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Introduction

Projective Geometry

Let Fq be the finite field of q elements.
Let F3

q be the 3-dimensional vector space over Fq.
Let PG(2, q) be the set of all lines through the origin of F3

q over
Fq, that is,

F3
q \ {(0, 0, 0)}/ ∼,

where (a, b, c) ∼ (x, y, z)⇐⇒ (a, b, c) = λ(x, y, z), for some λ 6= 0
and λ ∈ Fq.
PG(2, q) is called a projective plane over Fq.
Let θ2 denote the number of all points in PG(2, q), i.e.,

θ2 :=
q3 − 1

q − 1
= q2 + q + 1.
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We note that the linear equation

ax+ by + cz = 0, a, b, c ∈ Fq, (a, b, c) 6= (0, 0, 0)

corresponds to a line ` in PG(2, q), simply denoted ` = [a, b, c].

Lemma

The following are known basic properties of PG(2, q);

The number of points in PG(2, q) = θ2 = q2 + q + 1.

The number of lines in PG(2, q) = θ2 = q2 + q + 1.

There are q + 1 points on any line in PG(2, q).

There are q + 1 lines through a point in PG(2, q).
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Arcs
Definition. An (n, r)q-arc

An (n, r)q-arc is a set K of n points of PG(2, q) such that some r
but no r + 1 of them, are collinear, i.e., |K ∩ `| ≤ r for any line `
and |K ∩ `| = r for some ` in PG(2, q).

Example

(1) Let C be a conic in PG(2, q). Then |C| = q + 1 and for any
line `, we have |C ∩ `| = 0 or 1 or 2. Thus C is a (q + 1, 2)q-arc in

PG(2, q).
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(2) Let T = PG(2, q) \ `0, where `0 is a line in PG(2, q).
For any line ` in PG(2, q), we have |T ∩ `| = 0 or q.

Thus T is a (q2, q)q-arc in PG(2, q).



Introduction

For an (n, r)q-arc K, i-line or i-secant is a line meeting K in
exactly i points. Define ai as the number of i-lines to K.

Note that ai = 0 for i ≥ r + 1.

The (r + 1)-tuple (a0, a1, . . . , ar) is called the spectrum of the arc
K.

Note that an arc can be considered as a blocking set.

Definition. A t-fold blocking set

A t-fold blocking set of size m is the complement of
a (θ2 −m, q + 1− t)q-arc in PG(2, q).
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The value of mr(2, q)

Let mr(2, q) denote the largest n for which there exists an
(n, r)q-arc for given r and q.

An interesting problem in the projective geometry is to determine
the exact values of mr(2, q). Obviously, we have the bound for
mr(2, q);

mr(2, q) ≤ (r − 1)q + r.

We can easily see the following;

1 For r = 1, the value m1(2, q) = 1 and the arc is a point set.

2 For r = q, the value mq(2, q) = q2 and the arc is the
complement of a line `0, i.e., PG(2, q) \ `0.

3 For r = q + 1, the value mq+1(2, q) = q2 + q + 1 and the arc
is the entire projective plane.

A few values of mr(2, q), (2 ≤ r ≤ q − 1) are known in general q.
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Theorem A. Bose (1947): On the values of m2(2, q)

We have

m2(2, q) =

{
q + 1, q odd,

q + 2, q even.

Theorem B. Barlotti (1965) and Ball(1996)

For q odd prime, we have

mr(2, q) = (r − 1)q + 1 for r =
q + 1

2
or r =

q + 3

2
.

Theorem C. Denniston (1969)

For q even, we have

mr(2, q) = (r − 1)q + r for r = 2e ≤ q.
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The values of mr(2, q)

The value of mr(2, q) is known for 3 ≤ q ≤ 9 but it is still open for
q ≥ 11.

Values of mr(2, q) for q ≤ 13.

r/q 3 4 5 7 8 9 11 13 · · ·
2 4 6 6 8 10 10 12 14 · · ·
3 9 11 15 15 17 21 23
4 16 22 28 28 32 38–40
5 29 33 37 43–45 49–53
6 36 42 48 56 64–66
7 49 55 67 79
8 65 78 92
9 89–90 105

10 100–102 118–119
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On (mr(2, q), r)q-arcs

Consider the classification of (mr(2, q), r)q-arcs.

Segre (1950’s) : The largest arcs

For q odd, every (q + 1, 2)q-arc is a conic.

For q even, (q + 2, 2)q-arc is a conic and its nucleus with
q = 2, 4, 8.

For q ≥ 2n(n ≥ 4), there are non-equivalent (q + 2, 2)q-arcs other
than a conic and its nucleus.
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Conic
A conic in PG(2, q) is a curve C with homogeneous quadratic
equation in 3 variables, for example x2 = yz or x2 + y2 = z2. Note
that

|C| = q + 1.

For any line `, we have one of the following;

|C ∩ `| = 0 or 1 or 2.

Here we call the line ` external or tangent or secant to the C.
A point P in PG(2, q) is called external or internal point to the C
if P lies on two or no tangent lines of C.
Let I(C) denote the set of all internal points of C and E(C) the
set of all external points of C. Then we have

|I(C)| = q(q − 1)

2
,

|E(C)| = q(q + 1)

2
.
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Construction of largest arcs in PG(2, q)

There are some largest arcs with nice geometric descriptions which
are given by Barlotti (1965);

Theorem 1. Barlotti Construction (1965)

For q odd, let C be a conic in PG(2, q).

(1) The following set K is a
(
q2−q+2

2 , q+1
2

)
q
-arc;

K = I(C) ∪ {P}, where P ∈ C.

(2) The following set K is a
(
q2+q+2

2 , q+3
2

)
q
-arc;

K = I(C) ∪ C.



Introduction

The numbers of non-equivalent largest arcs

The following shows the number of non-equivalent largest arcs.

r/q 3 4 5 7 8 9

2 4 1 6 1 6 1 8 1 10 1 10 1
3 9 3 11 2 15 1 15 19 17 4
4 16 6 22 3 28 1 28 ?
5 29 ?? 33 6 37 ?
6 36 ? 42 5 48 1
7 49 ? 55 ?
8 65 ?
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Classification of the largest arcs in PG(2, 7)

For q = 7, we note that m2(2, 7) = 8, m3(2, 7) = 15,
m4(2, 7) = 22, m5(2, 7) = 29, m6(2, 7) = 36.

Lemma. The classification of the largest arcs in PG(2, 7)

1 For r = 2, the (8, 2)7-arc is unique and it is a conic.

2 For r = 3, the (15, 3)7-arc is unique and it is proved by
Marcugini, Milani and Pambianco in 2004.

Classification of the (n, 3)-arcs in PG(2, 7).

3 For r = 4, there are three non-equivalent (22, 4)7-arcs which
are classified by Hill and Love in 2003.

On the (22, 4)7-arcs in PG(2, 7) and related codes.

Now we consider when r = 5, that is, (29, 5)7-arcs.



Introduction

The (29, 5)7-arcs
We give some constructions of the (29, 5)7-arcs by giving their
geometrical descriptions.

Case 1.

Let K be the union of tangent lines of a conic C except C.
Then K is a (29, 5)7-arc with the spectrum (a0, a1, a2, a3, a4, a5) =
(0, 8, 0, 0, 21, 28).

Case 1 is same as the arc consisting of a conic and its internal set
(Barlotti construction)
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Case 2.

Let C be a conic with the equation; x2 = yz.

K = I(C) ∪ (C \ {(4, 2, 1), (2, 4, 1), (6, 1, 1)})
∪ {(1, 0, 0), (4, 0, 1), (4, 1, 0)}.

Then K is a (29, 5)7-arc with the spectrum
(a0, a1, a2, a3, a4, a5) = (3, 2, 0, 6, 18, 28). Furthermore, the
set {(4, 2, 1), (2, 4, 1), (6, 1, 1), (1, 0, 0), (4, 0, 1), (4, 1, 0)} is a
complete (6, 2)7-arc in PG(2, 7).
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Case 3.

Let C be a conic with the equation; x2 = yz.

K = C ∪ (I(C) \ {(1, 2, 1), (0, 1, 1), (4, 4, 1)})
∪ {(1, 0, 0), (4, 0, 1), (4, 1, 0)}.

Then K is a (29, 5)7-arc with the spectrum
(a0, a1, a2, a3, a4, a5) = (0, 5, 3, 9, 6, 34). Furthermore, the
set {(1, 2, 1), (0, 1, 1), (4, 4, 1), (1, 0, 0), (4, 0, 1), (4, 1, 0)} is a
complete (6, 2)7-arc in PG(2, 7).
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Next four arcs are constructed with the following four lines which
are not concurrent. Let `1 = [0, 0, 1], `2 = [0, 1, 0], `3 = [1, 1, 1]
and `4 = [2, 4, 1].

Let L =
⋃4

i=1 `i. Then we have |L| = 26.
Note that a (29, 5)7-arcs is a 3-fold blocking set of size 28.
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Case 4.

Let B =
⋃4

i=1 `i ∪ {(5, 3, 1), (3, 6, 1)} and K = PG(2, 7) − B.
Then K is a (29, 5)7-arc with the spectrum (a0, a1, a2, a3, a4, a5) =
(4, 0, 0, 8, 17, 28).
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Case 5.

Let B =
⋃4

i=1 `i ∪ {(5, 3, 1), (1, 3, 1)} and K = PG(2, 7) − B.
Then K is a (29, 5)7-arc with the spectrum (a0, a1, a2, a3, a4, a5) =
(4, 0, 1, 5, 20, 27).
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Case 6.

Let B =
⋃4

i=1 `i \ {(1, 1, 1)} ∪ {(5, 3, 1), (5, 2, 1), (2, 2, 1)} with
(1, 1, 1) ∈ `4 and K = PG(2, 7) − B. Then K is a (29, 5)7-arc
with the spectrum (a0, a1, a2, a3, a4, a5) = (3, 1, 2, 6, 16, 29).
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Next we give seven other (29, 5)7-arcs in PG(2, 7).

Seven other cases

There are (29, 5)7-arcs with the spectrum

(1) (a0, a1, a2, a3, a4, a5) = (3, 1, 3, 3, 19, 28),

(2) (a0, a1, a2, a3, a4, a5) = (3, 1, 1, 9, 13, 30),

(3) (a0, a1, a2, a3, a4, a5) = (3, 0, 3, 9, 11, 31),

(4) (a0, a1, a2, a3, a4, a5) = (2, 3, 2, 4, 17, 29),

(5) (a0, a1, a2, a3, a4, a5) = (2, 2, 4, 4, 15, 30),

(6) (a0, a1, a2, a3, a4, a5) = (2, 2, 2, 10, 9, 32),

(7) (a0, a1, a2, a3, a4, a5) = (2, 1, 5, 7, 10, 32).
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Arcs and Linear Codes
A projective [n, 3, d]q linear code is equivalent to an (n, n− d)q-arc
in PG(2, q). For an [n, 3, d]q linear code, we have the following;

n ≥ d+
⌈
d

q

⌉
+

⌈
d

q2

⌉
. (Griesmer bound)

A code meeting the Griesmer bound is a length-optimal code.
We have the following;

(1) There are at least 13 non-equivalent (29, 5)7-arcs in PG(2, 7).

(2) (29, 5)7-arcs are [29, 3, 24]7 linear codes which meet the
Griesmer bound.

(3) (a0, a1, a2, a3, a4, a5) gives weight enumerator and there are at
least thirteen [29, 3, 24]7 length optimal codes with different
weight enumerators.

Thank you !!!
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