Towards more precise estimates of the primordial bispectrum

Jinn-Ouk Gong

APCTP, Pohang 790-784, Korea

Particle Physics and Cosmology 2012 KIAS, Seoul, Korea 7th November, 2012

Based on

- C. T. Byrnes and JG, arXiv:1210.1851 [astro-ph.CO]
- A. Achucarro, JG, G. A. Palma and S. P. Patil, to appear
- JG, K. Schalm and G. Shiu, to appear

Introduction 00	Effects of non-trivial speed of sound	Bispectrum in general slow-roll	Running of $f_{\rm NL}$ 000	Summary O
Outline				

Introduction

- 2 Effects of non-trivial speed of sound
- 3 Bispectrum in general slow-roll

4 Running of $f_{\rm NL}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introd	uction	

Effects of non-trivial speed of sound

Bispectrum in general slow-rol

Running of *f*_{NL}

Summary O

General single field inflation

$$S = \int d^4 x \sqrt{-g} \left[\frac{m_{\rm Pl}^2}{2} R + P(X,\phi) \right] \quad \text{with} \quad X \equiv -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

Originated from multi-field setup: light ${\mathcal R}$ and heavy ${\mathcal F}$

- Trajectory along the lightest direction
- Effects of heavy physics in curved traj
- Can we apply EFT to find universal features of "heavy" physics?
- Write the action in terms of \mathscr{R} (along traj) and \mathscr{F} (off traj)
- Integrate out $\mathscr{F}: e^{S_{\text{eff}}[\mathscr{R}]} = \int [D\mathscr{F}] e^{S[\mathscr{R},\mathscr{F}]} = equiv to plugging linear sol: <math>(-\Box + M_{\text{eff}}^2) \mathscr{F} = -2\dot{\theta} (\dot{\phi}_0 / H) \dot{\mathscr{R}}$

S Effective single field action $S_{\text{eff}}[\mathcal{R}]$

0•	00000	0000	000	0
Introduction	Effects of non-trivial speed of sound	Bispectrum in general slow-roll	Running of $f_{\rm NI}$	St

Effects of heavy physics as non-trivial c_s

Effects of heavy physics in "speed of sound"

$$c_s^{-2} \equiv 1 + \frac{4\dot{\theta}^2}{M_{\text{eff}}^2}$$
 ($\dot{\theta}$: angular velocity of traj)

Single field theory with non-trivial c_s^2 : Footprint of heavy physics (Achucarro et al. 2012a)

 \mathscr{F} borrows kinetic energy of $\mathscr{R} \to \text{propagation speed } c_s \text{ reduced}$

- EFT in \Box / M_{eff}^2 : universal footprint of heavy physics
- Many scalar fields in BSM, e.g. moduli
- New observables poorly constrained → to be tested in next decades

Introduction

Effects of non-trivial speed of sound •0000 Bispectrum in general slow-rol

Summary O

Splitting canonical action

EFT = canonical ($c_s = 1$) + (occasional) departure from $c_s = 1$

$$S = \underbrace{\int d^4 x a^3 \epsilon m_{\rm Pl}^2 \left[\frac{\dot{\mathscr{R}}^2}{c_s^2} - \frac{(\nabla \mathscr{R})^2}{a^2} \right]}_{=S_2, \text{ "free" part}} + S_3 + \cdots$$
$$= \underbrace{S_{2,\text{canonical}}}_{c_s = 1 \text{ part}} + \underbrace{\int d^4 x a^3 \epsilon m_{\rm Pl}^2 \left(\frac{1}{c_s^2} - 1 \right) \dot{\mathscr{R}}^2}_{\equiv S_2 \text{ int}} + S_3 + \cdots$$

• Well known, accurate Green's function

(For example, JG & Stewart 2001, Choe, JG & Stewart 2004)

Interaction valid for a limited interval (c.f. Chen & Wang 2010)

c.f. Using $dy \equiv c_s d\tau = c_s dt/a$, $q^2 \equiv a^2 \epsilon/c_s$ and $v = \sqrt{2}q \mathscr{R}$ (Baumann, Senatore & Zaldarriaga 2011)

$$S_2 = \int d^4x \frac{m_{\rm Pl}^2}{2} \left[(v')^2 - (\nabla v)^2 + \frac{q''}{q} v^2 \right]$$

But see later parts of this presentation

ヘロア 人間 アメヨアメヨア

Intro	duc	tion
00		

Effects of non-trivial speed of sound 00000

Bispectrum in general slow-ro

Running of $f_{\rm NL}$ 000 Summary O

Features in the power spectrum

Interaction Hamiltonian at quadratic order

$$H_{\text{int}}^{(2)}(t) = \int d^3x \left(\frac{\partial \mathscr{L}_{\text{int}}^{(2)}}{\partial \dot{\mathscr{R}}} \dot{\mathscr{R}} - \mathscr{L}_{\text{int}}^{(2)} \right) = \int d^3x a^3 \varepsilon m_{\text{Pl}}^2 \left(\frac{1}{c_s^2} - 1 \right) \dot{\mathscr{R}}^2$$

Features in the power spectrum

$$\begin{split} \left\langle \widehat{\mathcal{R}}_{\boldsymbol{k}}(\tau)\widehat{\mathcal{R}}_{\boldsymbol{q}}(\tau) \right\rangle &= -i \int_{\tau_{\rm in}}^{\tau} a(\tau') d\tau' \left\langle 0 \left| \left[\widehat{\mathcal{R}}_{\boldsymbol{k}}(\tau)\widehat{\mathcal{R}}_{\boldsymbol{q}}(\tau), H_{\rm int}^{(2)}(\tau') \right] \right| 0 \right\rangle = (2\pi)^3 \delta^{(3)}(\boldsymbol{k} + \boldsymbol{q}) \frac{2\pi^2}{k^3} \Delta \mathscr{P}_{\boldsymbol{\mathcal{R}}} \\ &\to \frac{\Delta \mathscr{P}_{\boldsymbol{\mathcal{R}}}}{\mathscr{P}_{\boldsymbol{\mathcal{R}}}} = \kappa \int_0^\infty dt u(t) \sin(2\kappa t) \quad \text{with} \quad \mathscr{P}_{\boldsymbol{\mathcal{R}}} = \frac{H^2}{8\pi^2 m_{\rm Pl}^2} \epsilon , t \equiv \frac{\tau}{\tau_\star} , \kappa \equiv \frac{k}{k_\star} \end{split}$$

Inverting this relation to write u in terms of observable $\Delta \mathcal{P}_{\mathcal{R}}/\mathcal{P}_{\mathcal{R}}$

$$u(t) = \frac{2i}{\pi} \int_{-\infty}^{\infty} \frac{d\kappa}{\kappa} \frac{\Delta \mathscr{P}_{\mathscr{R}}}{\mathscr{P}_{\mathscr{R}}} \left(\frac{\kappa}{2}\right) e^{i\kappa\tau}$$

Correlated bispectrum and power spectrum: $B_{\mathcal{R}} = \int (\cdots \Delta \mathcal{P}_{\mathcal{R}} / \mathcal{P}_{\mathcal{R}})$

イロト イボト イヨト イヨト

Introduction

Effects of non-trivial speed of sound

Bispectrum in general slow-roll

Running of *f*_{NL} 000 Summary O

Leading bispectrum for varying c_s

Leading order action in terms of u(t)

$$S_3 \supset \int d^4 x a^3 m_{\rm Pl}^2 \epsilon \left[3 u \dot{\mathcal{R}}^2 \mathcal{R} - (u+2s) \mathcal{R} (\nabla \mathcal{R})^2 \right] \quad \left(s \equiv \frac{\dot{c}_s}{H c_s} \right)$$

Assumption: *H*, ϵ and η_{\parallel} approximately constant ($K \equiv k_1 + k_2 + k_3$)

$$\begin{split} B_{\mathscr{R}}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}) &= 2\Re\left\{2i\widehat{\mathscr{R}}_{k_{1}}(0)\widehat{\mathscr{R}}_{k_{2}}(0)\widehat{\mathscr{R}}_{k_{3}}(0)\left[3\epsilon\frac{m_{\mathrm{Pl}}^{2}}{H^{2}}\int_{-\infty}^{0}d\tau\frac{u}{\tau^{2}}\frac{d\widehat{\mathscr{R}}_{k_{1}}^{*}(\tau)}{d\tau}\frac{d\widehat{\mathscr{R}}_{k_{2}}^{*}(\tau)}{d\tau}\frac{d\widehat{\mathscr{R}}_{k_{3}}^{*}(\tau)+2\,\mathrm{perm}\right.\\ &\left.\left.+\epsilon\frac{m_{\mathrm{Pl}}^{2}}{H^{2}}\left(\mathbf{k}_{1}\cdot\mathbf{k}_{2}+2\,\mathrm{perm}\right)\int_{-\infty}^{0}d\tau\frac{u+2s}{\tau^{2}}\widehat{\mathscr{R}}_{k_{1}}^{*}(\tau)\widehat{\mathscr{R}}_{k_{2}}^{*}(\tau)\widehat{\mathscr{R}}_{k_{3}}^{*}(\tau)\right]\right\}\\ &=\frac{(2\pi)^{4}\mathscr{P}_{\mathscr{R}}^{2}}{(k_{1}k_{2}k_{3})^{3}}\left[\frac{3}{2}(k_{1}k_{2})^{2}\left\{\frac{1}{K}\frac{\Delta\mathscr{P}_{\mathscr{R}}}{\mathscr{P}_{\mathscr{R}}}\left(\frac{K}{2k_{\star}}\right)-k_{3}\frac{d}{dk}\left[\frac{1}{k}\frac{\Delta\mathscr{P}_{\mathscr{R}}}{\mathscr{P}_{\mathscr{R}}}\left(\frac{k}{2k_{\star}}\right)\right]\right]_{k=K}\right\}+2\,\mathrm{perm}\\ &\left.+\frac{1}{2}\left(\mathbf{k}_{1}\cdot\mathbf{k}_{2}+2\,\mathrm{perm}\right)\left\{\frac{K^{2}-(k_{1}k_{2}+2\,\mathrm{perm})}{K}\frac{\Delta\mathscr{P}_{\mathscr{R}}}{\mathscr{P}_{\mathscr{R}}}\left(\frac{K}{2k_{\star}}\right)+k_{1}k_{2}k_{3}\frac{d}{dk}\left[\frac{1}{k}\frac{\Delta\mathscr{P}_{\mathscr{R}}}{\mathscr{P}_{\mathscr{R}}}\left(\frac{k}{2k_{\star}}\right)\right]\right]_{k=K}\\ &\left.-\left(k_{1}k_{2}+2\,\mathrm{perm}\right)\frac{d}{dk}\left[\frac{\Delta\mathscr{P}_{\mathscr{R}}}{\mathscr{P}_{\mathscr{R}}}\left(\frac{k}{2k_{\star}}\right)\right]\right|_{k=K}+k_{1}k_{2}k_{3}\frac{d^{2}}{dk^{2}}\left[\frac{\Delta\mathscr{P}_{\mathscr{R}}}{\mathscr{P}_{\mathscr{R}}}\left(\frac{k}{2k_{\star}}\right)\right]\right|_{k=K}\right\}\end{split}$$

(Achucarro, JG, Palma & Patil, to appear)

Correlation between spectra is manifest!

Towards more precise estimates of the primordial bispectrum

イロト イボト イヨト イヨト

Introduction 00	Effects of non-trivial speed of sound	Bispectrum in general slow-roll	Running of f _{NL} 000	Summary O
Modelin	g curvilinear traje	ctory		

A cosh turn in otherwise straight trajectory in 2-field system

(Equations of motion: see Achucarro et al. 2011)

nan

イロト イロト イヨト イヨト

Features from smooth curvilinear trajectory

Towards more precise estimates of the primordial bispectrum

DQC

Intro	du	cti	on
00			

Effects of non-trivial speed of sound 00000

General slow-roll approximation

- $\widehat{\mathscr{R}}_k(\tau) =$ de Sitter piece + higher order corrections
- No guarantee for the hierarchy between slow-roll parameters
- Up to 1st order corrections in the standard SR known (Chen et al. 2007)
- Consistent account in more general contexts

Mode equation: $z^2 \equiv 2a^2 m_{\text{Pl}}^2 \epsilon$, $y \equiv \sqrt{2k} z \hat{\mathcal{R}}_k$, $dx = \equiv -k c_s dt/a$, $f \equiv 2\pi x z/k$

$$\frac{d^2 y}{dx^2} + \left(1 - \frac{2}{x^2}\right) y = \frac{1}{x^2} \underbrace{\frac{f'' - 3f'}{f}}_{\equiv g(\log x)} y \quad \left(f' \equiv \frac{df}{d\log x}\right) \rightarrow y_0(x) = \left(1 + \frac{i}{x}\right) e^{ix}$$
desitter solution
departure from dS

Green's function solution (IG & Stewart 2001)

$$y(x) = y_0(x) + \frac{i}{2} \int_x^\infty \frac{du}{u^2} g(\log u) \left[y_0^*(u) y_0(x) - y_0^*(x) y_0(u) \right] y(u)$$

$$\equiv y_0(x) + L(x, u) y(u)$$

$$= y_0(x) + L(x, u) y_0(u) + L(x, u) L(u, v) y_0(v) + \cdots$$

duction Effects of non-trivial speed of 00000 Bispectrum in general slow-roll

Running of *f*_{NL}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary O

3rd order action reprocessed

٠

 $\dot{\mathscr{R}}^3$ and $\dot{\mathscr{R}}^2\mathscr{R}$: cumbersome to compute with many derivatives

$$\int \dot{\mathcal{R}}^3 \sim \int \left(\dot{y}_0 + \dot{L}y_0 + L\dot{y}_0 + \cdots \right)^3 \sim \odot$$

Using partial int and linear eq to reduce the # of derivatives

$$\begin{split} \frac{\delta L}{\delta \mathscr{R}} \Big|_{1} &\equiv \frac{a^{3}\epsilon}{c_{s}^{2}} \left\{ \ddot{\mathscr{R}} + \left[\underbrace{\frac{c_{s}^{2}}{a^{2}\epsilon} \frac{d}{dt} \left(\frac{a^{2}\epsilon}{c_{s}^{2}} \right) + H}_{\Xi c = H(3 + \eta - 2s)} \right] \dot{\mathscr{R}} - \frac{\Delta}{a^{2}} \mathscr{R} \right\} \\ &= C = H(3 + \eta - 2s) \\ \int A\dot{\mathscr{R}}^{3} &= \int \frac{\dot{A} - 3\dot{A}C - 2A\dot{C} + 2AC^{2}}{2} \frac{d}{dt} \frac{(\mathscr{R}^{3})}{3} + \dots + \frac{\delta L}{\delta \mathscr{R}} \Big|_{1} \frac{c_{s}^{2}}{a^{3}\epsilon} \left(\frac{\dot{A} - 2AC}{2} \mathscr{R}^{2} + \dots \right) \\ \int B\dot{\mathscr{R}}^{2} \mathscr{R} &= \int \frac{-B + BC}{2} \frac{d}{dt} \frac{(\mathscr{R}^{3})}{3} + \dots + \frac{\delta L}{\delta \mathscr{R}} \Big|_{1} \frac{c_{s}^{2}}{a^{3}\epsilon} \frac{B}{2} \mathscr{R}^{2} \end{split}$$

Field redefinition with more terms involved (IG, Schalm & Shiu, to appear)

$$S_{3} = \int d\tau d^{3}x \underbrace{\frac{m_{\text{Pl}}^{2}}{3} \frac{a^{2}\epsilon}{c_{s}} \left[-c_{s}aH\left(3s + \frac{\epsilon\eta}{2} + \epsilon s + 9us - 2s^{2}\right) - \frac{1}{2}\frac{d}{d\tau}\left(\frac{\eta}{c_{s}^{2}}\right) \right]}_{=\mathfrak{C}} \frac{d}{d\tau} \left(\mathfrak{R}^{3}\right) + \text{(higher SR terms)}$$

Introduction	Effects of non-trivial speed of sound	Bispectrum in general slow-roll	Running of f _{NL}
00	00000	0000	000

1st order bispectrum in GSR

"Source" for the bispectrum

$$g_B(\log \tau) = \frac{c_s}{a^2 m_{\rm Pl}^2 \epsilon} \frac{-\tau}{f} \mathfrak{C} = \frac{1}{f} \left[c_s a H \left(3s + \frac{\epsilon \eta}{2} + \epsilon s + 9us - 2s^2 \right) + \frac{1}{2} \frac{d}{d \log \tau} \left(\frac{\eta}{s} \right) \right]$$

Window functions constructed from homogeneous solution

$$\begin{split} y_0(k_1\tau)y_0(k_2\tau)y_0(k_3\tau) &= W_B(k_1,k_2,k_3;\tau) + iX_B(k_1,k_2,k_3;\tau) \\ y_0(k_1\tau)y_0(k_2\tau)y_0^*(k_3\tau) &= W_B(k_1,k_2,-k_3;\tau) + iX_B(k_1,k_2,-k_3;\tau) \equiv W_{B3} + iX_{B3} \end{split}$$

Bispectrum up to 1st correction [i.e. $\mathcal{O}(g)$] (c.f. Adshead et al. 2011)

$$B_{\mathscr{R}}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}) = \frac{(2\pi)^{4}}{4} \frac{\sqrt{\mathscr{P}_{\mathscr{R}}(\mathbf{k}_{1})}}{k_{1}^{2}} \frac{\sqrt{\mathscr{P}_{\mathscr{R}}(\mathbf{k}_{2})}}{k_{2}^{2}} \frac{\sqrt{\mathscr{P}_{\mathscr{R}}(\mathbf{k}_{3})}}{k_{3}^{2}} \int_{0}^{\infty} \frac{d\tau}{\tau} g_{\mathcal{B}}(\log \tau)$$

$$\times \left\{ \left(d_{\tau} - 3\frac{f'}{f} \right) W_{B} + \frac{1}{3} d_{\tau} \left(X_{B} + X_{B3} \right) \int_{0}^{\infty} \frac{d\tilde{\tau}}{\tilde{\tau}} g(\log \tilde{\tau}) X(k_{3}\tilde{\tau}) + 2 \text{ perm} \right. \\ \left. - \frac{1}{3} d_{\tau} W_{B3} \int_{\tau}^{\infty} \frac{d\tilde{\tau}}{\tilde{\tau}} g(\log \tilde{\tau}) W(k_{3}\tilde{\tau}) - \frac{1}{3} d_{\tau} X_{B3} \int_{0}^{\tau} \frac{d\tilde{\tau}}{\tilde{\tau}} g(\log \tilde{\tau}) X(k_{3}\tilde{\tau}) + 2 \text{ perm} \\ \left. - \frac{1}{2} d_{\tau} \left(X_{B} + X_{B3} \right) \int_{\tau}^{\infty} \frac{d\tilde{\tau}}{\tilde{\tau}} g(\log \tilde{\tau}) \left(\frac{1}{k_{3}\tilde{\tau}} + \frac{1}{k_{3}^{3}\tilde{\tau}^{3}} \right) + 2 \text{ perm} \right\} \quad \left(d_{\tau} \equiv \frac{d}{d\log \tau} + 3 \right)$$

(JG, Schalm & Shiu, to appear)

Jinn-Ouk Gong

Towards more precise estimates of the primordial bispectrum

Introduction	Effects of non-trivial speed of sound	Bispectrum in general slow-roll	Running of f _{NL}	Summary
00	00000	000●	000	0

Example: Starobinsky model

Starobinsky model: linear $V(\phi)$ + sudden slope change (Starobinsky 1992)

$$V(\phi) = V_0 \times \begin{cases} \begin{bmatrix} 1 - A(\phi - \phi_0) \end{bmatrix} & \text{for } \phi < \phi_0 \\ 1 - (A + \Delta A)(\phi - \phi_0) \end{bmatrix} & \text{for } \phi > \phi_0 \end{cases}$$

de Sitter approx: $\frac{f'}{f} = -\frac{\ddot{\phi}}{H\dot{\phi}}, g = -3\frac{V''}{V}, g_B = \frac{1}{f}\left(\frac{\ddot{\phi}}{H\dot{\phi}}\right)'$ (Choe, JG & Stewart 2004)

(cf. Arroja & Sasaki 2012)

duction Effects of non-trivial speed of sound

Bispectrum in general slow-roll

Running of $f_{\rm NL}$

Summary O

Example: Starobinsky model

Starobinsky model: linear $V(\phi)$ + sudden slope change (Starobinsky 1992)

$$V(\phi) = V_0 \times \begin{cases} \left[1 - A(\phi - \phi_0) \right] & \text{for } \phi < \phi_0 \\ \left[1 - (A + \Delta A)(\phi - \phi_0) \right] & \text{for } \phi > \phi_0 \end{cases}$$

de Sitter approx: $\frac{f'}{f} = -\frac{\ddot{\phi}}{H\dot{\phi}}, g = -3\frac{V''}{V}, g_B = \frac{1}{f}\left(\frac{\ddot{\phi}}{H\dot{\phi}}\right)'$ (Choe, JG & Stewart 2004)

(cf. Arroja & Sasaki 2012)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ クタマ

Towards more precise estimates of the primordial bispectrum

- N_i : initial slice (flat) for the δN formalism, $\delta \phi_{\text{flat}}^a \equiv Q^a$
- **2** N_f : final slice (comoving) for the δN formalism
- N_0 : horizon crossing of a mode k

 $Q^{a}(N_{0}) =$ Gaussian $\rightarrow Q^{a}(N_{i} = N_{0} + \Delta N_{k}) =$ non-Gaussian

$$\Delta N_k = \log\left(\frac{a_i}{a_0}\right) \approx \log\left[\frac{(aH)_i}{k}\right] \quad \rightarrow \quad k\text{-dependence}$$

oduction Effects of non-trivial speed of 00000

Bispectrum in general slow-roll

Running of $f_{\rm NL}$ 000 Summary O

Power spectrum and its running

Evolution equation of Q^a on large scales (Elliston, Seery & Tavakol 2012)

$$D_N Q^a = w^a{}_b Q^b + \frac{1}{2} w^a{}_{bc} Q^b Q^c + \cdots$$

$$w_{ab} = u_{(a;b)} + \frac{R_{c(ab)d}}{3} \frac{\dot{\phi}_0^c}{H} \frac{\dot{\phi}_0^d}{H} \left(u_a = -\frac{V_{;a}}{3H^2} \right)$$

$$w_{abc} = u_{(a;bc)} + \frac{1}{3} \left[R_{(a|de|b;c)} \frac{\dot{\phi}_0^d}{H} \frac{\dot{\phi}_0^e}{H} - 4R_{a(bc)d} \frac{\dot{\phi}_0^d}{H} \right]$$

$$Q^a(N_i = N_0 + \Delta N_k) = Q^a(N_0) + \Delta N_k \left(w^a{}_b Q^b + \frac{1}{2} w^a{}_{bc} Q^b Q^c + \cdots \right) + \cdots$$

Power spectrum and the spectral index

$$\left\langle \mathscr{R}_{\boldsymbol{k}}(t_{f})\mathscr{R}_{\boldsymbol{q}}(t_{f}) \right\rangle = (2\pi)^{3} \delta^{(3)}(\boldsymbol{k}+\boldsymbol{q}) \frac{2\pi^{2}}{k^{3}} \mathscr{P}_{\mathscr{R}}(\boldsymbol{k}) = N_{a}(t_{i})N_{b}(t_{i}) \left\langle Q_{\boldsymbol{k}}^{a}(t_{i})Q_{\boldsymbol{q}}^{b}(t_{i}) \right\rangle$$

$$\left\langle Q_{\boldsymbol{k}}^{a}(t_{i})Q_{\boldsymbol{q}}^{b}(t_{i}) \right\rangle = \left\langle Q_{\boldsymbol{k}}^{a}(t_{0})Q_{\boldsymbol{q}}^{b}(t_{0}) \right\rangle + 2\Delta N_{k}w^{a}c \left\langle Q_{\boldsymbol{k}}^{b}(t_{0})Q_{\boldsymbol{q}}^{c}(t_{0}) \right\rangle$$

$$\left\langle Q_{\boldsymbol{k}}^{a}Q_{\boldsymbol{q}}^{b} \right\rangle = \frac{H^{2}}{2k^{3}} \delta^{(3)}(\boldsymbol{k}+\boldsymbol{q}) \left(\gamma^{ab}+\epsilon^{ab}\right)$$

$$n_{\mathscr{R}}-1 = \frac{D\log\mathscr{P}_{\mathscr{R}}}{d\log k} = -2\epsilon - 2\frac{N_{a}N_{b}w^{ab}}{N_{c}N^{c}} \quad (\text{Sasaki \& Stewart 1996})$$

Towards more precise estimates of the primordial bispectrum

Jinn-Ouk Gong

troduction	Effects of non-trivial speed o
0	00000

Running	of f _{NL}
000	

Summary O

General formula for the running of $f_{\rm NL}$

$$\begin{split} &\left\langle \mathcal{R}_{\boldsymbol{k}_{1}}(t_{f})\mathcal{R}_{\boldsymbol{k}_{2}}(t_{f})\mathcal{R}_{\boldsymbol{k}_{3}}(t_{f})\right\rangle = (2\pi)^{3}\delta^{(3)}(\boldsymbol{k}_{123})B_{\mathcal{R}}(k_{1},k_{2},k_{3})\\ &= N_{a}N_{b}N_{c}\left\langle Q_{\boldsymbol{k}_{1}}^{a}Q_{\boldsymbol{k}_{2}}^{b}Q_{\boldsymbol{k}_{3}}^{c}\right\rangle + \frac{1}{2}\left\{ N_{ab}N_{c}N_{d}\left\langle \left[Q^{a}\star Q^{b}\right]_{k_{1}}Q_{k_{2}}^{c}Q_{\boldsymbol{k}_{3}}^{d}\right\rangle + 2\,\mathrm{perm}\right\} \end{split}$$

- 1st term: NL evolution between horizon crossing & initial slice $N_{a}(t_{i})N_{b}(t_{i})N_{c}(t_{i})\left\langle Q_{k_{1}}^{a}(t_{i})Q_{k_{2}}^{b}(t_{i})Q_{k_{3}}^{c}(t_{i})\right\rangle$ $= (2\pi)^{3}\delta^{(3)}(\mathbf{k}_{123})N_{a}(t_{i})N_{b}(t_{i})N_{c}(t_{i})\frac{H^{4}(t_{0})}{4k_{1}^{3}k_{2}^{3}k_{3}^{3}}w^{abc}\left(k_{1}^{3}\Delta N_{k_{1}}+2\text{ perm}\right)$

Towards more precise estimates of the primordial bispectrum

Introduction 00	Effects of non-trivial speed of sound	Bispectrum in general slow-roll	Running of $f_{\rm NL}$ 000	Summary •
Summar	ry			

- General single field inflation
 - From multi-field setup: by integrating out heavy field
 - Non-trivial *c*_s: footprint of heavy physics
- Features in the power spectrum $(S_{2,int})$ and bispectrum (S_3)
 - Heavy quanta extract kinetic energy
 - Non-trivial, oscillatory, correlated features
- General slow-roll scheme
 - Terms with more derivatives \rightarrow field redefinition
 - Ø More complete 1st order bispectrum
- Running of $f_{\rm NL}$
 - Sensitive probe of early universe physics
 - Ø Non-trivial evolution after horizon crossing

イロト イポト イヨト イヨト 二日