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Pl for this Talk

General motivation:

Wanted: Description of strongly coupled QCD
Strategy: AdS/CFT correspondence
D-branes at conical singularities to reduce SUSY
What is the Conifold?
Review AdS/CFT on the Conifold

What are Glueballs?

Glueball spectrum on Conifolds

Deformed AdS. x T 11 Deformed AdS, x V<,



What is the Conifold ?

Undeformed Conifold — Deformed Conifold — Generalized
Conifold.



(Green, Hitbsch,
NPB330{1990

“A” Conifold (CF): Manifold with isolated conical singularities.

“The” CF: (2d-2) dimensional complex curve in C? defined by

2 2 2
Zi+2z+...+23=0 z; € C

Topology: The CF is a cone :-)
zi =tz teR™
Symmetry: SO(d) x U(1)
zi = Rijz; z; = e'%z;

Geometry: The CF is a non-compact Calabi-Yau manifold

dstr = 0;0;F (2, %) dz* dz’ Ri; =0



| Candela, '
de la Ossa.
NPB342(1990)

) Slice =, : Intersect the CF with a sphere of radius r

]

2

21| + |2za|* + ... + |2q|* = 2

 Stiefel manifold:
Write Z = (zl,...,zd) = U + 17

then @-5=0, @?=02=1

>, is the “set of all orthonormal 2 -frames in d-dimensions V, ,”

) Coset: 2, is also the “coset SO(A)/SO(d-2)"

Rotate Zp = \%(m,o...}o) to any point in =,

o e 2 ; g p
J Radius and “angles’: dscp = dr + r* dﬁir:_,.

5 ~ Vaa ~ SO(d)/SO(d —2) ~ §%=2% 54!



The Deformed Conifold
 “The DCP: (2d-2); dimensional complex curve in C¢ defined by

zf+z§+...+z§— ec R

Deformation: - The DCF is a not a cone :—(
U(1) is broken to Z,
Tip is blown up to (d-1)-sphere of radius ~¢

I3
—
P =

§.9=0, @=10*té), F=1(?—&)

Parametrization: “Radius” T and “angles” y; DCF = R, x Y-

€ e .
Zi = (Fj’ X_}-yﬁ + e ‘KE;E}?;)

(] \/5
: 2 B 9 9
with Dy =0,  2lul =1, > |#|" = e“coshT

Each slice =, of the DCF looks like a slice =, of the undeformed CF!
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IF the DCF is not a cone — what 1S 1t ?

Whrite again as real and imaginary parts y; = %(Hi + ;)
2 = % ( T2y + e 7/2%) =€ (u@- cosh% + 7v; sinh %)

and deform this smoothly into z; ~ u; +17v;

The DCF is homeomorphic to the “tangent bundle to a d—sphere”

— Stenzel space  Stenzel

Manu.Math, 80{1993)



The Deformed Conitold

Slices: X, ~ Vg1 ~ SO(d)/SO(d —1) ~ S¢*

E‘T}D ~J 1/(.1:,2 ~ SO(d)/SO(d_Q) _y Sd—g*sd—l

Nz PR P
Ricci-flat metric:  F'(T) :Ez[ : / (Slllllﬁ)d_'zdﬁ] gl

€ 0
ds3cp = %j‘-—”drg + F' coth 7 dy;dy;

+ 3 F esch 7 (dyidy: + dyidys) + (F" — F' coth ) yidy;y;dy;

Applications:
d=3 2d-2 = 4 “ordinary” gravity By
d:4' 2-0{ -2 = 6 D3 bVaV\@S Ei \Ill, ;:-.::1. AI ;:z(: 1‘): |

d=s  2d-2=3 M2 branes P00y



Roview of AAS/CET on Conifold

Focus on d=4 — Undeformed Conifold — Klebanov-
Witten Theory — Add fractional branes — Backreaction
— Deformed Conifold — Klebanov-Strassler Theory -

Cascading Gauge Theory.



D-rares on Conifolds ~ Supergy adti) Solusions
N D3 branes on CF:

ds?y = H™ % (r)ds? + H? (r)ds2,,

with fluxes / Fs =N / F3=0
g3

.-'I1J_ n

— Add M DS wrapped over 2-Cycle — Collapse to Tip, Backreaction

N integer D3 & M fractional D3 on DCF:

dS%O =H"? (T)d'ﬁ +H? (T)déi‘%-)(-”; \

W{'tb\ Huxes / F5 —_ A,-“\,n':l”.(,:,-) f F = :ur
5"3

."f1]_ 1




Oud Gawge Theories

' CF < Klebanov-Witten Theory: © NPB556(1999)
N=1 superconformal SU(N) x SU(N) gauge theory in 4 dimension

,V(,(’/‘( 2 TT )2 - Trq
C\/\.\‘(O\\ wé SU [:;II"' )éaugc SU (Q)ﬁavor Ul)r U(l)s Auv  Amr

(4)%  (N,N) (2,1) +1 1

] ] o
o [ A |

(B;)%, (N,N) (1,2) —1 1

Superpotential: h / d'x d*0 € tr A;BrA; B (unrenormalizable)

DCF < Klebanov-Strassler Theory: R e
N=1 susy, non-conformal SUN+M) x SU(N) gauge theory in 4d,

Confinement, chiral symmetry breaking, cascading RG flow



What are Gluélodls 2

Glueballs in QCD — Glueballs in Klebanov-Strassler Theory
— Glueball Masses from Supergravity.



YWhat are Qluelodls 7

Bound states of gluons

Created by tr F*WFP?, tr FFYDNEPO |ty FRY[FPO FRT] .

Very non-perturbative: Large dynamically generated mass

Parity
Spin Charge con,.
Quantum numbers: Loventz rep.
(51,52) Je
Betr i (0,0) 050
P = trF,, FH (0,0) 0~

1=t B gl L S R 10 R et s 0

Hard to idenfity: Mix with mesons ql'q and hybrids qI'F""q .



Chen, et.al.
PRD73,2006

|




Quelodll vasses fronm Superdy aiy)

Gauge theory side:

The bound state masses m; can be read off from the poles of 2pt ftns

(Ok)O(=k)) ~ D | 7

1

b .
C;

5 + less singular terms
+m;

String theory side:

Such poles corresponds to normalizable solution to the linearized
SUGRA e.o.m. for the bulk field @ dual to the operator O

Simplest example:  [10®(x,7,y) =0

Ansatz  &(xz,T,y) = e* (T, )

S Aed(T,y) = _'TT?JEH(T)QJ)(Ta y) i = —kuk”



Gluelodlls on the Conifold

What had been done?

SR
Scalar, vector, tensor glueballs' |

Only SO(4)-flavor-singlets

\1

Decoupling of sugra equations | ko, o "

What have we done?

Minimally coupled scalar: traceless part of metric
Spin-2 glueballs (also: Green’s functions)

Non-trivial SO(4)-flavor quantum numbers

in 4d (10d sugra, V,, = T**) and 3d (11d sugra, Vs ,)



Qélodl Spectruen on Conifolds

Our Computation — Coordinates and Laplacian —
Prediagonalization using Group Theory — Example —
Results.



Laglacian. on the Gererdized Dekormed Conifold

Asg_o =T + ge(7)C + gr(T)R + g (7))L oy
with
4 d—2
1T = j:uffd—z&lr(}—f d‘r)
5 a‘z )
C= iY77 iy — U4 d—1 o
yy;dyldyjﬂyyj Jy;y;l) — 1] )y dyith;(,
0 0
R=\vig— — Uiz
(y oy; d du—,)( dy_, )
£ = Lt s ) =2+ 42250 s
=3 YiYy; — YilY; — z;yhg.i& d de ayi _
and
), = ~ 2cothT (b 1 L 2cothT () = 4cschr
gelt) = b2 gr(7) = ——; 7 geiT) = —,



Boasis of Tunctions on the gen. OCE
SO(d) acts on each slice £, ~ V,;, — without mixing different slices.

Expamd wave function as (;z) Ty Yis q«a Z f cx U«u Uz)

where F,(yi,7;) € L*(X;) is a square integrable function on =,

L (X2, = b;% 5) ) decomposes into irreps of SO(d), but...

Which SO(d) representations occur ?

, , , Range of
How many times does a given SO(d) irrep occur ?
How do the basis functions in those irreps look ?

How do the operators in the Laplacian act onto these functions ?



Which SX(A) represantations occur ?

Build SO(d) reps from tensor products of n Y's and n 7’s:
Fys, §i) = M3Y270% ya viy i G52 Tja ** Ui
The matrix fo[fli_‘_'_‘ is a representation of SO(d)  (in gen. reducible)

Don't overcount, note: Y., y7 =0 > g:=0 D |y.3,;|2 =l

M s symmetric in 's, symmetric in j's, traceless in ANY pair

T] aaa

— At degree n+n, the only possible representations are (p.q):

p boxes

q boxes Pra = Ll



How many) times does (p.4) accur ?

Fill the Young tableau with y’s and §’s

p boxes

yly\y\yly

Sl RSy

Sl
Sl

Sl

mg | RNy
el [l
)| =

5 p-q boxes
q boxes

Possible number of y’s in the p-q extra boxes: O, 1, ...

— The representation (p,q) occurs p-q+1 times.

Examples:  2x (1,0) Vi, Yi
3x (2,0)  Yil¥i, Yi¥j — 0ij » Uil
Ix (3,1)  YiYj — Yi¥i



What do the basis functions look like ?

The p-g+1 highest weight states in the irveps (p.q) are

P—q rP—q __ =
Fp.a.m = \/(Mm) (y2 +iys) = T (G2 + i) 2 "

2

x [(y2 + iys) (1 + i7a) — (y1 + iya)(F2 + i73)]”

p—g ip=gq p—q
RPN T AL
Db o T

m = —

The possible mixing is reduced to

T yzsyz me pqm y%ay%)



How does the Laglacion act ?

Introduce some operators: .\ o o,

—

Measure l,/\VJ\ .)T'3 — %(g d — gigz) L e
: - Ay SU(2)

Define ladder operators J, = y;0; J_ = 7;0;

Measure degree n+in N = y;0; + 7:0; U(l)n

Obs: These generators do NOT correspond to isometries of the DCF !

But it turns out that the bits in the Laplacian can be written as
C=pp+d—2)+ql¢g+d—4)
R = 4J3

L= Jo (L N S e EE e )



Gluelodl Examgle
Take (p.q) = (2,0) then m = -1, 0, +1

(Zs(T, Yis gz) = /[ (T) (yl -+ ’Z:yg)Q
+ fo(7) (y1 + iy2) (51 + iF2)
+ f-1(7) (71 + i2)°

Because Za :Y; < §i IS a symmetry, there is a further decoupling.

Even: fi=fi+f-1, fo =fo

7( fi ). ( 89ct+dgr+ m’H  2v/2¢, Y _g
fo 2v'2g, 8gc + m*H fo

odd: fi = f1 — f-1

Tf{ + (89(3 + 4gr + mBH) fi =0



Quéodl Example

Solve the (system of) ordinary differential equations by

Even:

Odd:

Normalizable solutions for
m? = 3.87, 6.08, 6.34, 8.94, 9.3, ...

Fit(y,5) — tr Tap[(A1B1)? + (BIAD)?]
F:’J—F(yag) 5 UE Tn,@’AlBlB;A‘E

Normalizable solutions for

m?* = 4.88, 747, 10.58, 14.23, 18.41, ..

F* (y,9) — trTap[(41B1)? — (BSA})?)

Large T asymptotics

—T77/3

:—-r-:.

+

2
¢
o

-

—2(1++/7)7/3

~+

=0t

3
e
™

Large T asymptotics

fj—'l (7) ~ e~ '7/3
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Quéod Mass Spectrunn on .,

N M2 branes on DCF:  ds?, = H™5(7)ds? + H3 (7)ds? ¢

Cvetic, Gibbons, |
: — N g (No fractional Lu, Pope,
/: "‘GZL 1 (T) L G'l 0 M -branes ! CMP232(2003)
) 4

Chern-Simons: N=2 superconformal U(N), x U(N)_,

FEP12(2000)

W = & (B1A) + BaAs) + @2 (A1 By + A2 Bs)
: ; ) . @ ﬁﬁ
+ 1 tr(djf — &;) +5(q5-'f + &3) 1 CO OD 2

Glueballs: e~ p?/s

Agd(T,y) = —m>H(7)d(T,y)



SUMMATY)

Laplacian on generalized DCF in SO(d) covariant variables
Computation of mass spectrum for glueballs with flavor charges
[nvolves solving coupled ODE’s

Mixing is due to the absence of U(1)z symmetry on DCF

For generic glueballs, many dual operators acquire a VEV

No time to cover:

Green's functions: Backreation when mobile D3’s are added

Future:

Glueballs with different Lorentz spin; not only minimal scalar



