0 to ω at t=0.   (The initial temperature is               ) 

The creation operators  are related by Bogoliubov transformation: 
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The T-product correlation function reads

On the other had, the thermal correlation function at T=1/β 
is
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To analyze the free scalar field, we just need to consider the 
momentum dependent frequency:

Importantly, after the Fourier transformation,  we can neglect
the time translation invariant breaking term in the real space 
correlation function at late time. 

Finally, it approaches the thermal 2pt. function at the eff. temp.
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Note:  The effective temperature is momentum dependent.
The deviation from the grand-canonical ensemble is expected       
when the system is integrable.    

[Cold atom exp.  : T. Kinoshita, T. Wenger, D. S. Weiss, 
Nature (London) 440, 900 (2006)

Generalized Gibbs ensemble:  Rigol –Dunjko-Yurovsky-Olshanii 06’]



(2-2)  Emergent Static BH from Probe D-branes
[Das-Nishioka-TT 10’]

As an exercise, consider a D-string extending in the radial 
direction and rotating in the     direction.  Its action looks like

Assume the following profile: .
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The equation of motion leads to

and thus we find

To avoid a singularity at r=ω, we need to simply require 
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This leads to the D-string solution

Its induced metric looks like

By redefining the time coordinate

This leads to the `2d BTZ’ blackhole (or AdS2) metric 

Note:   We can generalize such a solution to Dp-branes.
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Claim

Thermalization in a probe D-brane
⇔ Horizon formation in its induced metric on the D-brane

Notice: No horizon in the bulk !

r

Bulk observer

Brane observer
Emergent BH

Probe D-brane

AdS



(2-3) Holographic Mass Quench

Consider a probe D5-brane in AdS5×S5 dual to a defect CFT.
The mass of hypermultiplets from D3-D5 open strings is given by
the separation between N D3-branes and the D5-brane. 

Thus , the mass quantum quench is triggered by suddenly 
shifting the position of D5-brane at the AdS boundary.  

r
r=∞r=0

Mass Shift

D5-braneWave Front

Any horizon ?

D3-brane



D5-brane  Solution

Express AdS5×S5 by 

⇒ The D5 is wrapped on (t,x1,x2,r) and Ω2  .

⇒ the profile of D5-brane .

We numerically solve PDEs for DBI action to find              . 
→ Compute the induced metric of this D5-brane !
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Numerical D5-brane Solution
For  the time-dependent mass as 
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Plot of Gtt in the induced 
metric

time

z

AdS bdy

Gtt=0  Apparent horizon
→ Thermalization 

at late time

Gtt



(3-1) Holographic Entanglement Entropy

Divide a given quantum system into two parts A and B.
Then the total Hilbert space becomes factorized

We define the reduced density matrix      for A  by

taking trace over the Hilbert space of B .

Aρ

,  Tr totBA ρρ =

.   BAtot HHH ⊗=
A BExample: Spin Chain

③ BH formations as Pure States in AdS/CFT



Now the entanglement entropy        is defined by the 
von-Neumann entropy

In QFTs,  it is defined geometrically (called geometric entropy). 
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Holographic Formula   

The holographic entanglement entropy       is given by the 
area of minimal surface whose boundary coincides with     .

[Ryu-TT, 06’]    

(`Bekenstein-Hawking formula’ when               
is the horizon.)
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Comments

• A heuristic derivation from bulk to boundary relation is in [Fursaev, 06’].
Many evidences and no counter examples for 4 years, in spite of  
the absence of complete proof.      

• We need to employ extremal surfaces in the time-dependent spacetime.
[Hubeny-Rangamani-TT, 0705.0016]

• In the presence of a black hole horizon, the minimal surfaces typically 
wraps the horizon.  
⇒ Reduced to the Bekenstein-Hawking entropy, consistently.



EE from AdS BH
(i) Small A                            (ii) Large A

Aγ Aγ Bγ

A AB B

HorizonEvent 

pure.not  is   tot            ρifSS BA ≠



(3-2) Resolution of the Puzzle via Entanglement Entropy

Our Claim:  The non-vanishing entropy appears only after coase-
graining.  The von-Neumann entropy itself is vanishing 
even in the presence of black holes in AdS.

First, notice that the (thermal) entropy for the total system can be found 
from the entanglement entropy via the formula

This is indeed vanishing if we assume the pure state relation SA=SB. 
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Indeed, we can holographically show this as follows:

[Hubeny-Rangamani-TT 07’]

A

2dAdS globalin 
formation  holeBlack 

+

Time

( )

.    )( such that               
  tohomotopic surfaces extremal

,  
4

Areamin)(

tA(t)γ
A(t)(t)γ

G
(t)γtS

A

A

N

A
A

∂=∂
=









=

(t)γA

Aγ
Bγ

A
B

BA γγ =
A

B
Continuous deformation leads to SA=SB

BH



Therefore, if the initial state does not include BHs,  then always 
we have SA=SB and thus Stot=0. 

In such a pure state system, the total entropy is not useful to 
detect  the BH formation.

Instead, the entanglement entropy SA can be used to probe 
the BH formation as a coarse-grained entropy.

[see also Arrastia-Aparicio-Lopez 10’,
cf. Calabrese-Cardy 05’] 

SA(t)-Sdiv

t

Quantum 
quench

BH entropy



④ Entanglement Entropy as Coarse-grained Entropy
[Ugajin-TT 10’]      

(4-1) Evolution of Entanglement Entropy and BH formation

As an explicit example , consider  the 2D free Dirac fermion on a circle.

AdS/CFT:  free CFT              quantum gravity  
with a lot of quantum corrections !

Assuming that the initial wave function flows into a boundary 
fixed point as argued in [Calabrese-Cardy 05’], we can approximate by

where          is the boundary state. The constant       is a regularization 
parameter  and measures  the strength of the quantum quench:
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Calculations of EE
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The final result of entanglement entropy is given by

This satisfies 
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Time evolution of entanglement entropy

divA StS −= 2.0),( επ

t

Time
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BH
Holography

BH formation and evaporation 
in extremely quantum gravity

No information paradox at all in either side !

Quantum 
quench

Quantum quench in free CFT



(4-2)  More comments

First of all,  we can confirm that the scalar field X 
(= bosonization of the Dirac fermion) is thermally excited:
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Correlation functions
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⑤ Holography and Entanglement in Flat Space 
[Li-TT to appear]

The entanglement entropy is a rather general observable in 
general setup of holography as in our BH example.

This is because EE can be defined in any quantum many body 
systems.

Motivated by this, finally we would like to discuss what a 
holography for flat spacetime looks like.

So, simply consider    
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Correlation functions

We can compute the holographic n-point functions following 
the bulk-boundary relation just like in AdS/CFT. 

Assuming a scalar in Rd+1 like the dilaton: 

Then we find that all n-point functions scale simply: 

⇒ Only divergent terms appear !  
Adding the (non-local) boundary counter term, 

all correlation functions become trivial !                      
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Holographic Entanglement Entropy (HEE)

Though this result seems at first confusing, actually it is 
consistent with the holographic entanglement entropy.

It is easy to confirm that the HEE follows the volume law rather 
than the standard area law !
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This unusual volume law implies that the subsystem A gets 
maximally entangled with B when A is infinitesimally small.

Therefore, we have the trivial correlation functions:

At the same time, the volume law argues that the holographic 
dual of flat space is given by a highly non-local theory. 

For example, a similar volume law is obtained for 

Note: A bit similar to the open string field theory.
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Possible Relation to Schwarzschild BH Entropy

This can be comparable to the Schwarzschild BH entropy:

This suggests that  the BH entropy may be interpreted as 
the entanglement entropy……
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⑥ Conclusions

• The quantum quench is a simple and useful process to study 
dynamical aspects of quantum many body systems. We identified the 
holographic dual of quantum quenches in CFT with horizon formations 
in the induced metric of a probe D-brane (`emergent black holes’).

• We resolve an entropy puzzle on the thermalization in AdS/CFT by 
showing the total von-Neumann entropy is always vanishing in spite 
that the AdS includes BHs at late time.

• We present a toy holographic dual of  BH formations and 
evaporations using  quantum quenches. 

• We  discussed a possible holography for flat space and argued 
that the dual theory is non-local and is highly entangled.
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