Glueballs and Conifolds

(Green's Functions and Non-Singlet Glueballs on Deformed Conifolds)

based on work with 1. Klebanov, J. Lin, S. Pufu, hep-th/1009.2763

Plan for this TalkGeneral motivation:

- Wanted: Description of strongly coupled QCD
- Strategy: AdS/CFT correspondence
- D-branes at conical singularities to reduce SUSY
(1) What is the Conifold?
(2) Review AdS/CFT on the Conifold
(3) What are Glueballs?

4. Glueball spectrum on Conifolds

Deformed $\mathrm{AdS}_{5} \times T^{1,1}$
Deformed AdS ${ }_{4} \times V_{5,2}$

What is the Conifold?

Undeformed Conifold - Deformed Conifold - Generalized Conifold.

The Conifold

" "A" Conifold (CF): Manifold with isolated conical singularities.

- "The" CF: $(2 d-2)_{R}$ dimensional complex curve in \mathbb{C}^{d} defined by

$$
z_{1}^{2}+z_{2}^{2}+\ldots+z_{d}^{2}=0 \quad z_{i} \in \mathbb{C}
$$

Topology: The CF is a cone :-)

$$
z_{i} \rightarrow t z_{i} \quad t \in \mathbb{R}^{+}
$$

Symmetry: $S O(d) \times U(1)$

$$
z_{i}=R_{i j} z_{j} \quad z_{i}=e^{i \alpha} z_{i}
$$

- Geometry: The CF is a non-compact Calabi-Yau manifold

$$
d s_{\mathrm{CF}}^{2}=\partial_{i} \bar{\partial}_{j} \mathcal{F}(z, \bar{z}) d z^{i} d \bar{z}^{j} \quad R_{i \bar{\jmath}}=0
$$

Slices of the Conifold: $V_{d z}$

Slice Σ_{r} : Intersect the CF with a sphere of radius r

$$
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\ldots+\left|z_{d}\right|^{2}=r^{2}
$$

- Stiefel manifold:

Write $\vec{z}=\left(z_{1}, \ldots, z_{d}\right)=\vec{u}+i \vec{v}$
then $\vec{u} \cdot \vec{v}=0, \quad \vec{u}^{2}=\vec{v}^{2}=\frac{1}{2} r^{2}$

Σ_{r} is the "set of all orthonormal 2-frames in d-dimensions $V_{d, 2}$ "

- Coset: Σ_{r} is also the "coset $S O(d) / S O(d-2)$ " Rotate $\vec{z}_{0}=\frac{r}{\sqrt{2}}(1, i, 0 \ldots, 0)$ to any point in Σ_{r}

Radius and "angles": $d s_{\mathrm{CF}}^{2}=d r^{2}+r^{2} d s_{\Sigma_{r}}^{2}$

$$
\Sigma_{r} \sim V_{d, 2} \sim \mathrm{SO}(d) / \mathrm{SO}(d-2) \sim S^{d-2} \star S^{d-1}
$$

The Deformed Conifold

"The DCF": $(2 d-2)_{R}$ dimensional complex curve in \mathbb{C}^{d} defined by

$$
z_{1}^{2}+z_{2}^{2}+\ldots+z_{d}^{2}=\sum_{\substack{\epsilon^{2} \\ \epsilon_{w} \\ \text {, } \\ \hline}} \quad \epsilon \in \mathbb{R}^{+}
$$

Deformation: The DCF is a not a cone:-(

- $U(1)$ is broken to Z_{2}
- Tip is blown up to $(d-1)$-sphere of radius $\sim \varepsilon$

$$
\vec{u} \cdot \vec{v}=0, \quad \vec{u}^{2}=\frac{1}{2}\left(r^{2}+\epsilon^{2}\right), \quad \vec{v}^{2}=\frac{1}{2}\left(r^{2}-\epsilon^{2}\right)
$$

- Parametrization: "Radius" τ and "angles" $y_{i} \quad \mathrm{DCF}=\mathbb{R}_{\tau} \times \Sigma_{\tau}$

$$
z_{i}=\frac{\epsilon}{\sqrt{2}}\left(e^{\tau / 2} y_{i}+e^{-\tau / 2} \bar{y}_{i}\right)
$$

$$
\text { with } \sum_{i} y_{i}^{2}=0, \quad \sum_{i}\left|y_{i}\right|^{2}=1, \quad \sum_{i}\left|z_{i}\right|^{2}=\epsilon^{2} \cosh \tau
$$

Each slice Σ_{τ} of the DCF looks like a slice Σ_{r} of the undeformed CF!

The Deformed Conifold

If the DCF is not a cone - what is it?
Write again as real and imaginary parts $y_{i}=\frac{1}{\sqrt{2}}\left(u_{i}+i v_{i}\right)$

$$
z_{i}=\frac{\epsilon}{\sqrt{2}}\left(e^{\tau / 2} y_{i}+e^{-\tau / 2} \bar{y}_{i}\right)=\epsilon\left(u_{i} \cosh \frac{\tau}{2}+i v_{i} \sinh \frac{\tau}{2}\right)
$$

and deform this smoothly into $z_{i} \dot{\sim} u_{i}+i \tau v_{i}$

The DCF is homeomorphic to the "tangent bundle to a d-sphere"
\rightarrow Stenzel space

The Deformed Conifold

Slices: $\quad \Sigma_{\tau=0} \sim V_{d, 1} \sim \mathrm{SO}(d) / \mathrm{SO}(d-1) \sim S^{d-1}$

$$
\Sigma_{\tau>0} \sim V_{d, 2} \sim \mathrm{SO}(d) / \mathrm{SO}(d-2) \sim S^{d-2} \star S^{d-1}
$$

Ricci-flat metric: $\quad \mathcal{F}^{\prime}(\tau)=\epsilon^{2}\left[\frac{d-2}{\epsilon^{2}} \int_{0}^{\tau}(\sinh \xi)^{d-2} d \xi\right]^{\frac{1}{d-1}}\left[\begin{array}{c}\text { Cvetic, } \\ \text { Giblons, } \\ \text { Lii, Pope } \\ \text { CMP232(2003) })\end{array}\right]$

$$
\begin{aligned}
d s_{\mathrm{DCF}}^{2}= & \frac{1}{4} \mathcal{F}^{\prime \prime} d \tau^{2}+\mathcal{F}^{\prime} \operatorname{coth} \tau d y_{i} d \bar{y}_{i} \\
& +\frac{1}{2} \mathcal{F}^{\prime} \operatorname{csch} \tau\left(d y_{i} d y_{i}+d \bar{y}_{i} d \bar{y}_{i}\right)+\left(\mathcal{F}^{\prime \prime}-\mathcal{F}^{\prime} \operatorname{coth} \tau\right) y_{i} d \bar{y}_{i} \bar{y}_{j} d y_{j}
\end{aligned}
$$

Applications:

$$
\begin{array}{lll}
d=3 & 2 d-2=4 & \text { "ordinary" gravity } \\
d=4 & 2 d-2=6 & \text { D3 branes } \\
d=5 & 2 d-2=8 & \text { M2 branes }
\end{array}
$$

Review of AdS/CET on Conifold
Focus on $d=4$ - Undeformed Conifold - KlebanovWitten Theory - Add fractional branes - Backreaction - Deformed Conifold - Klebanov-Strassler Theory Cascading Gauge Theory.

O-branes on Conifolds - Supergravity Solutions

- N D3 branes on CF:

$$
d s_{10}^{2}=H^{-\frac{1}{2}}(r) d s_{4}^{2}+H^{\frac{1}{2}}(r) d s_{\mathrm{CF}}^{2}
$$

with fluxes $\int_{T^{1,1}} F_{5}=N \quad \int_{S^{3}} F_{3}=0$

\rightarrow Add M D5 wrapped over 2-Cycle \rightarrow Collapse to Tip, Backreaction $\left[\begin{array}{c}\text { Klebanov, } \\ \text { Nekrasov } \\ \text { NPB574(2000) }\end{array}\right]\left[\begin{array}{c}\text { Klebanov, } \\ \text { Tseytlin } \\ \text { NPB578(2000) }\end{array}\right][$

N integer D3 \& M fractional D3 on DCF:

$$
\begin{aligned}
& d s_{10}^{2}=H^{-\frac{1}{2}}(\tau) d s_{4}^{2}+H^{\frac{1}{2}}(\tau) d s_{\mathrm{DCF}}^{2} \\
& \text { with fluxes } \int_{T^{1,1}} F_{5}=N_{\mathrm{eff}}(\tau) \quad \int_{S^{3}} F_{3}=M
\end{aligned}
$$

Dual Gange Theories

- CF \leftrightarrow Klebanov-Witten Theory:
$\mathcal{N}=1$ superconformal $S U(N) \times S U(N)$ gauge theory in 4 dimension
chiral matter

$\left(A_{i}\right)^{a}{ }_{\hat{b}}$	$(\mathbf{N}, \overline{\mathbf{N}})$	$(\mathbf{2}, \mathbf{1})$	$\frac{1}{2}$	+1	1	$\frac{3}{4}$
$\left(B_{j}\right)^{\hat{a}}{ }_{b}$	$(\overline{\mathbf{N}}, \mathbf{N})$	$(\mathbf{1}, \mathbf{2})$	$\frac{1}{2}$	-1	1	$\frac{3}{4}$

Superpotential: $h \int d^{4} x d^{2} \theta \epsilon^{i j} \epsilon^{k l} \operatorname{tr} A_{i} B_{k} A_{j} B_{l} \quad$ (unrenormalizable)
DCF \leftrightarrow Klebanov-Strassler Theory:
$\mathcal{N}=1$ susy, non-conformal $S U(N+M) \times S U(N)$ gange theory in $4 d$, Confinement, chiral symmetry breaking, cascading RG flow

What are Glueballs?

Glueballs in QCD - Glueballs in Klebanov-Strassler Theory - Glueball Masses from Supergravity.

What are Glueballs?

Bound states of gluons
Created by $\operatorname{tr} F^{\mu \nu} F^{\rho \sigma}, \operatorname{tr} F^{\mu \nu} D^{\kappa} F^{\rho \sigma}, \operatorname{tr} F^{\mu \nu}\left[F^{\rho \sigma}, F^{\kappa \tau}\right] \ldots$

- Very non-perturbative: Large dynamically generated mass

Parity

- Quantum numbers:

$$
\begin{array}{lcc}
S=\operatorname{tr} F_{\mu \nu} F^{\mu \nu} & (0,0) & 0^{++} \\
P=\operatorname{tr} \tilde{F}_{\mu \nu} F^{\mu \nu} & (0,0) & 0^{-+} \\
T_{\alpha \beta}=\operatorname{tr} F_{\alpha \mu} F^{\mu}{ }_{\beta}-\frac{1}{4} g_{\alpha \beta} S & (1,1) & 0^{++}, 1^{-+}, 2^{++}
\end{array}
$$

Hard to idenfity: Mix with mesons $\bar{q} \Gamma q$ and hybrids $\bar{q} \Gamma F^{\mu \nu} q$.

Approaches to the Glueball Moss Spectrim

- Lattice QCD
- Bag model
- Potential model
- Instanton gas model

QCD sum rules

- Duality OZI models :
- Gauge/Gravity duality

Glueball masses from Supergravity
Gauge theory side:
The bound state masses m_{i} can be read off from the poles of $2 p t$ ftns

$$
\langle\mathcal{O}(k) \mathcal{O}(-k)\rangle \sim \sum_{i} \frac{c_{i}}{k^{2}+m_{i}^{2}}+\text { less singular terms }
$$

- String theory side:

Such poles corresponds to normalizable solution to the linearized SUGRA e.o.m. for the bulk field Φ dual to the operator \mathcal{O}

Simplest example: $\quad \square_{10} \Phi(x, \tau, y)=0$
Ansatz $\quad \Phi(x, \tau, y)=e^{i k \cdot x} \phi(\tau, y)$
$\stackrel{\Delta_{6} \phi(\tau, y)=-m^{2} H(\tau) \phi(\tau, y)}{ }$

$$
m^{2}=-k_{\mu} k^{\mu}
$$

Glueballs on the Conifold

What had been done?

- Scalar, vector, tensor glueballs
- Only SO(4)-flavor-singlets
- Decoupling of sugra equations
What have we done?
Minimally coupled scalar: traceless part of metric
- Spin-2 glueballs
(also: Green's functions)
- Non-trivial SO(4)-flavor quantum numbers
\therefore in $4 d$ (10 d sugra, $V_{4,2}=T^{1,1}$) and $3 d$ (11 d sugra, $V_{5,2}$)

$$
\operatorname{tr}\left(T_{\alpha \beta} A_{1} B_{1} B_{2}^{\dagger} \ldots \ldots \ldots\right)
$$

Gueball Spectrum on Conifolds

Our Computation - Coordinates and Laplacian Prediagonalization using Group Theory - Example Results.

Laplacian on the Generalized Deformed Conifold

$$
\Delta_{2 d-2}=\mathcal{T}+g_{\mathcal{C}}(\tau) \mathcal{C}+g_{\mathcal{R}}(\tau) \mathcal{R}+g_{\mathcal{L}}(\tau) \mathcal{L}
$$

with

$$
\begin{aligned}
\mathcal{T} & =\frac{4}{\mathcal{F}^{\prime \prime} \mathcal{F}^{\prime d-2}} \partial_{\tau}\left(\mathcal{F}^{\prime d-2} \partial_{\tau}\right) \\
\mathcal{C} & =y_{i} y_{j} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}+\left(\bar{y}_{i} y_{j}-\delta_{i j} y_{k} \bar{y}_{k}\right) \frac{\partial^{2}}{\partial y_{i} \partial \bar{y}_{j}}+(d-1) y_{i} \frac{\partial}{\partial y_{i}}+\text { c.c. } \\
\mathcal{R} & =\left(y_{i} \frac{\partial}{\partial y_{i}}-\bar{y}_{i} \frac{\partial}{\partial \bar{y}_{i}}\right)\left(y_{j} \frac{\partial}{\partial y_{j}}-\bar{y}_{j} \frac{\partial}{\partial \bar{y}_{j}}\right) \\
\mathcal{L} & =\frac{1}{2}\left(\bar{y}_{i} y_{j}+y_{i} \bar{y}_{j}-\delta_{i j} y_{k} \bar{y}_{k}\right) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}+\frac{d-2}{2} \bar{y}_{i} \frac{\partial}{\partial y_{i}}+\text { c.c. }
\end{aligned}
$$

and
$g_{\mathcal{C}}(\tau)=-\frac{2 \operatorname{coth} \tau}{\mathcal{F}^{\prime}} \quad g_{\mathcal{R}}(\tau)=-\frac{1}{\mathcal{F}^{\prime \prime}}+\frac{2 \operatorname{coth} \tau}{\mathcal{F}^{\prime}} \quad g_{\mathcal{L}}(\tau)=\frac{4 \operatorname{csch} \tau}{\mathcal{F}^{\prime}}$

Basis of Functions on the gen. $D C F$

$S O(d)$ acts on each slice $\Sigma_{\tau} \simeq V_{d, 2}$ - without mixing different slices.
Expand wave function as

$$
\phi\left(\tau, y_{i}, \bar{y}_{i}\right)=\sum_{\alpha} f_{\alpha}(\tau) F_{\alpha}\left(y_{i}, \bar{y}_{i}\right)
$$

where $F_{\alpha}\left(y_{i}, \bar{y}_{i}\right) \in L^{2}\left(\Sigma_{\tau}\right)$ is a square integrable function on Σ_{τ}
$L^{2}\left(\Sigma_{\tau} \cong \frac{\mathrm{SO}(d)}{\operatorname{SO}(d-2)}\right)$ decomposes into irreps of $\mathrm{SO}(d)$, but...

1) Which $S O(d)$ representations occur?
2) How many times does a given $S O(d)$ irrep occur?

Range of α
3) How do the basis functions in those irreps look?
4) How do the operators in the Laplacian act onto these functions?

1) Which $S O(d)$ representations occur?

Build SO(d) reps from tensor products of $n y$'s and $\bar{n} \bar{y}$'s:

$$
F\left(y_{i}, \bar{y}_{i}\right)=M_{i_{1} i_{2} \cdots i_{n}}^{j_{1} j_{2} \cdots j_{\bar{n}}} y_{i_{1}} y_{i_{2}} \cdots y_{i_{n}} \bar{y}_{j_{1}} \bar{y}_{j_{2}} \cdots \bar{y}_{j_{\bar{n}}}
$$

The matrix $M_{i_{1} \ldots}^{j_{1} \ldots}$ is a representation of $S O(d)$ (in gen. reducible) Don't overcount, note: $\quad \sum_{i} y_{i}^{2}=0 \quad \sum_{i} \bar{y}_{i}^{2}=0 \quad \sum_{i}\left|y_{i}\right|^{2}=1$ $M_{i_{1} \ldots}^{j_{1} \ldots}$ is symmetric in i's, symmetric in j's, traceless in ANY pair
\rightarrow At degree $n+\bar{n}$, the only possible representations are (p, q) :

| q boxes | | |
| :---: | :---: | :---: | :---: |
| q boxes | | |

$$
p+q=n+\bar{n}
$$

2) How many times does (p, q) occur?

Fill the Young tableau with y 's and \bar{y} 's
p boxes

Possible number of y 's in the $p-q$ extra boxes: $0,1, \ldots, p-q$.
\rightarrow The representation (p, q) occurs $p-q+1$ times.

Examples: $\quad 2 \times(1,0) \quad y_{i}, \bar{y}_{i}$

$$
\begin{array}{ll}
3 \times(2,0) & y_{i} y_{j}, y_{i} \bar{y}_{j}-\delta_{i j}, \bar{y}_{i} \bar{y}_{j} \\
1 \times(1,1) & y_{i} \bar{y}_{j}-y_{j} \bar{y}_{i}
\end{array}
$$

3) What do the basis functions look like?

The $p-q+1$ highest weight states in the irreps (p, q) are

$$
F_{p, q, \tilde{m}}=\sqrt{\binom{p-q}{\frac{p-q}{2}-\tilde{m}}}\left(y_{2}+i y_{3}\right)^{\frac{p-q}{2}+\tilde{m}}\left(\bar{y}_{2}+i \bar{y}_{3}\right)^{\frac{p-q}{2}-\tilde{m}} .
$$

The possible mixing is reduced to

$$
\phi\left(\tau, y_{i}, \bar{y}_{i}\right)=\sum_{\tilde{m}} f_{\tilde{m}}(\tau) F_{p, q, \tilde{m}}\left(y_{i}, \bar{y}_{i}\right)
$$

4) How does the Laplacian act?

 Introduce some operators: $\left[\begin{array}{c}\text { Gelbart, } \\ \text { TAMS192(1974) }\end{array}\right]\left[\begin{array}{c}\text { Strichartz, } \\ \text { CJM27(1975) }\end{array}\right]$Measure \tilde{m}
Define ladder operators

$$
\tilde{J}_{3}=\frac{1}{2}\left(y_{i} \partial_{i}-\bar{y}_{i} \bar{\partial}_{i}\right)
$$

$$
\begin{equation*}
\tilde{J}_{+}=y_{i} \bar{\partial}_{i} \quad \tilde{J}_{-}=\bar{y}_{i} \partial_{i} \tag{2}
\end{equation*}
$$

Measure degree $n+\bar{n}$
$N=y_{i} \partial_{i}+\bar{y}_{i} \bar{\partial}_{i}$
Obs: These generators do NOT correspond to isometries of the DCF!

But it turns out that the bits in the Laplacian can be written as

$$
\begin{aligned}
& \mathcal{C}=p(p+d-2)+q(q+d-4) \\
& \mathcal{R}=4 \tilde{J}_{3}^{2} \\
& \mathcal{L}=\tilde{J}_{+}\left(\frac{1}{2} N-\tilde{J}_{3}\right)+\tilde{J}_{-}\left(\frac{1}{2} N+\tilde{J}_{3}\right)
\end{aligned}
$$

Glueball Example

Take $(p, q)=(2,0) \quad$ then $\tilde{m}=-1,0,+1$

$$
\begin{aligned}
\phi\left(\tau, y_{i}, \bar{y}_{i}\right)= & f_{1}(\tau)\left(y_{1}+i y_{2}\right)^{2} \\
& +f_{0}(\tau)\left(y_{1}+i y_{2}\right)\left(\bar{y}_{1}+i \bar{y}_{2}\right) \\
& +f_{-1}(\tau)\left(\bar{y}_{1}+i \bar{y}_{2}\right)^{2}
\end{aligned}
$$

Because $\mathbb{Z}_{2}: y_{i} \leftrightarrow \bar{y}_{i}$ is a symmetry, there is a further decoupling.
Even: $f_{1}^{+}=f_{1}+f_{-1}, f_{0}^{+}=f_{0}$

$$
\mathcal{T}\binom{f_{1}^{+}}{f_{0}^{+}}+\left(\begin{array}{cc}
8 g_{\mathcal{C}}+4 g_{\mathcal{R}}+m^{2} H & 2 \sqrt{2} g_{\mathcal{L}} \\
2 \sqrt{2} g_{\mathcal{L}} & 8 g_{\mathcal{C}}+m^{2} H
\end{array}\right)\binom{f_{1}^{+}}{f_{0}^{+}}=0
$$

Odd: $f_{1}^{-}=f_{1}-f_{-1}$

$$
\mathcal{T} f_{1}^{-}+\left(8 g_{\mathcal{C}}+4 g_{\mathcal{R}}+m^{2} H\right) f_{1}^{-}=0
$$

Glueball Example

Solve the (system of) ordinary differential equations by shooting method.

Even: Normalizable solutions for Large τ asymptotics

$$
\begin{aligned}
& m^{2}=3.87,6.08,6.34,8.94,9.3, \ldots \\
& F_{1}^{+}(y, \bar{y}) \rightarrow \operatorname{tr} T_{\alpha \beta}\left[\left(A_{1} B_{1}\right)^{2}+\left(B_{2}^{\dagger} A_{2}^{\dagger}\right)^{2}\right] \\
& F_{0}^{+}(y, \bar{y}) \rightarrow \operatorname{tr} T_{\alpha \beta} A_{1} B_{1} B_{2}^{\dagger} A_{2}^{\dagger}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}^{+}(\tau) \sim e^{-7 \tau / 3} \\
& f_{0}^{+}(\tau) \sim e^{-2(1+\sqrt{7}) \tau / 3}
\end{aligned}
$$

Odd: Normalizable solutions for Large τ asymptotics

$$
\begin{aligned}
& m^{2}=4.88,7.47,10.58,14.23,18.41, \ldots \\
& F_{-1}^{+}(y, \bar{y}) \rightarrow \operatorname{tr} T_{\alpha \beta}\left[\left(A_{1} B_{1}\right)^{2}-\left(B_{2}^{\dagger} A_{2}^{\dagger}\right)^{2}\right] \quad f_{-1}^{+}(\tau) \sim e^{-7 \tau / 3}
\end{aligned}
$$

Glueball Mass Spectrum on $T^{1.1}$

$S O(4)=S U(2)_{L} \times S U(2)_{R}$ representations $\left[j_{L} j_{R}\right]$

Glueball Mass Spectrum on V_{52}

N M2 branes on DCF: $\quad d s_{11}^{2}=H^{-\frac{2}{3}}(\tau) d s_{4}^{2}+H^{\frac{1}{3}}(\tau) d s_{\mathrm{DCF}}^{2}$

$$
\int_{\Sigma_{\tau}} * G_{4}=N(\tau) \quad \int_{S^{4}} G_{4}=0 \quad\binom{\text { No fractional }}{M-b r a n e s!}
$$

Chern-Simons: $\mathcal{N}=2$ superconformal $U(N)_{1} \times U(N)_{-1}$

$$
\begin{aligned}
W= & \Phi_{1}\left(B_{1} A_{1}+B_{2} A_{2}\right)+\Phi_{2}\left(A_{1} B_{1}+A_{2} B_{2}\right) \\
& +\mu \operatorname{tr}\left(\Phi_{1}^{2}-\Phi_{2}^{2}\right)+s\left(\Phi_{1}^{3}+\Phi_{2}^{3}\right)
\end{aligned}
$$

Glueballs: $\quad \epsilon^{2} \sim \mu^{2} / s$

$$
\Delta_{8} \phi(\tau, y)=-m^{2} H(\tau) \phi(\tau, y)
$$

Summary

- Laplacian on generalized DCF in SO(d) covariant variablesComputation of mass spectrum for glueballs with flavor chargesInvolves solving coupled ODE'sMixing is due to the absence of $U(1)_{R}$ symmetry on DCFFor generic glueballs, many dual operators acquire a VEVNo time to cover:
Green's functions: Backreation when mobile D3's are addedFuture:
Glueballs with different Lorentz spin; not only minimal scalar

