

Dark Matter Searches at CMS

Sandhya Jain

Saha Institute of Nuclear Physics, Kolkata

on behalf of CMS collaboration

Particle Physics and Cosmology, 2012

Dark Matter

- Strong astrophysical evidence for existence of Dark Matter(DM)
- Direct detection experiments
 - Aim to observe recoil of DM off the nucleus
 - Excesses observed by several experiments, not observed by others
- Need for independent verification from non-astrophysical experiments
- Colliders provide a complementary way to search for dark matter

Plan of the talk

- Exotic searches with production of Dark Matter particle in monophoton and monojet final states
- SUSY based searches looking for Lightest Supersymmetric Particle (LSP) in EWK production

Machine is running good and delivering data fast for experimentalists to work on. LHC already delivered > 18 fb⁻¹ @8TeV Run

Excellent performance by CMS

Results shown here are based on 5fb⁻¹ @7TeV

CMS Detector

Methodology for collider based search

- Make an event selection on data and count the number of events in signal region (Cut and Count experiment)
- Look for excess of events observed above the Standard Model expectation.
- Understanding the backgrounds is very crucial.
- Estimate the backgrounds using MC and data itself, mostly called as Datadriven techniques.
- Systematic uncertainties are to be studied.
- If no excess is seen, limits are put on the cross section and an exclusion is made in the parameter space of the model.

CMS,

Monophoton Event Topology

X-Y View

SD View

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

Highest P_T monophoton event, P_T^{χ} = 384 GeV, MET = 407 GeV

Monophoton Search Monophoton – Backgrounds

Backgrounds coming from pp-collsions

$pp \rightarrow Z \gamma \rightarrow vv \gamma$	irreducible background	(MC)
$pp \rightarrow W \rightarrow ev$	electron mis-identified as photon	(Data-Driven)
$pp \rightarrow jets \rightarrow ``\gamma" + MET$	one jet mimics photon, MET from jet mis-measurement	(Data-Driven)
$pp \rightarrow \gamma + jet$	MET from jet mis-measurement	(MC)
$pp \rightarrow W \gamma \rightarrow l \nu \gamma$	charged lepton escapes detection	(MC)
$pp \rightarrow \gamma \gamma$	one photon mis-measured to give MET	(MC)

Instrumental Backgrounds like beam halo etc..

PPC2012, KIAS

Monophoton Selection

• Require atleast a photon in an event with

- High energy : $P_T^{\gamma} > 145 \text{GeV}$
- Central part of the detector: $|\eta| < 1.4442$
- Shower Shape consistent with the photon coming from collision : $\sigma_{i\eta i\eta} < 0.13$
- Require MET > 130 GeV

Remove events with

- Central jet: $P_{T(jet)} > 40 \text{GeV}$ and $|\eta| < 3.0$
- Tracks near the photon with $\triangle R > 0.04$ above $P_T > 20 GeV$
- Veto events with significant electromagnetic calorimeter activity ($\triangle R < 0.4$)
- Veto events with significant hadronic activity($\triangle R < 0.4$, $E_{Hcal}/E_{Ecal} < 0.05$)

No excess observed between data and background expectation

Monophoton Results

Monophoton - Limit Setting

- Signal Generation with Madgraph4 + Pythia6 with 10 TeV mediator mass
- Acceptance timese dfe Modifie for e Dankis Mattep signal [J. Phys. G37(2010) 075021]
 - A X EMC*~FOr Infor about hur every and, and hyperterisopperated 75.1 ± 9.5 events
 - Since kinematics comes from ISR photon, A X ϵ_{MC} is fairly constant in the range $M_X = 1-1000$ GeV. 90% CL limits are shown suppared to the expected limit in parentheses.

Standtoincerta

- Energy scale and resolution effects for photon, MET and jet measurement
- Pile up modeling
- Photon vertex assignment
- Parton Distribution Function
- 90% CL limits are shown below compared with expected in parenthesis

	Λ —	$\Lambda_{th.} \left(\overline{\sigma_{meas}^{\chi \bar{\chi}}} \right)$	$ = $ $ O_{th.} $	UCDAVIS
M IC-VI	Vec	tor	Axial-	Vector
M _χ [Gev]	σ [fb]	Λ [GeV]	σ [fb]	Λ [GeV]
1	14.3 (14.7)	572 (568)	14.9 (15.4)	565 (561)
10	14.3 (14.7)	571 (567)	14.1 (14.5)	573 (569)
100	15.4 (15.3)	558 (558)	13.9 (14.3)	554 (550)
200	14.3 (14.7)	549 (545)	14.0 (14.5)	508 (504)
500	13.6 (14.0)	442 (439)	13.7 (14.1)	358 (356)
1000	14.1 (14.5)	246 (244)	13.9 (14.3)	172 (171)
1000	$\sigma_{meas.}^{\chi\bar{\chi}}$	240 (244)	10.7 (14.0)	1/2 (1/

Tuesday 6 November 2012

Monophoton - χ-nucleon cross-section Spin Independent (SI) Limits

lower limits on Λ are then used to compute χ -nucleon cross-section versus M_{χ} using:

$$\sigma_{SI}^{\chi-\mathrm{N}} = \frac{9}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2$$

Extends the limits for $M_X < 3.5$ GeV - which remained unexplored by direct detection experiments for SI case

 CMS: Phys.Rev. Lett. 108(2012) 261803.
 XENON1

 CDF: Phys. Rev. Lett. 101 (2008) 181602.
 CoGeNT:

 CDMS II: Science 327 (2010) 1619. Phys. Rev. Lett. 106 (2011) 131302.
 CoGeNT:

XENON100: Phys. Rev. Lett 107 (2011) 131302 CoGeNT: Phys. Rev. Lett 106 (2011) 131301

Monophoton - χ -nucleon cross-section

 lower limits on Λ are then used to compute χ-nucleon cross-section versus M_χ using:

$$\sigma_{SD}^{\chi-N} = \frac{0.33}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2$$

• Extends the limits for $M_{\chi} < 100$ GeV for Spin dependent case

CMS: Phys.Rev. Lett. 108(2012) 261803. CDF: Phys. Rev. Lett. 101 (2008) 181602. SIMPLE: Phys. Rev. Lett. 105 (2010) 211301.

COUPP: Phys. Rev. Lett. 106 (2011) 021303. IceCube: Phys. Rev. D 85 (2012) 042002. Super-K: ApJ 742 (2011) 78.

Tuesday 6 November 2012

Monojet Search details

Backgrounds coming from SM processes

- Z+jets irreducible
- W+jets if e/u is not detected or tau decays hadronically
- QCD jet is mis-measured giving rise to MET

Baseline selection:

Select jets with cuts on its constituents - charged/neutral/EM hadronic fractions

Topological selection:

- Number of Jets = 1 or 2
- Leading Jet: P_T(jet) > 110 GeV, |η| < 2.4
- Second Jet: P_T(jet) > 30 GeV
- $\Delta \Phi(\text{jet I}, \text{jet 2}) < 2.5$

MET > 200 GeV, optimized to 350 GeV for DM search

Remove leptons:

- Reject events having isolated electron/muon in cone of $\Delta R < 0.3$
- Reject events having isolated tracks in a cone of $\Delta R < 0.3$

Monojet - Background Estimation

- $Z(\nu\nu)$ +jets is estimated from $Z(\mu\mu)$ +jet control sample from data
 - Isolated muons with Pt > 20GeV and $|\eta| < 2.1$
 - Opposite Sign muons, invariant mass between 60-120GeV
 - Total Uncertainty is I I% mainly due to the size of the control sample(9.5%)
- Wjets is estimated from W($\mu\nu$) control sample from data
 - Isolated muons with Pt > 20GeV and $|\eta| < 2.1$
 - Transverse mass(M_T) between 50-100GeV,
 - Total Uncertainty is 11.8%, primarily from acceptance(7.7%) and selection(6.8%)
- Other small backgrounds from QCD, ttbar, Z+jets and top are taken from MC

Monojet - Results

JI LINGEPENGENT LINITS

Monojet - x-nucleon cross-section pin Independent Limits

Spin Independent Limits

 \odot Extends the limits for M_χ <3.5 GeV - which remained unexposed by direct detection experiments for SI case

PPC2012, KIAS

Monojet - χ-nucleon cross-section Jet Spin Dependent Limits

SUSY Based Searches

- Since in MSSM, LSP is a candidate for the DM, one can look for its signatures in SUSY.
- Focus on scenarios dominated by direct Electroweak production
 - Clean and probes only in gaugino sector.
 - Characterized with pair-production of charginos and neutralinos.
 - Depending on their mass spectrum, one can have significant branching fraction to leptons or vector bosons
 - In either case, 2 LSP(DM candidates) and neutrino(s) are produced, giving rise to MET

EWK production of Charginos & Neutralinos

This model lead to tri-lepton signature and motivate the assumption that $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ have similar mass.

Here, $m_{\tilde{\chi}_2^0} = m_{\tilde{\chi}_1^{\pm}}$ and the slepton mass is parameterized as $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + x_{\tilde{\ell}} \left(m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0} \right)$ with, $0 < x_{\tilde{\ell}} < 1$

Present results with $x_{\tilde{\ell}} = 0.5$

sleptons are heavy and and whole BF to vector bosons and LSP

Signatures explored @7TeV

- 3(4) leptons + MET
 - MET as the observable to distinguish between signal and background, better sensitivity when mass splitting is large
 - M(II) and M_T as the observables, better sensitivity when LSP mass approaches the mass of chargino/netralino.
- Same Sign dilepton + MET
- Opposite Sign dilepton + dijet + MET

No evidence of the signal and hence limits are placed on cross section for the pair production times the BF for these scenarios

<u>arXiv:1209.6620v1</u> <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12006</u>

Limits - EWK production

• Probe M($\chi \pm$, $\chi 0$) up to ~ 200-500 GeV, depending on the search mode

Conclusions

- CMS Searches for Dark Matter are presented with the integrated luminosity of 5fb⁻¹ @7 TeV center of mass energy.
- No excess has been observed yet. Limits are being set on Dark Matter production resulting in extension of results in the parameter space.
- MSSM searches in the EWK production shows no excess above the SM expectation.
- Searches are continued at 8 TeV stay tuned!

Thanks!!

Find all the results here:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Phenomenology of χ production

In the effective theory, pair production effective theory, pair production

where, M : mediator mass, g_X : coupling with DM particle g_q: coupling with SM quark

Nature of the mediator tells the form of interactions

Bai,Fox and Harnik [JHEP 1012:048(2010)]

Isolation variables

Sub detector resolutions

 $\eta | < 2.5$: Tracker $\sigma/p_T \approx 10_{-4} p_T \oplus 0.005$ (TeV) $|\eta| < 4.9$: Electromagnetic Calorimeter $\sigma/E \approx 0.03/\sqrt{E} \oplus 0.003$ (GeV) $|\eta| < 4.9$: Hadronic Calorimeter $\sigma/E \approx 1.00/\sqrt{E} \oplus 0.050$ (GeV) $|\eta| < 2.6$: Muon Spectrometer $\sigma/p_T \approx 0.10$ (GeV) (1 TeV

Monojet - Backgrounds

- $Z(\nu\nu)$ +jets is estimated from $Z(\mu\mu)$ +jet control sample from data
 - Isolated muons with Pt > 20GeV and $|\eta| < 2.1$
 - Opposite Sign muons, invariant mass between 60-120GeV
 - Total Uncertainty is I 1% mainly due to the size of the control sample(9.5%)

Monojet - Backgrounds

- Wjets is estimated from W($\mu\nu$) control sample from data
 - Isolated muons with Pt > 20GeV and $|\eta| < 2.1$
 - Transverse mass(M_T) between 50-100GeV, $M_T = \sqrt{2p_T^{\mu}E_T^{\text{miss}}(1 \cos(\Delta \phi))}$
 - Uncertainty is 11.8%, primarily from acceptance(7.7%) and selection(6.8%)

• Other backgrounds from QCD, ttbar, Z+jets and top are taken from MC

Monojet - Dark Matter Signal

- Signal Generation with Madgraph5 + Pythia6 with 40 TeV mediator mass
- Uncertainties here totals to 20%, mainly coming from:
 - Contribution from Jet energy Scale and resolution
 - PDF (PDF4LHC)
- Final numbers for MET>350 GeV: Background 1224±101, Data 1142

l	_imi	t	setti	ing	İS	don	e	as	bef	ore	

	Spin-dependent		Spin-ir	dependent
M_{χ} (GeV/ c^2)	Λ (GeV)	$\sigma_{\chi N}$ (cm ²)	Λ (GeV)	$\sigma_{\chi N}$ (cm ²)
0.1	754	$1.03 imes 10^{-42}$	749	$2.90 imes10^{-41}$
1	755	$2.94 imes10^{-41}$	751	$8.21 imes10^{-40}$
10	765	$8.79 imes10^{-41}$	760	$2.47 imes10^{-39}$
100	736	$1.21 \ge 10^{-40}$	764	$2.83 imes10^{-39}$
200	677	$1.70 imes 10^{-40}$	736	$3.31 imes10^{-39}$
300	602	$2.73 imes10^{-40}$	690	$4.30 imes10^{-39}$
400	524	$4.74 imes10^{-40}$	631	$6.15 imes10^{-39}$
700	341	$2.65 imes10^{-39}$	455	$2.28 imes10^{-38}$
1000	206	$1.98 imes 10^{-38}$	302	$1.18 imes 10^{-37}$

Systematics in detail

- Stats. uncertainty 1.7%
- Photon PT uncertainty 2.3%
- Jet Energy Scale 1.2%
- MET modelling 0.5%
- Pile-up modelling 2.4%

3 leptons + MET

WZ is the main background

This search is done in 6 regions defined in MII and MT: *Mathematical Various regions defined here give best signal to background separation Depending on the mass splitting between* $\tilde{\chi}_2^0 - \tilde{\chi}_1^0$, signal can appear anywhere

Results

Region	WZ	Non-prompt	Rare SM	Total background	Data
Ι	16.2 ± 2.9	4.7 ± 2.4	2.1 ± 1.5	23.0 ± 5.1	31
II	3.6 ± 0.8	1.94 ± 1.02	0.4 ± 0.2	6.0 ± 1.3	3
III	15.6 ± 5.7	0.2 ± 0.1	0.8 ± 0.4	16.6 ± 5.7	17
IV	1.6 ± 0.4	0.2 ± 0.1	0.4 ± 0.2	2.2 ± 0.5	2
V	8.7 ± 1.7	1.4 ± 0.8	0.9 ± 0.4	11.0 ± 1.9	12
VI	150.6 ± 25.7	2.6 ± 1.4	11.7 ± 5.8	164.9 ± 26.4	173

No Evidence of the signal

Same Sign two lepton final state

To increase the sensitivity of the analysis for 3 leptons search, one considers this final state.
If the mass splitting is such that 3rd lepton is soft, then it can be lost/mis-identified.

Source	ee	$\mu\mu$	еµ	eτ	μτ	$\tau\tau$	Sum
Non-pr/misID	1.0 ± 0.8	0.0 ± 0.2	1.7 ± 1.0	1.5 ± 1.1	1.7 ± 0.6	0.00 ± 0.00	5.8 ± 1.9
Charge mis-as	0.0 ± 0.0	-	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.1	0.00 ± 0.01	0.1 ± 0.1
Rare SM	1.0 ± 0.7	0.7 ± 0.5	1.3 ± 0.7	0.3 ± 0.1	0.4 ± 0.2	0.00 ± 0.00	3.7 ± 1.5
Total background	2.1 ± 1.0	0.7 ± 0.5	3.1 ± 1.2	1.7 ± 1.1	2.0 ± 0.6	0.00 ± 0.01	9.5 ± 2.4
Observed	2	1	0	1	1	0	5

PPC2012, KIAS

WZ/ZZ + MET with final state of 2 OS leptons + 2 jets + MET

Increase the sensitivity of the analysis when Z decays to ee/mumu while other Z/W decays to 2 jets

Source	$30 < E_{\mathrm{T}}^{\mathrm{miss}} < 60 \mathrm{GeV}$	$60 < E_{\mathrm{T}}^{\mathrm{miss}} < 80\mathrm{GeV}$	$80 < E_{\mathrm{T}}^{\mathrm{miss}} < 100 \mathrm{GeV}$
Z + jets background	2298 ± 737	32.9 ± 11.1	5.2 ± 1.8
OF background	11 ± 2	6.6 ± 1.6	4.6 ± 1.2
WZ/ZZ background	50 ± 25	3.9 ± 2.0	2.2 ± 1.1
Total background	2359 ± 737	43.4 ± 11.4	12.0 ± 2.4
Data	2416	47	7
Source	$100 < E_{\rm T}^{\rm miss} < 150~{\rm GeV}$	$150 < E_{\rm T}^{\rm miss} < 200~{\rm GeV}$	$E_{\rm T}^{\rm miss}>200~{ m GeV}$
Source Z + jets background	$100 < E_{\rm T}^{\rm miss} < 150 { m GeV}$ 1.7 ± 0.6	$150 < E_{\rm T}^{\rm miss} < 200 {\rm GeV}$ 0.4 ± 0.2	$\frac{E_{\rm T}^{\rm miss}>200~{\rm GeV}}{0.2\pm0.09}$
Source Z + jets background OF background	$100 < E_{\rm T}^{\rm miss} < 150 { m GeV}$ 1.7 ± 0.6 4.6 ± 1.2	$150 < E_{\rm T}^{\rm miss} < 200 { m GeV}$ 0.4 ± 0.2 0.8 ± 0.3	$E_{\rm T}^{\rm miss} > 200~{ m GeV}$ 0.2 ± 0.09 0.06 ± 0.07
Source Z + jets background OF background WZ/ZZ background	$100 < E_{\rm T}^{\rm miss} < 150~{ m GeV}$ 1.7 ± 0.6 4.6 ± 1.2 2.5 ± 1.3	$150 < E_{\rm T}^{\rm miss} < 200 { m GeV}$ 0.4 ± 0.2 0.8 ± 0.3 0.7 ± 0.4	$E_{\rm T}^{\rm miss} > 200~{ m GeV}$ 0.2 ± 0.09 0.06 ± 0.07 0.4 ± 0.2
Source Z + jets background OF background WZ/ZZ background Total background	$100 < E_{\rm T}^{\rm miss} < 150~{ m GeV}$ 1.7 ± 0.6 4.6 ± 1.2 2.5 ± 1.3 8.8 ± 1.8	$\begin{array}{c} 150 < E_{\rm T}^{\rm miss} < 200~{\rm GeV} \\ 0.4 \pm 0.2 \\ 0.8 \pm 0.3 \\ 0.7 \pm 0.4 \\ 1.9 \pm 0.5 \end{array}$	$\frac{E_{\rm T}^{\rm miss}>200~{\rm GeV}}{0.2\pm0.09}\\ 0.06\pm0.07\\ 0.4\pm0.2\\ 0.7\pm0.3$
Source Z + jets background OF background WZ/ZZ background Total background Data	$100 < E_{\rm T}^{\rm miss} < 150~{\rm GeV}$ 1.7 ± 0.6 4.6 ± 1.2 2.5 ± 1.3 8.8 ± 1.8 6	$150 < E_T^{miss} < 200 \text{ GeV}$ 0.4 ± 0.2 0.8 ± 0.3 0.7 ± 0.4 1.9 ± 0.5 2	$E_{\rm T}^{\rm miss} > 200~{ m GeV}$ 0.2 ± 0.09 0.06 ± 0.07 0.4 ± 0.2 0.7 ± 0.3 0

Limits

