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 What is the Conifold?

 What are Glueballs?

 Review AdS/CFT on the Conifold

 Glueball spectrum on Conifolds

 General motivation:

 Wanted: Description of strongly coupled QCD

 Strategy: AdS/CFT correspondence

 D-branes at conical singularities to reduce SUSY

 Deformed AdS5 x T 1,1
 Deformed AdS4 x V5,2



Undeformed Conifold – Deformed Conifold – Generalized 
Conifold.





 “A” Conifold (CF): Manifold with isolated conical singularities.

 “The” CF: (2d-2)R dimensional complex curve in      defined by

 Topology: The CF is a cone :-)

 Symmetry: SO(d) x U(1)

 Geometry: The CF is a non-compact Calabi-Yau manifold



 Slice Σr : Intersect the CF with a sphere of radius r 

 Stiefel manifold:

Σr is the “set of all orthonormal 2-frames in d-dimensions Vd,2”

Write

then

 Radius and “angles”:

 Coset: Σr is also the “coset SO(d)/SO(d-2)”

Rotate to any point in Σr



 “The DCF”: (2d-2)R dimensional complex curve in      defined by

 The DCF is a not a cone :-( Deformation:

 Parametrization: “Radius” τ and “angles” yi

 U(1) is broken to Z2

 Tip is blown up to (d-1)-sphere of radius ~ε

with

Each slice Στ of the DCF looks like a slice Σr of the undeformed CF!



→ Stenzel space

The DCF is homeomorphic to the “tangent bundle to a d-sphere”

Write again as real and imaginary parts

and deform this smoothly into

If the DCF is not a cone – what is it ?



d=3

Slices:

Ricci-flat metric:

d=4

d=5

2d-2 = 6

2d-2 = 8

D3 branes

M2 branes

2d-2 = 4 “ordinary” gravity

Applications:



Focus on d=4  – Undeformed Conifold – Klebanov-
Witten Theory  – Add fractional branes – Backreaction
– Deformed Conifold – Klebanov-Strassler Theory  –
Cascading Gauge Theory.





 N D3 branes on CF:

 N integer D3 & M fractional D3 on DCF:

with fluxes

→ Add M D5 wrapped over 2-Cycle → Collapse to Tip, Backreaction

with fluxes



N=1 superconformal SU(N) x SU(N) gauge theory in 4 dimension

Superpotential: (unrenormalizable)

 DCF ↔ Klebanov-Strassler Theory:

 CF ↔ Klebanov-Witten Theory:

N=1 susy, non-conformal SU(N+M) x SU(N) gauge theory in 4d,

Confinement, chiral symmetry breaking, cascading RG flow



Glueballs in QCD  – Glueballs in Klebanov-Strassler Theory 
– Glueball Masses from Supergravity.





 Created by               ,                   ,                        ...

Bound states of gluons

 Quantum numbers: Lorentz rep.

Spin
Parity

Charge conj.

 Very non-perturbative: Large dynamically generated mass

 Hard to idenfity: Mix with mesons        and hybrids            .



 Lattice QCD

 Bag model

 Potential model

 Instanton gas model

 QCD sum rules

 Duality OZI models

 Gauge/Gravity duality

...



The bound state masses     can be read off from the poles of 2pt ftns

 Gauge theory side:

 String theory side:

Such poles corresponds to normalizable solution to the linearized

SUGRA e.o.m. for the bulk field     dual to the operator

Simplest example:

Ansatz





 What had been done?

 Spin-2 glueballs                            (also: Green’s functions)

 What have we done?

 Scalar, vector, tensor glueballs

 Only SO(4)-flavor-singlets

 Minimally coupled scalar: traceless part of metric

 Decoupling of sugra equations

 in 4d (10d sugra, V4,2 = T 1,1) and 3d (11d sugra, V5,2)

 Non-trivial SO(4)-flavor quantum numbers



Our Computation  – Coordinates and Laplacian –
Prediagonalization using Group Theory  – Example  –
Results.





with

and



Expand wave function as

decomposes into irreps of SO(d), but...

3) How do the basis functions in those irreps look ?

2) How many times does a given SO(d) irrep occur ?

1) Which SO(d) representations occur ?

4) How do the operators in the Laplacian act onto these functions ?

where                           is a square integrable function on Στ

SO(d) acts on each slice Στ ~ Vd,2 – without mixing different slices.

Range of α

–



Build SO(d) reps from tensor products of n   ’s and n   ’s:

Don’t overcount, note:

The matrix is a representation of SO(d)    (in gen. reducible)

p+q = n+n

is symmetric in i’s, symmetric in j’s, traceless in ANY pair 

→ At degree n+n, the only possible representations are (p,q):

p boxes

q boxes

–

–

–



Fill the Young tableau with   ’s and   ’s

→ The representation (p,q) occurs p-q+1 times.

p boxes

q boxes
p-q boxes

Possible number of   ’s in the p-q extra boxes: 0, 1, ..., p-q.

Examples: 2x (1,0)

3x (2,0)

1x (1,1)



The possible mixing is reduced to

The p-q+1 highest weight states in the irreps (p,q) are



Introduce some operators:

But it turns out that the bits in the Laplacian can be written as

Obs: These generators do NOT correspond to isometries of the DCF !

Measure m~

Define ladder operators

Measure degree n+n–



Take (p,q) = (2,0)

Because

then m = -1, 0, +1~

is a symmetry, there is a further decoupling.

Even:

Odd:
d = 4



Solve the (system of) ordinary differential equations by shooting method.

m2 = 3.87, 6.08, 6.34, 8.94, 9.3, ...

m2 = 4.88, 7.47, 10.58, 14.23, 18.41, ...

Even: Normalizable solutions for

Odd: Normalizable solutions for

Large τ asymptotics

Large τ asymptotics



SO(4) = SU(2)L x SU(2)R representations [jL,jR]
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 N M2 branes on DCF:

 Chern-Simons: N=2 superconformal U(N)1 x U(N)-1

No fractional
M-branes !

 Glueballs:

(         )



 Laplacian on generalized DCF in SO(d) covariant variables

 Green’s functions: Backreation when mobile D3’s are added

 Computation of mass spectrum for glueballs with flavor charges

 Involves solving coupled ODE’s

 Mixing is due to the absence of U(1)R symmetry on DCF

 For generic glueballs, many dual operators acquire a VEV

 No time to cover:

 Future:

 Glueballs with different Lorentz spin; not only minimal scalar


