Glueballs and Conifolds

(Green's Functions and Non-Singlet Glueballs on Deformed Conifolds)

Thomas Klose Uppsala University 14. Oct. 2010

... based on work with I. Klebanov, J. Lin, S. Pufu, hep-th/1009.2763

Autumn Symposium on String/M-theory @ KIAS

Plan for this Talk

General motivation:

- Wanted: Description of strongly coupled QCD
- Strategy: AdS/CFT correspondence
- D-branes at conical singularities to reduce SUSY

What is the Conifold?

2 Review AdS/CFT on the Conifold

3) What are Glueballs?

4 Glueball spectrum on Conifolds

• Deformed $AdS_5 \times T^{1,1}$ • Deformed $AdS_4 \times V_{5,2}$

What is the Conifold?

Undeformed Conifold – Deformed Conifold – Generalized Conifold.

The Conifold

Candelas, Green, Hübsch, NPB330(1990)

• "A" Conifold (CF): Manifold with isolated conical singularities.

• "The" CF: $(2d-2)_R$ dimensional complex curve in \mathbb{C}^d defined by

 $z_1^2 + z_2^2 + \ldots + z_d^2 = 0 \qquad \qquad z_i \in \mathbb{C}$

• Topology: The CF is a cone :-)

$$z_i o t z_i ext{ } t \in \mathbb{R}^+$$

Symmetry: $SO(d) \times U(1)$

$$z_i = R_{ij} z_j \qquad \qquad z_i = e^{i\alpha} z_i$$

• Geometry: The CF is a non-compact Calabi-Yau manifold

$$ds_{\rm CF}^2 = \partial_i \bar{\partial}_j \mathcal{F}(z, \bar{z}) \, dz^i \, d\bar{z}^j \qquad R_{i\bar{j}} = 0$$

Slices of the Conifold: Vd2

Candela, de la Ossa, NPB342(1990)

 S^{d-2}

 S^{d-1}

 S^{d-1}

 S^{d-2}

 \bigcirc Slice Σ_r : Intersect the CF with a sphere of radius r

$$|z_1|^2 + |z_2|^2 + \ldots + |z_d|^2 = r^2$$

Stiefel manifold: Write $ec{z}=(z_1,\ldots,z_d)=ec{u}+iec{v}$ then $\vec{u} \cdot \vec{v} = 0$, $\vec{u}^2 = \vec{v}^2 = \frac{1}{2}r^2$ Σ_r is the "set of all orthonormal 2-frames in d-dimensions $V_{d,2}$ "

• Coset: Σ_r is also the "coset SO(d)/SO(d-2)" Rotate $\vec{z}_0 = \frac{r}{\sqrt{2}}(1, i, 0..., 0)$ to any point in Σ_r Radius and "angles": $ds_{\mathrm{CF}}^2 = dr^2 + r^2 \, ds_{\varSigma_r}^2$

 $\Sigma_r \sim V_{d,2} \sim \mathrm{SO}(d)/\mathrm{SO}(d-2) \sim S^{d-2} \star S^{d-1}$

The Deformed Conifold

• "The DCF": $(2d-2)_R$ dimensional complex curve in \mathbb{C}^d defined by $z_1^2 + z_2^2 + \ldots + z_d^2 = \underbrace{\xi \epsilon_1^2}_{\epsilon_1^2} \quad \epsilon \in \mathbb{R}^+$

Deformation: → The DCF is a not a cone :-(
 U(1) is broken to Z₂
 Tip is blown up to (d-1)-sphere of radius ~ε
 u · v = 0, u² = 1/2(r² + ε²), v² = 1/2(r² - ε²)

• Parametrization: "Radius" τ and "angles" y_i DCF = $\mathbb{R}_{\tau} \times \Sigma_{\tau}$

$$z_i = \frac{\epsilon}{\sqrt{2}} \left(e^{\tau/2} y_i + e^{-\tau/2} \bar{y}_i \right) \begin{bmatrix} PKKL \\ 1009.2763 \end{bmatrix}$$

with $\sum_i y_i^2 = 0$, $\sum_i |y_i|^2 = 1$, $\sum_i |z_i|^2 = \epsilon^2 \cosh \tau$

Each slice Σ_{τ} of the DCF looks like a slice Σ_{r} of the undeformed CF!

The Deformed Conifold

If the DCF is not a cone - what is it ?

Write again as real and imaginary parts $y_i = \frac{1}{\sqrt{2}}(u_i + iv_i)$

$$z_i = \frac{\epsilon}{\sqrt{2}} \left(e^{\tau/2} y_i + e^{-\tau/2} \bar{y}_i \right) = \epsilon \left(u_i \cosh \frac{\tau}{2} + i v_i \sinh \frac{\tau}{2} \right)$$

and deform this smoothly into $z_i \sim u_i + i \, au \, v_i$

The DCF is homeomorphic to the "tangent bundle to a d-sphere" \rightarrow Stenzel space Stenzel, Manu.Math, 80(1993)

The Deformed Conifold

Slices:
$$\Sigma_{\tau=0} \sim V_{d,1} \sim \mathrm{SO}(d)/\mathrm{SO}(d-1) \sim S^{d-1}$$

 $\Sigma_{\tau>0} \sim V_{d,2} \sim \mathrm{SO}(d)/\mathrm{SO}(d-2) \sim S^{d-2} \star S^{d-1}$

$$\begin{aligned} \text{Ricci-flat metric:} \quad \mathcal{F}'(\tau) &= \epsilon^2 \left[\frac{d-2}{\epsilon^2} \int_0^\tau (\sinh \xi)^{d-2} d\xi \right]^{\frac{d}{d-1}} \begin{bmatrix} \text{Cvetic,} \\ \text{Gibbons,} \\ \text{Lü, Pope,} \\ \text{CMP232(2003)} \end{bmatrix} \\ ds_{\text{DCF}}^2 &= \frac{1}{4} \mathcal{F}'' d\tau^2 + \mathcal{F}' \coth \tau \, dy_i d\bar{y}_i \\ &+ \frac{1}{2} \mathcal{F}' \operatorname{csch} \tau \left(dy_i dy_i + d\bar{y}_i d\bar{y}_i \right) + \left(\mathcal{F}'' - \mathcal{F}' \coth \tau \right) y_i d\bar{y}_i \bar{y}_j dy_j \end{aligned}$$

Applications:

d=3	2d-2 = 4	"ordinary" gravity	Eguchi, Hanson PLB74(1978)
d=4	2d-2 = 6	D3 branes	$\left[\begin{array}{c} \text{Candela, de la Ossa} \\ \text{NPB342(1990)} \end{array}\right]$
d=5	2d-2 = 8	M2 branes	Cvetic, Gibbons, Lu, Pope CMP232(2003)

Review of AdS/CFT on Conifold

Focus on d=4 – Undeformed Conifold – Klebanov-Witten Theory – Add fractional branes – Backreaction – Deformed Conifold – Klebanov-Strassler Theory – Cascading Gauge Theory.

D-branes on Conifolds - Supergravity Solutions

○ N D3 branes on CF:

 $ds_{10}^2 = H^{-\frac{1}{2}}(r)ds_4^2 + H^{\frac{1}{2}}(r)ds_{CF}^2$

with fluxes
$$\int_{T^{1,1}} F_5 = N$$
 $\int_{S^3} F_3 = 0$

 \rightarrow Add M D5 wrapped over 2-Cycle \rightarrow Collapse to Tip, Backreaction Klebanov, Nekrasov Tseytlin Klebanov.

N integer D3 & M fractional D3 on DCF:

 $ds_{10}^2 = H^{-\frac{1}{2}}(\tau)ds_4^2 + H^{\frac{1}{2}}(\tau)ds_{\text{DCF}}^2$

with fluxes $\int_{T_{1,1}} F_5 = N_{\text{eff}}(\tau)$ $\int_{S^3} F_3 = M$

Strassler

12 12 24

NPB574(2000) NPB578(2000) JHEP0008:052(2000)

Dual Gauge Theories

 \bigcirc CF \leftrightarrow Klebanov-Witten Theory:

Klebanov, Witten, NPB556(1999)

N=1 superconformal SU(N) x SU(N) gauge theory in 4 dimension

chi	ral matter	$\mathrm{SU}(N)^2_{\mathrm{gauge}}$	$\mathrm{SU}(2)^2_{\mathrm{flavor}}$	$\mathrm{U}(1)_R$	$\mathrm{U}(1)_B$	$\Delta_{\rm UV}$	$\Delta_{\rm IR}$
	$(A_i)^a{}_{\hat{b}}$	$(\mathbf{N},\bar{\mathbf{N}})$	(2 , 1)	$\frac{1}{2}$	+1	1	$\frac{3}{4}$
	$(B_j)^{\hat{a}}{}_b$	$(ar{\mathbf{N}},\mathbf{N})$	(1 , 2)	$\frac{1}{2}$	-1	1	$\frac{3}{4}$

Superpotential: $h \int d^4x d^2\theta \, \epsilon^{ij} \epsilon^{kl} \operatorname{tr} A_i B_k A_j B_l$ (unrenormalizable)

DCF ↔ Klebanov-Strassler Theory:
 N=1 susy, non-conformal SU(N+M) × SU(N) gauge theory in 4d,

 Confinement, chiral symmetry breaking, cascading RG flow

What are Glueballs?

Glueballs in QCD – Glueballs in Klebanov-Strassler Theory – Glueball Masses from Supergravity.

What are Glueballs?

Bound states of gluons

 \bigcirc Created by tr $F^{\mu\nu}F^{\rho\sigma}$, tr $F^{\mu\nu}D^{\kappa}F^{\rho\sigma}$, tr $F^{\mu\nu}[F^{\rho\sigma},F^{\kappa\tau}]$...

Very non-perturbative: Large dynamically generated mass

Quantum numbers:

Quantum numbers:
Spin

Spin
Charge conj.

Lorentz rep. J^{PC} (s_1, s_2) J^{PC} $S = \operatorname{tr} F_{\mu\nu} F^{\mu\nu}$ (0, 0) $P = \operatorname{tr} \tilde{F}_{\mu\nu} F^{\mu\nu}$ (0, 0) $T_{\alpha\beta} = \operatorname{tr} F_{\alpha\mu} F^{\mu}{}_{\beta} - \frac{1}{4}g_{\alpha\beta}S$ (1, 1)

igodow Hard to idenfity: Mix with mesons $ar{q}\Gamma q$ and hybrids $ar{q}\Gamma F^{\mu
u}q$.

Approaches to the Glueball Mass Spectrum

- Lattice QCD
- Bag model
- Potential model
- Instanton gas model
- QCD sum rules
- Duality OZI models
- Gauge/Gravity duality

Glueball masses from Supergravity

Gauge theory side:

The bound state masses m_i can be read off from the poles of 2pt ftns

$$\langle \mathcal{O}(k)\mathcal{O}(-k)\rangle \sim \sum_{i} \frac{c_i}{k^2 + m_i^2} + \text{less singular terms}$$

String theory side:

Such poles corresponds to normalizable solution to the linearized SUGRA e.o.m. for the bulk field Φ dual to the operator O

Simplest example: $\Box_{10} \Phi(x, \tau, y) = 0$

Ansatz
$$\Phi(x, \tau, y) = e^{ik \cdot x} \phi(\tau, y)$$

 $\Leftrightarrow \qquad \Delta_6 \phi(\tau, y) = -m^2 H(\tau) \phi(\tau, y)$

$$m^2 = -k_\mu k^\mu$$

Glueballs on the Conifold

What had been done?

- Scalar, vector, tensor glueballs been the
- Only SO(4)-flavor-singlets
- Decoupling of sugra equations

What have we done?

Minimally coupled scalar: traceless part of metric

(also: Green's functions) Spin-2 glueballs

Gubser, Herzog,

Gordeli

Melnikov

Benna, Dymarsky,

Klebanov, Solovyov

JHEP0409:036,2004

Dymarsky,

Melnikov

JHEP0805:035,2008

marsky, Melnikov, Solovyov

JHEP0905:105,2009

Non-trivial SO(4)-flavor quantum numbers

• in 4d (10d sugra, $V_{4,2} = T^{1,1}$) and 3d (11d sugra, $V_{5,2}$)

 $\operatorname{tr}(T_{\alpha\beta}A_1B_1B_2^{\dagger}\ldots\ldots)$

Glueball Spectrum on Conifolds

Our Computation – Coordinates and Laplacian – Prediagonalization using Group Theory – Example – Results.

Laplacian on the Generalized Deformed Conifold

$$\Delta_{2d-2} = \mathcal{T} + g_{\mathcal{C}}(\tau)\mathcal{C} + g_{\mathcal{R}}(\tau)\mathcal{R} + g_{\mathcal{L}}(\tau)\mathcal{L}$$

PKKL 1009.2763

with

$$\begin{aligned} \mathcal{T} &= \frac{4}{\mathcal{F}''\mathcal{F}'^{d-2}} \partial_{\tau} \left(\mathcal{F}'^{d-2} \partial_{\tau} \right) \\ \mathcal{C} &= y_i y_j \frac{\partial^2}{\partial y_i \partial y_j} + (\bar{y}_i y_j - \delta_{ij} y_k \bar{y}_k) \frac{\partial^2}{\partial y_i \partial \bar{y}_j} + (d-1) y_i \frac{\partial}{\partial y_i} + \text{c.c.} \\ \mathcal{R} &= \left(y_i \frac{\partial}{\partial y_i} - \bar{y}_i \frac{\partial}{\partial \bar{y}_i} \right) \left(y_j \frac{\partial}{\partial y_j} - \bar{y}_j \frac{\partial}{\partial \bar{y}_j} \right) \\ \mathcal{L} &= \frac{1}{2} \left(\bar{y}_i y_j + y_i \bar{y}_j - \delta_{ij} y_k \bar{y}_k \right) \frac{\partial^2}{\partial y_i \partial y_j} + \frac{d-2}{2} \bar{y}_i \frac{\partial}{\partial y_i} + \text{c.c.} \end{aligned}$$

and

$$g_{\mathcal{C}}(\tau) = -\frac{2\coth\tau}{\mathcal{F}'} \qquad g_{\mathcal{R}}(\tau) = -\frac{1}{\mathcal{F}''} + \frac{2\coth\tau}{\mathcal{F}'} \qquad g_{\mathcal{L}}(\tau) = \frac{4\operatorname{csch}\tau}{\mathcal{F}'}$$

Basis of Functions on the gen. DCF

SO(d) acts on each slice $\Sigma_{\tau} \simeq V_{d,2}$ – without mixing different slices.

Expand wave function as
$$\phi(au,y_i,ar{y}_i)=\sum_lpha f_lpha(au)F_lpha(y_i,ar{y}_i)$$

where $F_{\alpha}(y_i, \bar{y}_i) \in L^2(\Sigma_{\tau})$ is a square integrable function on Σ_{τ}

 $L^2(\Sigma_{\tau} \cong \frac{\mathrm{SO}(d)}{\mathrm{SO}(d-2)})$ decomposes into irreps of SO(d), but...

1) Which SO(d) representations occur ?

2) How many times does a given SO(d) irrep occur ?

3) How do the basis functions in those irreps look?

4) How do the operators in the Laplacian act onto these functions?

Range of a

1) Which SO(d) representations occur?

Build SO(d) reps from tensor products of n y's and $\bar{n} \ \bar{y}$'s:

$$F(y_i, \bar{y}_i) = M_{i_1 i_2 \cdots i_n}^{j_1 j_2 \cdots j_{\bar{n}}} y_{i_1} y_{i_2} \cdots y_{i_n} \bar{y}_{j_1} \bar{y}_{j_2} \cdots \bar{y}_{j_{\bar{n}}}$$

The matrix $M_{i_1...}^{j_1...}$ is a representation of SO(d) (in gen. reducible) Don't overcount, note: $\sum_i y_i^2 = 0$ $\sum_i \bar{y}_i^2 = 0$ $\sum_i |y_i|^2 = 1$ $M_{i_1...}^{j_1...}$ is symmetric in i's, symmetric in j's, traceless in ANY pair

 \rightarrow At degree n+n, the only possible representations are (p,q):

2) How many times does (p.q) occur?

Fill the Young tableau with y's and \bar{y} 's

Possible number of y's in the p-q extra boxes: O, 1, ..., p-q. \rightarrow The representation (p,q) occurs p-q+1 times.

 Examples:
 2x (1,0)
 y_i , \bar{y}_i

 3x (2,0)
 y_iy_j , $y_i\bar{y}_j - \delta_{ij}$, $\bar{y}_i\bar{y}_j$

 1x (1,1)
 $y_i\bar{y}_j - y_j\bar{y}_i$

3) What do the basis functions look like?

The p-q+1 highest weight states in the irreps (p,q) are

$$F_{p,q,\tilde{m}} = \sqrt{\binom{p-q}{\frac{p-q}{2} - \tilde{m}}} (y_2 + iy_3)^{\frac{p-q}{2} + \tilde{m}} (\bar{y}_2 + i\bar{y}_3)^{\frac{p-q}{2} - \tilde{m}} \\ \times \left[(y_2 + iy_3)(\bar{y}_1 + i\bar{y}_4) - (y_1 + iy_4)(\bar{y}_2 + i\bar{y}_3) \right]^q \\ \tilde{m} = -\frac{p-q}{2}, -\frac{p-q}{2} + 1, \dots, +\frac{p-q}{2}$$

The possible mixing is reduced to

$$\phi(\tau, y_i, \bar{y}_i) = \sum_{\tilde{m}} f_{\tilde{m}}(\tau) F_{p,q,\tilde{m}}(y_i, \bar{y}_i)$$

4) How does the Laplacian act?

Introduce some operators: Gelbart, TAMS192(1974) CJM27(1975)

 $\begin{array}{ll} \text{Measure} ~\widetilde{\mathsf{m}} & \tilde{J}_3 = \frac{1}{2} \begin{pmatrix} y_i \partial_i - \bar{y}_i \bar{\partial}_i \end{pmatrix} \\ \text{Define ladder operators} & \tilde{J}_+ = y_i \bar{\partial}_i & \tilde{J}_- = \bar{y}_i \partial_i \end{array} \right\} ~\widetilde{\mathrm{SU}(2)} \\ \text{Measure degree } \mathsf{n} + \overline{\mathsf{n}} & N = y_i \partial_i + \bar{y}_i \bar{\partial}_i & \mathrm{U}(1)_N \end{array}$

Obs: These generators do NOT correspond to isometries of the DCF !

But it turns out that the bits in the Laplacian can be written as

$$C = p(p + d - 2) + q(q + d - 4)$$

$$\mathcal{R} = 4\tilde{J}_3^2$$

$$\mathcal{L} = \tilde{J}_+(\frac{1}{2}N - \tilde{J}_3) + \tilde{J}_-(\frac{1}{2}N + \tilde{J}_3)$$

Glueball Example

Take (p,q) = (2,0) then $\tilde{m} = -1, 0, +1$

$$\phi(\tau, y_i, \bar{y}_i) = f_1(\tau) (y_1 + iy_2)^2 + f_0(\tau) (y_1 + iy_2)(\bar{y}_1 + i\bar{y}_2) + f_{-1}(\tau) (\bar{y}_1 + i\bar{y}_2)^2$$

Because $\mathbb{Z}_2: y_i \leftrightarrow \overline{y}_i$ is a symmetry, there is a further decoupling. Even: $f_1^+ = f_1 + f_{-1}, f_0^+ = f_0$ $\begin{aligned} \mathcal{T}\left(\begin{array}{c} f_1^+ \\ f_0^+ \end{array}\right) + \left(\begin{array}{c} 8g_{\mathcal{C}} + 4g_{\mathcal{R}} + m^2 H & 2\sqrt{2}g_{\mathcal{L}} \\ 2\sqrt{2}g_{\mathcal{L}} & 8g_{\mathcal{C}} + m^2 H \end{array}\right) \left(\begin{array}{c} f_1^+ \\ f_0^+ \end{array}\right) = 0 \end{aligned}$

Odd: $f_1^- = f_1 - f_{-1}$

 $\mathcal{T}f_1^- + (8g_{\mathcal{C}} + 4g_{\mathcal{R}} + m^2H)f_1^- = 0$

d = 4

K

Glueball Example

Solve the (system of) ordinary differential equations by shooting method.

Normalizable solutions for Large t asymptotics Even: $m^2 = 3.87, 6.08, 6.34, 8.94, 9.3, ...$ $F_1^+(y,\bar{y}) \to \operatorname{tr} T_{\alpha\beta} [(A_1B_1)^2 + (B_2^{\dagger}A_2^{\dagger})^2]$ $f_1^+(\tau) \sim e^{-7\tau/3}$ $f_0^+(\tau) \sim e^{-2(1+\sqrt{7})\tau/3}$ $F_0^+(y,\bar{y}) \to \operatorname{tr} T_{\alpha\beta}A_1B_1B_2^{\dagger}A_2^{\dagger}$ Normalizable solutions for Odd: Large τ asymptotics $m^2 = 4.88, 7.47, 10.58, 14.23, 18.41, ...$ $F_{-1}^+(y,\bar{y}) \to \operatorname{tr} T_{\alpha\beta} [(A_1B_1)^2 - (B_2^{\dagger}A_2^{\dagger})^2]$ $f^+_{-1}(\tau) \sim e^{-7\tau/3}$

Glueball Mass Spectrum on T^{1,1}

 $SO(4) = SU(2)_L \times SU(2)_R$ representations $[j_L, j_R]$

Glueball Mass Spectrum on V52

• N M2 branes on DCF: $ds_{11}^2 = H^{-\frac{2}{3}}(\tau) ds_4^2 + H^{\frac{1}{3}}(\tau) ds_{\text{DCF}}^2$

 $\int_{\Sigma_{\tau}} *G_4 = N(\tau) \qquad \int_{S^4} G_4 = 0 \quad (\text{No fractional })$

Cvetic, Gibbons, Lu, Pope, CMP232(2003)

 Φ_2

• Chern-Simons: $\mathcal{N}=2$ superconformal $U(N)_1 \times U(N)_{-1}$ [Martelli, Sparks, JHEP12(2009) $W = \Phi_1(B_1A_1 + B_2A_2) + \Phi_2(A_1B_1 + A_2B_2)$ $+\mu \operatorname{tr}(\Phi_1^2 - \Phi_2^2) + s(\Phi_1^3 + \Phi_2^3)$ $\Phi_1 \bigcirc \bigcirc \bigcirc \bigcirc$

• Glueballs: $\epsilon^2 \sim \mu^2/s$ $\Delta_8 \phi(au, y) = -m^2 H(au) \phi(au, y)$

Summary

- Laplacian on generalized DCF in SO(d) covariant variables
 Computation of mass spectrum for glueballs with flavor charges
 Involves solving coupled ODE's
 Mixing is due to the absence of U(1)_R symmetry on DCF
 For generic glueballs, many dual operators acquire a VEV
 No time to cover:
- Green's functions: Backreation when mobile D3's are added
 Future:
 - Glueballs with different Lorentz spin; not only minimal scalar