Homework

- Problem 1 - Top Observation paper from D-Zero

From all seven channels, we observed 17 events with an expected background of 3.8 ± 0.6 events (see Table II). Our measured cross section as a function of the top quark mass

- Calculate the probability that you will observe 17 events if the mean expected number of events is 3.8
- Calculate the cross section for integrated luminosity of $50 \mathrm{pb}^{-1}$, total efficiency times acceptance of $\epsilon \times A=4.1 \%$
- Calculate the statistical error on the cross section

Appendix

Averaging Measurements

- Best estimate of true value of x is

$$
\bar{x} \pm \frac{\sigma}{\sqrt{n}}
$$

- If we knew σ from some model or theory
- If σ is not known, we can take the square root of sample variance

Formal Derivation

- Calculate variance of f

$$
\sigma_{f}^{2}=\overline{f^{2}}-\bar{f}^{2}=\frac{1}{n} \sum_{i=1}^{i} f^{2}\left(x_{i}\right)-\left[\frac{1}{n} \sum_{i=1}^{i} f\left(x_{i}\right)\right]^{2}
$$

- Average of f

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{i} f\left(x_{i}\right)=\frac{1}{n} \sum_{i=1}^{i} f\left(\bar{x}+\delta_{x_{i}}\right)=\frac{1}{n} \sum_{i=1}^{i}\left[f(\bar{x})+\left.\frac{\partial f}{\partial x}\right|_{\bar{x}} \delta_{x_{i}}\right] \\
& \quad=f(\bar{x})
\end{aligned} \begin{aligned}
& \text { - } \delta_{x_{i}}=x_{i}-\bar{x} \\
& \text { - Assume that } \mathrm{f} \text { doesn't change too much over the range of values of } \mathrm{xi}
\end{aligned}
$$

- Average of f^{2}

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{i} f^{2}\left(x_{i}\right) & \approx \frac{1}{n} \sum_{i=1}^{i}\left[f(\bar{x})+\left.\frac{\partial f}{\partial x}\right|_{\bar{x}} \delta_{x_{i}}\right]^{2} \\
& =\frac{1}{n} \sum_{i=1}^{i} f^{2}(\bar{x})+\left.2 f(\bar{x}) \frac{\partial f}{\partial x}\right|_{\bar{x}} \delta_{x_{i}}+\left(\left.\frac{\partial f}{\partial x}\right|_{\bar{x}} \delta_{x_{i}}\right)^{2} \\
& =f^{2}(\bar{x})+\left(\frac{\partial f}{\partial x}\right)^{2} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=f^{2}(\bar{x})+\left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{x}^{2}
\end{aligned}
$$

Error of $f(x, y)$

- Variance of f

$$
\sigma_{f}^{2}=\overline{f^{2}}-\bar{f}^{2}
$$

- Average value of f

$$
\bar{f}=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(\bar{x}+\delta_{x_{i}} \bar{y}+\delta_{y_{i}}\right)
$$

- Taylor expand

$$
\bar{f}=\frac{1}{n} \sum_{i=1}^{n}\left[f(\bar{x}, \bar{y})+\frac{\partial f}{\partial x} \delta_{x_{i}}+\frac{\partial f}{\partial y} \delta_{y_{i}}\right]=f(\bar{x}, \bar{y})
$$

Formal Derivation

$$
\overline{f^{2}}=\frac{1}{n} \sum_{l=1}^{n}\left[f(\bar{x}, \bar{y})+\frac{\partial f}{\partial x} \delta_{x_{i}}+\frac{\partial f}{\partial y} \delta_{y}\right]^{2}
$$

$$
\overline{f^{2}}=\bar{f}^{2}+\sum_{i=1}^{n}\left(\frac{\partial f}{\partial x}\right)^{2} \delta_{x_{i}}^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \delta_{y_{i}}^{2}+2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \delta_{x_{i}} \delta_{y_{i}}
$$

- $\operatorname{cov}(x, y) \equiv \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} \delta_{x_{i}} \delta_{y_{i}}$

