On the $(29,5)$-arcs in $P G(2,7)$ and linear codes

Eun Ju Cheon
Joint work with Sun Ok Jung, Seon Jeong Kim

Department of Mathematics and RINS
Gyeongsang National University, Korea
November 15-17, 2012 KIAS

Projective Geometry

Let \mathbb{F}_{q} be the finite field of q elements.
Let \mathbb{F}_{q}^{3} be the 3-dimensional vector space over \mathbb{F}_{q}.
Let $P G(2, q)$ be the set of all lines through the origin of \mathbb{F}_{q}^{3} over \mathbb{F}_{q}, that is,

$$
\mathbb{F}_{q}^{3} \backslash\{(0,0,0)\} / \sim
$$

where $(a, b, c) \sim(x, y, z) \Longleftrightarrow(a, b, c)=\lambda(x, y, z)$, for some $\lambda \neq 0$ and $\lambda \in \mathbb{F}_{q}$.
$P G(2, q)$ is called a projective plane over \mathbb{F}_{q}.
Let θ_{2} denote the number of all points in $\operatorname{PG}(2, q)$, i.e.,

$$
\theta_{2}:=\frac{q^{3}-1}{q-1}=q^{2}+q+1
$$

We note that the linear equation

$$
a x+b y+c z=0, \quad a, b, c \in \mathbb{F}_{q}, \quad(a, b, c) \neq(0,0,0)
$$

corresponds to a line ℓ in $P G(2, q)$, simply denoted $\ell=[a, b, c]$.

Lemma

The following are known basic properties of $\operatorname{PG}(2, q)$;

- The number of points in $P G(2, q)=\theta_{2}=q^{2}+q+1$.
- The number of lines in $P G(2, q)=\theta_{2}=q^{2}+q+1$.
- There are $q+1$ points on any line in $P G(2, q)$.
- There are $q+1$ lines through a point in $P G(2, q)$.

Arcs

Definition. An $(n, r)_{q}$-arc
An $(n, r)_{q}$-arc is a set \mathcal{K} of n points of $P G(2, q)$ such that some r but no $r+1$ of them, are collinear, i.e., $|\mathcal{K} \cap \ell| \leq r$ for any line ℓ and $|\mathcal{K} \cap \ell|=r$ for some ℓ in $P G(2, q)$.

Example

(1) Let C be a conic in $P G(2, q)$. Then $|C|=q+1$ and for any line ℓ, we have $|C \cap \ell|=0$ or 1 or 2 . Thus C is a $(q+1,2)_{q}$-arc in

(2) Let $\mathcal{T}=P G(2, q) \backslash \ell_{0}$, where ℓ_{0} is a line in $P G(2, q)$. For any line ℓ in $P G(2, q)$, we have $|\mathcal{T} \cap \ell|=0$ or q.

Thus \mathcal{T} is a $\left(q^{2}, q\right)_{q}$-arc in $P G(2, q)$.

For an $(n, r)_{q}$-arc \mathcal{K}, i-line or i-secant is a line meeting \mathcal{K} in exactly i points. Define a_{i} as the number of i-lines to \mathcal{K}.

Note that $a_{i}=0$ for $i \geq r+1$.
The $(r+1)$-tuple $\left(a_{0}, a_{1}, \ldots, a_{r}\right)$ is called the spectrum of the arc \mathcal{K}.

Note that an arc can be considered as a blocking set.
Definition. A t-fold blocking set
A t-fold blocking set of size m is the complement of
a $\left(\theta_{2}-m, q+1-t\right)_{q}$-arc in $P G(2, q)$.

The value of $m_{r}(2, q)$

Let $m_{r}(2, q)$ denote the largest n for which there exists an $(n, r)_{q}$-arc for given r and q.

An interesting problem in the projective geometry is to determine the exact values of $m_{r}(2, q)$. Obviously, we have the bound for $m_{r}(2, q)$;

$$
m_{r}(2, q) \leq(r-1) q+r .
$$

We can easily see the following;
(1) For $r=1$, the value $m_{1}(2, q)=1$ and the arc is a point set.
(2) For $r=q$, the value $m_{q}(2, q)=q^{2}$ and the arc is the complement of a line ℓ_{0}, i.e., $P G(2, q) \backslash \ell_{0}$.
(3) For $r=q+1$, the value $m_{q+1}(2, q)=q^{2}+q+1$ and the arc is the entire projective plane.

A few values of $m_{r}(2, q),(2 \leq r \leq q-1)$ are known in general q.

Theorem A. Bose (1947): On the values of $m_{2}(2, q)$
We have

$$
m_{2}(2, q)= \begin{cases}q+1, & q \text { odd } \\ q+2, & q \text { even }\end{cases}
$$

Theorem B. Barlotti (1965) and Ball(1996)
For q odd prime, we have

$$
m_{r}(2, q)=(r-1) q+1 \quad \text { for } \quad r=\frac{q+1}{2} \quad \text { or } \quad r=\frac{q+3}{2} .
$$

Theorem C. Denniston (1969)
For q even, we have

$$
m_{r}(2, q)=(r-1) q+r \quad \text { for } \quad r=2^{e} \leq q
$$

The values of $m_{r}(2, q)$

The value of $m_{r}(2, q)$ is known for $3 \leq q \leq 9$ but it is still open for $q \geq 11$.

Values of $m_{r}(2, q)$ for $q \leq 13$.

r / q	3	4	5	7	8	9	11	13	\cdots
2	4	6	6	8	10	10	12	14	\cdots
3		9	11	15	15	17	21	23	
4			16	22	28	28	32	$38-40$	
5				29	33	37	$43-45$	$49-53$	
6				36	42	48	56	$64-66$	
7					49	55	67	79	
8						65	78	92	
9							$89-90$	105	
10							$100-102$	$118-119$	

On $\left(m_{r}(2, q), r\right)_{q}$-arcs

Consider the classification of $\left(m_{r}(2, q), r\right)_{q}$-arcs.
Segre (1950's) : The largest arcs

- For q odd, every $(q+1,2)_{q}$-arc is a conic.
- For q even, $(q+2,2)_{q}$-arc is a conic and its nucleus with $q=2,4,8$.

For $q \geq 2^{n}(n \geq 4)$, there are non-equivalent $(q+2,2)_{q}$-arcs other than a conic and its nucleus.

Conic

A conic in $P G(2, q)$ is a curve C with homogeneous quadratic equation in 3 variables, for example $x^{2}=y z$ or $x^{2}+y^{2}=z^{2}$. Note that

$$
|C|=q+1
$$

For any line ℓ, we have one of the following;

$$
|C \cap \ell|=0 \quad \text { or } 1 \quad \text { or } 2 .
$$

Here we call the line ℓ external or tangent or secant to the C.
A point P in $P G(2, q)$ is called external or internal point to the C if P lies on two or no tangent lines of C.
Let $\mathcal{I}(C)$ denote the set of all internal points of C and $\mathcal{E}(C)$ the set of all external points of C. Then we have

$$
\begin{aligned}
|\mathcal{I}(C)| & =\frac{q(q-1)}{2} \\
|\mathcal{E}(C)| & =\frac{q(q+1)}{2}
\end{aligned}
$$

Construction of largest arcs in $\operatorname{PG}(2, q)$

There are some largest arcs with nice geometric descriptions which are given by Barlotti (1965);

Theorem 1. Barlotti Construction (1965)
For q odd, let C be a conic in $P G(2, q)$.
(1) The following set \mathcal{K} is a $\left(\frac{q^{2}-q+2}{2}, \frac{q+1}{2}\right)_{q}$-arc;

$$
\mathcal{K}=\mathcal{I}(C) \cup\{P\}, \quad \text { where } \quad P \in C
$$

(2) The following set \mathcal{K} is a $\left(\frac{q^{2}+q+2}{2}, \frac{q+3}{2}\right)_{q}$-arc;

$$
\mathcal{K}=\mathcal{I}(C) \cup C
$$

The numbers of non-equivalent largest arcs

The following shows the number of non-equivalent largest arcs.

r / q	3		4		5		7		8	
2	4	1	6	1	6	1	8	1	10	1

Classification of the largest arcs in $P G(2,7)$

For $q=7$, we note that $m_{2}(2,7)=8, \quad m_{3}(2,7)=15$,

$$
m_{4}(2,7)=22, \quad m_{5}(2,7)=29, \quad m_{6}(2,7)=36
$$

Lemma. The classification of the largest arcs in $P G(2,7)$
(1) For $r=2$, the $(8,2)_{7}$-arc is unique and it is a conic.
(2) For $r=3$, the $(15,3)_{7}$-arc is unique and it is proved by Marcugini, Milani and Pambianco in 2004.

Classification of the $(n, 3)$-arcs in $P G(2,7)$.
(3) For $r=4$, there are three non-equivalent $(22,4)_{7}$-arcs which are classified by Hill and Love in 2003.

On the $(22,4)_{7}$-arcs in $P G(2,7)$ and related codes.

Now we consider when $r=5$, that is, $(29,5)_{7}$-arcs.

The $(29,5)_{7}$-arcs

We give some constructions of the $(29,5)_{7}$-arcs by giving their geometrical descriptions.

Case 1.

Let \mathcal{K} be the union of tangent lines of a conic C except C. Then \mathcal{K} is a $(29,5)_{7}$-arc with the spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=$ ($0,8,0,0,21,28$).

Case 1 is same as the arc consisting of a conic and its internal set (Barlotti construction)

Case 2.

Let C be a conic with the equation; $x^{2}=y z$.

$$
\begin{aligned}
\mathcal{K} & =\mathcal{I}(C) \cup(C \backslash\{(4,2,1),(2,4,1),(6,1,1)\}) \\
& \cup\{(1,0,0),(4,0,1),(4,1,0)\}
\end{aligned}
$$

Then \mathcal{K} is a $(29,5)_{7}$-arc with the spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(3,2,0,6,18,28)$. Furthermore, the set $\{(4,2,1),(2,4,1),(6,1,1),(1,0,0),(4,0,1),(4,1,0)\} \quad$ is \quad a complete $(6,2)_{7}$-arc in $P G(2,7)$.

Case 3.

Let C be a conic with the equation; $x^{2}=y z$.

$$
\begin{aligned}
\mathcal{K} & =C \cup(\mathcal{I}(C) \backslash\{(1,2,1),(0,1,1),(4,4,1)\}) \\
& \cup\{(1,0,0),(4,0,1),(4,1,0)\}
\end{aligned}
$$

Then \mathcal{K} is a $(29,5)_{7}$-arc with the spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(0,5,3,9,6,34)$. Furthermore, the set $\{(1,2,1),(0,1,1),(4,4,1),(1,0,0),(4,0,1),(4,1,0)\} \quad$ is \quad a complete $(6,2)_{7}$-arc in $P G(2,7)$.

Next four arcs are constructed with the following four lines which are not concurrent. Let $\ell_{1}=[0,0,1], \ell_{2}=[0,1,0], \ell_{3}=[1,1,1]$ and $\ell_{4}=[2,4,1]$.

Let $\mathcal{L}=\bigcup_{i=1}^{4} \ell_{i}$. Then we have $|\mathcal{L}|=26$.
Note that a $(29,5)_{7}$-arcs is a 3 -fold blocking set of size 28.

Case 4.
Let $B=\bigcup_{i=1}^{4} \ell_{i} \cup\{(5,3,1),(3,6,1)\}$ and $\mathcal{K}=P G(2,7)-B$. Then \mathcal{K} is a $(29,5)_{7}$-arc with the spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=$ $(4,0,0,8,17,28)$.

Case 5.

Let $B=\bigcup_{i=1}^{4} \ell_{i} \cup\{(5,3,1),(1,3,1)\}$ and $\mathcal{K}=P G(2,7)-B$. Then \mathcal{K} is a $(29,5)_{7}$-arc with the spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=$ $(4,0,1,5,20,27)$.

Case 6.

Let $B=\bigcup_{i=1}^{4} \ell_{i} \backslash\{(1,1,1)\} \cup\{(5,3,1),(5,2,1),(2,2,1)\}$ with $(1,1,1) \in \ell_{4}$ and $\mathcal{K}=P G(2,7)-B$. Then \mathcal{K} is a $(29,5)_{7}$-arc with the spectrum $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(3,1,2,6,16,29)$.

Next we give seven other $(29,5)_{7}$-arcs in $P G(2,7)$.

Seven other cases

There are $(29,5)_{7}$-arcs with the spectrum
(1) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(3,1,3,3,19,28)$,
(2) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(3,1,1,9,13,30)$,
(3) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(3,0,3,9,11,31)$,
(4) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,3,2,4,17,29)$,
(5) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,2,4,4,15,30)$,
(6) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,2,2,10,9,32)$,
(7) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(2,1,5,7,10,32)$.

Arcs and Linear Codes

A projective $[n, 3, d]_{q}$ linear code is equivalent to an $(n, n-d)_{q}$-arc in $P G(2, q)$. For an $[n, 3, d]_{q}$ linear code, we have the following;

$$
n \geq d+\left\lceil\frac{d}{q}\right\rceil+\left\lceil\frac{d}{q^{2}}\right\rceil . \quad(\text { Griesmer bound })
$$

A code meeting the Griesmer bound is a length-optimal code.
We have the following;
(1) There are at least 13 non-equivalent $(29,5)_{7}$-arcs in $P G(2,7)$.
(2) $(29,5)_{7}$-arcs are $[29,3,24]_{7}$ linear codes which meet the Griesmer bound.
(3) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ gives weight enumerator and there are at least thirteen $[29,3,24]_{7}$ length optimal codes with different weight enumerators.

Arcs and Linear Codes

A projective $[n, 3, d]_{q}$ linear code is equivalent to an $(n, n-d)_{q}$-arc in $P G(2, q)$. For an $[n, 3, d]_{q}$ linear code, we have the following;

$$
n \geq d+\left\lceil\frac{d}{q}\right\rceil+\left\lceil\frac{d}{q^{2}}\right\rceil . \quad(\text { Griesmer bound })
$$

A code meeting the Griesmer bound is a length-optimal code.
We have the following;
(1) There are at least 13 non-equivalent $(29,5)_{7}$-arcs in $P G(2,7)$.
(2) $(29,5)_{7}$-arcs are $[29,3,24]_{7}$ linear codes which meet the Griesmer bound.
(3) $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ gives weight enumerator and there are at least thirteen $[29,3,24]_{7}$ length optimal codes with different weight enumerators.

References

[1] [1] S. Ball and J.W.P. Hirschfeld, Bounds on (n, r)-arcs and their application to linear codes, Finit fields and their applications, 11, 326-336, 2005
R [2] R.H.F. Denniston, Some maximal arcs in finite projective planes, Jounral of Combinatorial Theory, 6, 317-319, 1969
[3] R. Hill and C.P. Love On the $(22,4)$-arcs in $P G(2,7)$ and related codes, Discrete Mathematics, 266, 253-261, 2003.

圊 [4] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Clarendon Press Oxford, 1998.
(5] S. Marcugini, A. Milani and F. Pambianco, Classification of the ($n, 3$)-arcs in $P G(2,7)$. Jounral of Geometry, 80, 179-184, 2004.

