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 What is the Conifold?

 What are Glueballs?

 Review AdS/CFT on the Conifold

 Glueball spectrum on Conifolds

 General motivation:

 Wanted: Description of strongly coupled QCD

 Strategy: AdS/CFT correspondence

 D-branes at conical singularities to reduce SUSY

 Deformed AdS5 x T 1,1
 Deformed AdS4 x V5,2



Undeformed Conifold – Deformed Conifold – Generalized 
Conifold.





 “A” Conifold (CF): Manifold with isolated conical singularities.

 “The” CF: (2d-2)R dimensional complex curve in      defined by

 Topology: The CF is a cone :-)

 Symmetry: SO(d) x U(1)

 Geometry: The CF is a non-compact Calabi-Yau manifold



 Slice Σr : Intersect the CF with a sphere of radius r 

 Stiefel manifold:

Σr is the “set of all orthonormal 2-frames in d-dimensions Vd,2”

Write

then

 Radius and “angles”:

 Coset: Σr is also the “coset SO(d)/SO(d-2)”

Rotate to any point in Σr



 “The DCF”: (2d-2)R dimensional complex curve in      defined by

 The DCF is a not a cone :-( Deformation:

 Parametrization: “Radius” τ and “angles” yi

 U(1) is broken to Z2

 Tip is blown up to (d-1)-sphere of radius ~ε

with

Each slice Στ of the DCF looks like a slice Σr of the undeformed CF!



→ Stenzel space

The DCF is homeomorphic to the “tangent bundle to a d-sphere”

Write again as real and imaginary parts

and deform this smoothly into

If the DCF is not a cone – what is it ?



d=3

Slices:

Ricci-flat metric:

d=4

d=5

2d-2 = 6

2d-2 = 8

D3 branes

M2 branes

2d-2 = 4 “ordinary” gravity

Applications:



Focus on d=4  – Undeformed Conifold – Klebanov-
Witten Theory  – Add fractional branes – Backreaction
– Deformed Conifold – Klebanov-Strassler Theory  –
Cascading Gauge Theory.





 N D3 branes on CF:

 N integer D3 & M fractional D3 on DCF:

with fluxes

→ Add M D5 wrapped over 2-Cycle → Collapse to Tip, Backreaction

with fluxes



N=1 superconformal SU(N) x SU(N) gauge theory in 4 dimension

Superpotential: (unrenormalizable)

 DCF ↔ Klebanov-Strassler Theory:

 CF ↔ Klebanov-Witten Theory:

N=1 susy, non-conformal SU(N+M) x SU(N) gauge theory in 4d,

Confinement, chiral symmetry breaking, cascading RG flow



Glueballs in QCD  – Glueballs in Klebanov-Strassler Theory 
– Glueball Masses from Supergravity.





 Created by               ,                   ,                        ...

Bound states of gluons

 Quantum numbers: Lorentz rep.

Spin
Parity

Charge conj.

 Very non-perturbative: Large dynamically generated mass

 Hard to idenfity: Mix with mesons        and hybrids            .



 Lattice QCD

 Bag model

 Potential model

 Instanton gas model

 QCD sum rules

 Duality OZI models

 Gauge/Gravity duality

...



The bound state masses     can be read off from the poles of 2pt ftns

 Gauge theory side:

 String theory side:

Such poles corresponds to normalizable solution to the linearized

SUGRA e.o.m. for the bulk field     dual to the operator

Simplest example:

Ansatz





 What had been done?

 Spin-2 glueballs                            (also: Green’s functions)

 What have we done?

 Scalar, vector, tensor glueballs

 Only SO(4)-flavor-singlets

 Minimally coupled scalar: traceless part of metric

 Decoupling of sugra equations

 in 4d (10d sugra, V4,2 = T 1,1) and 3d (11d sugra, V5,2)

 Non-trivial SO(4)-flavor quantum numbers



Our Computation  – Coordinates and Laplacian –
Prediagonalization using Group Theory  – Example  –
Results.





with

and



Expand wave function as

decomposes into irreps of SO(d), but...

3) How do the basis functions in those irreps look ?

2) How many times does a given SO(d) irrep occur ?

1) Which SO(d) representations occur ?

4) How do the operators in the Laplacian act onto these functions ?

where                           is a square integrable function on Στ

SO(d) acts on each slice Στ ~ Vd,2 – without mixing different slices.

Range of α

–



Build SO(d) reps from tensor products of n   ’s and n   ’s:

Don’t overcount, note:

The matrix is a representation of SO(d)    (in gen. reducible)

p+q = n+n

is symmetric in i’s, symmetric in j’s, traceless in ANY pair 

→ At degree n+n, the only possible representations are (p,q):

p boxes

q boxes

–

–

–



Fill the Young tableau with   ’s and   ’s

→ The representation (p,q) occurs p-q+1 times.

p boxes

q boxes
p-q boxes

Possible number of   ’s in the p-q extra boxes: 0, 1, ..., p-q.

Examples: 2x (1,0)

3x (2,0)

1x (1,1)



The possible mixing is reduced to

The p-q+1 highest weight states in the irreps (p,q) are



Introduce some operators:

But it turns out that the bits in the Laplacian can be written as

Obs: These generators do NOT correspond to isometries of the DCF !

Measure m~

Define ladder operators

Measure degree n+n–



Take (p,q) = (2,0)

Because

then m = -1, 0, +1~

is a symmetry, there is a further decoupling.

Even:

Odd:
d = 4



Solve the (system of) ordinary differential equations by shooting method.

m2 = 3.87, 6.08, 6.34, 8.94, 9.3, ...

m2 = 4.88, 7.47, 10.58, 14.23, 18.41, ...

Even: Normalizable solutions for

Odd: Normalizable solutions for

Large τ asymptotics

Large τ asymptotics



SO(4) = SU(2)L x SU(2)R representations [jL,jR]
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 N M2 branes on DCF:

 Chern-Simons: N=2 superconformal U(N)1 x U(N)-1

No fractional
M-branes !

 Glueballs:

(         )



 Laplacian on generalized DCF in SO(d) covariant variables

 Green’s functions: Backreation when mobile D3’s are added

 Computation of mass spectrum for glueballs with flavor charges

 Involves solving coupled ODE’s

 Mixing is due to the absence of U(1)R symmetry on DCF

 For generic glueballs, many dual operators acquire a VEV

 No time to cover:

 Future:

 Glueballs with different Lorentz spin; not only minimal scalar


