Phenomenological Implications of general UED

Thomas Flacke

KAIST

TF, C. Pasold, PRD85 (2012) 126007

TF, A. Menon, Z. Sullivan, arXiv:1207.4472

TF, KC Kong, SC Park, arXiv:1211.xxxx

PPC 2012 - KIAS, Seoul

Outline

- UED
 - Review
 - Generalized UED
- Constraints from pp
 ightarrow W'
 ightarrow tb at the LHC
- Some pre-LHC constraints
- Outlook on further LHC constraints
- Conclusions

onstraints from $pp \rightarrow W' \rightarrow tb$ at LHC some Pre-LHC constraints Outlook on further LHC constraints Conclusions

Review Generalized UED

UED: The basic setup

 UED models are models with flat, compact extra dimensions in which all fields propagate. 5D and 6D: [Appelquist, Cheng, Dobrescu,(2001)]

see [Dobrescu, Ponton (2004/05), Cacciapaglia et al., Oda et al. (2010)] for further 6D compactifications.

- The Standard Model (SM) particles are identified with the lowest-lying modes of the respective Kaluza-Klein (KK) towers.
- Here, we focus on one extra dimension. Compactification on S^1/Z_2 ; $x_5 \equiv y \in [-\pi R/2, \pi R/2] \equiv [-L, L]$
 - allows for chiral zero mode fermions
 - allows for gauge field zero modes without additional scalars
- The presence of orbifold fixed points breaks 5D translational invariance.
 - \Rightarrow KK-number conservation is violated, but
 - a discrete Z_2 parity (KK-parity) remains.
 - \Rightarrow The lightest KK mode (LKP) is stable.

postraints from $pp \rightarrow W' \rightarrow tb$ at LHC some Pre-LHC constraints Outlook on further LHC constraints Conclusions

Review Generalized UED

(M)UED pheno review

Phenomenological constraints on the compactification scale R^{-1}

- Lower bounds:
 - FCNCs [Buras, Weiler *et al.* (2003); Weiler, Haisch (2007)] $R^{-1} \gtrsim 600 \text{ GeV}$ at 95% cl.
 - Electroweak Precision Constraints (Appelquist, Yee (2002); Gogoladze, Macesanu (2006); Glitter (2011)] $R^{-1} \gtrsim 750 \text{ GeV}$ for $m_H = 125 \text{ GeV}$ at 95% cl.
 - $\circ~$ no detection of KK-modes at LHC, yet [Murayama et al. (2011)] $R^{-1}\gtrsim 600~GeV$ at 95% cl.
- Upper bound:
 - preventing too much dark matter by $B^{(1)}$ dark matter

 $R^{-1} \lesssim 1.5 {
m TeV}$ [Belanger *et al.* (2010)]

"Standard" mass spectrum:

$$m_{\phi^{(n)}}^2 = (rac{n}{R})^2 + m_{\phi,SM}^2 + \delta m_{\phi^{(n)}}^2$$

Note:

UED Phenomenology depends sensitively on the KK mode mass spectrum.

Constraints from $pp \rightarrow W' \rightarrow tb$ at LHC some Pre-LHC constraints Outlook on further LHC constraints Conclusions

Review Generalized UED

Relevance of the detailed mass spectrum

The KK mass spectrum determines decay channels, decay rates, branching ratios and final state jet/lepton energies and MET at LHC.

The DM relic density is highly sensitive to mass splittings at the first and between the first and second KK level.

Review Generalized UED

Generalized UED

- UED is a five dimensional model \Rightarrow non-renormalizable.
- It should be considered as an effective field theory with a cutoff Λ.
- Naive dimensional analysis (NDA) result: $\Lambda \lesssim 50/R$. A light Higgs and vacuum stability even implies $\Lambda \lesssim 6/R$. [Ohlsson *et al.* (2011)] if higher dimensional operators and a Higgs brane mass are not included.
- Assumption in MUED: all higher dimensional operators vanish at Λ.
- Effective field theory \Rightarrow include all operators allowed by symmetries.
- 1. Bulk mass terms for fermions $(dim = dim(\mathcal{L})) \Rightarrow$ split UED (sUED),

2. kinetic and mass terms at the orbifold fixed points, $(dim = dim(\mathcal{L}) + 1$; radiatively induced in MUED) \Rightarrow nonminimal UED (nUED),

3. bulk or boundary localized interactions ($dim > dim(\mathcal{L}) + 1$)

The former two operator classes modify the free field equations and thereby alter the Kaluza-Klein decomposition

 \Rightarrow different mass spectrum and different KK wave functions.

Review Generalized UED

mass modifying operators

In sUED, a KK parity conserving fermion bulk mass term is introduced.

[Park, Shu (2009); Csaki et al. (2001)]

$$S \supset \int d^5 x - \mu heta(y) \overline{\Psi} \Psi.$$

In nUED one includes the boundary kinetic action

$$\begin{split} \mathcal{S}_{bd} &= \int\limits_{\mathbb{M}} \int\limits_{S^1/\mathbb{Z}_2} d^5 x \left(-\frac{r_B}{4\hat{g}_1^2} B_{\mu\nu} B^{\mu\nu} - \frac{r_W}{4\hat{g}_2^2} W^a_{\mu\nu} W^{a,\mu\nu} - \frac{r_G}{4\hat{g}_3^2} G^A_{\mu\nu} G^{A,\mu\nu} \right. \\ & \left. + r_h \overline{\Psi}_h \not\!\!D \Psi_h + r_H (D_\mu H)^\dagger D^\mu H \right) \times \left[\delta \left(y - \frac{\pi R}{2} \right) + \delta \left(y + \frac{\pi R}{2} \right) \right], \end{split}$$

where h = R, L represents the chirality.

For simplicity, in what follows we consider a common electroweak boundary parameter $r_B = r_W = r_H \equiv r_{ew}$. For the generic case, *c.t.* [TF,Menon,Phalen(2009)].

constraints from $pp \rightarrow W' \rightarrow tb$ at LHC some Pre-LHC constraints Outlook on further LHC constraints Conclusions

Review Generalized UED

Kaluza-Klein decomposition

KK decomposition: $\Psi_{R}(x, y) = \sum_{n=0}^{\infty} \Psi_{R}^{(n)}(x) f_{R}^{(n)}(y) , \ \Psi_{L}(x, y) = \sum_{n=0}^{\infty} \Psi_{L}^{(n)}(x) f_{L}^{(n)}(y).$

- Bulk mass terms modify the 5D EOM.
- BLKTs modify the boundary conditions of this Sturm-Liouville problem.
- ⇒ KK-masses and wave-functions are modified.

Solutions for a fermion with left-handed zero mode:

 KK zero modes
 even numbered KK-modes
 odd numbered KK-modes

 $f_L^{(0)}(y) = \mathcal{N}_L^{(0)} e^{\mu |y|}$ $f_L^{(n)}(y) = \mathcal{N}_L^{(n)} (\cos(k_n y) + \frac{\mu}{k_n} \sin(k_n |y|))$ $f_L^{(n)}(y) = \mathcal{N}_L^{(n)} \sin(k_n y)$
 $f_R^{(0)}(y) = 0$ $f_R^{(n)}(y) = \mathcal{N}_R^{(n)} \sin(k_n y)$ $f_R^{(n)}(y) = \mathcal{N}_R^{(n)} (\cos(k_n y) - \frac{\mu}{k_n} \sin(k_n |y|))$
 $k_0^2 = -\mu^2$ $\tan(k_n L) = -\frac{(1+r\mu)}{rk_n}$ $\tan(k_n L) = -\frac{(rm_n^2 + \mu)}{k_n}$

 and $m_n = \sqrt{k_n^2 + \mu^2}$.
 $m_n = \sqrt{k_n^2 + \mu^2}$ $m_n = \sqrt{k_n^2 + \mu^2}$

(Solutions for left-handed zero mode: $L \leftrightarrow R$ and $\mu \rightarrow -\mu$, Solutions for gauge bosons / scalars: $\mu \rightarrow 0$)

Thomas Flacke

Constraints from $pp \rightarrow W' \rightarrow tb$ at LHC some Pre-LHC constraints Outlook on further LHC constraints Conclusions

Review Generalized UEI

Masses

Constraints from $pp \rightarrow W' \rightarrow tb$ at LHC some Pre-LHC constraints Outlook on further LHC constraints Conclusions

Review Generalized UEI

Couplings

Constraints from $pp
ightarrow W^{(2)}
ightarrow tb$ [TF, Menon, Sullivan (2012)]

The KK number violating couplings in nUED and sUED imply W', Z', g', ... - like signatures from the *s*-channel resonances of $W^{(2)}, Z^{(2)}, \gamma^{(2)}, G^{(2)}$ at LHC. We first focus on $pp \rightarrow W' \rightarrow tb$.

Thomas Flacke

Resulting sUED bounds

 $\begin{array}{l} \mbox{UED and Extensions}\\ \mbox{Constraints from }pp \rightarrow W' \rightarrow tb \mbox{ at LHC}\\ \mbox{some Pre-LHC constraints}\\ \mbox{Outlook on further LHC constraints}\\ \mbox{Conclusions}\\ \mbox{Conclusions} \end{array}$

Resulting nUED bounds

Electroweak precision I: S, T, U parameters [TF, Pasold (2012); TF, Kong, Park (in prep.)]

In the presence of bulk masses and boundary terms, electroweak corrections are not oblique *but* if we assume a common boundary term *r* and a common boundary term μ , corrections are universal.

 \Rightarrow can be treated in terms of effective S, T, U parameters: [Carena, Ponton, Tait, Wagner (2002)]

$$\begin{split} S_{eff} &= S_{UED} \\ T_{eff} &= T_{UED} + \Delta T_{UED} = T_{UED} - \frac{1}{\alpha} \frac{\delta G_f}{G_f^{obl}} \\ U_{eff} &= U_{UED} = \Delta U_{UED} = U_{UED} + \frac{4 \sin^2 \theta_W}{\alpha} \frac{\delta G_f}{G_f^{obl}} \end{split}$$

Experimental values: [Gfitter(2011)]

 $S_{BSM} = 0.04 \pm 0.10$ $T_{BSM} = 0.05 \pm 0.11$ reference point: $m_h = 120 \,\text{GeV}, \, m_t = 173 \,\text{GeV},$ $U_{BSM} = 0.08 \pm 0.11$

with correlations of +0.89 (S - T), -0.45 (S - U), and -0.69 (T - U).

 $\begin{array}{l} \mbox{UED and Extensions}\\ \mbox{Constraints from pp} \rightarrow W' \rightarrow tb at LHC\\ \mbox{some Pre-LHC constraints}\\ \mbox{Outlook on further LHC constraints}\\ \mbox{Conclusions}\\ \mbox{Conclusions}\\ \end{array}$

At tree level in nUED/sUED, the only contributions to the effective parameters arise from W KK excitations, so that

$$\frac{\delta G_f}{G_f^{obl}} = m_W^2 \sum_{n=1}^{\infty} \frac{\left(\mathcal{F}_{002n}\right)^2}{m_W^2 + \left(\frac{2n}{R}\right)^2},$$

where again, \mathcal{F}_{002n} are the overlap integrals which depend on μ (sUED) or respectively r_f , r_{ew} (nUED). The leading one-loop contributions are

$$\begin{split} S_{UED} &\approx \quad \frac{4\sin^2\theta_W}{\alpha} \left[\frac{3g^2}{4(4\pi)^2} \left(\frac{2}{9} \sum_n \frac{m_t^2}{m_{t^{(n)}}^2} \right) + \frac{g^2}{4(4\pi)^2} \left(\frac{1}{6} \sum_n \frac{m_h^2}{m_{h^{(n)}}^2} \right) \right], \\ T_{UED} &\approx \quad \frac{1}{\alpha} \left[\frac{3g^2}{2(4\pi)^2} \frac{m_t^2}{m_W^2} \left(\frac{2}{3} \sum_n \frac{m_t^2}{m_{t^{(n)}}^2} \right) + \frac{g^2 \sin^2\theta_W}{(4\pi)^2 \cos^2\theta_W} \left(-\frac{5}{12} \sum_n \frac{m_h^2}{m_{h^{(n)}}^2} \right) \right], \\ U_{UED} &\approx \quad -\frac{4g^2 \sin^4\theta_W}{(4\pi)^2\alpha} \left[\frac{1}{6} \sum_n \frac{m_W^2}{m_{W^{(n)}}^2} - \frac{1}{15} \sum_n \frac{m_h^2 m_W^2}{m_{W^{(n)}}^4} \right]. \end{split}$$

Compare to experimental values (χ^2 -test) \Rightarrow Constraints on parameter space.

Constraints on the UED parameter space

EWPT II: (non-universal) four-fermi operator bounds

Parameterization of the four-fermi interactions:

$$\mathcal{L}_{\textit{eff}} \supset \sum_{f_1, f_2} \sum_{A, B=L, R} \eta^s_{f_1 f_2, AB} \frac{4\pi}{(\Lambda^s_{f_1, f_2, AB})^2} \overline{f}_{1, A} \gamma^{\mu} f_{1, A} \overline{f}_{2, B} \gamma_{\mu} f_{2, B},$$

where $f_{1,2}$ are the contributing fermions and $\eta^s_{l_1 l_2, AB} = \pm 1$. Four-fermi interaction bounds: [PDG 2011]

TeV	eeee	ее µµ	θθ ττ	eeee	qqqq	eeuu	eedd
Λ_{LL}^+	> 8.3	> 8.5	> 7.9	> 9.1	> 2.7	> 23.3	> 11.1
Λ_{LL}^{-}	> 10.3	> 9.5	> 7.2	> 10.3	2.4	> 12.5	> 26.4

Effective four-fermi operators in UED:

$$\begin{aligned} \mathcal{L}_{eff}^{UED} & \supset \quad 4\pi N_c \sum_{n=1}^{\infty} \left(\mathcal{F}_{00}^{2n}(r/L,\mu L) \right)^2 \times \left[\frac{3}{5} \frac{\alpha_1 Y_{e_A} Y_{q_B}}{Q^2 - M_{B_{2n}}^2} + \frac{\alpha_2 T_{e_A}^3 T_{q_B}^3}{Q^2 - M_{W_{2n}^3}^2} \right] \\ & \approx \quad -12\pi \sum_{n=1}^{\infty} \left(\mathcal{F}_{00}^{2n}(r/L,\mu L) \right)^2 \times \left[\frac{3}{5} \frac{\alpha_1 Y_{e_A} Y_{q_B}}{M_{B_{2n}}^2} + \frac{\alpha_2 T_{e_A}^3 T_{q_B}^3}{M_{W_{2n}^3}^2} \right], \end{aligned}$$

Constraints on the UED parameter space

Dark Matter relic abundance

- Obtaining (at most) as much DM as observed by WMAP yields an upper bound on m_{LKP}.
- In Minimal UED, the correct relic abundance is obtained for
 - $~~m_{LKP}\sim 1.5\,{\rm TeV}$ if 2nd KK mode s-channel resonances and co-annihilation are taken into account $_{\rm [Belanger \, et\, al.\,(2010)]}$
 - $\circ~m_{LKP}\sim 800~{
 m GeV}$ in the absence of co-annihilation [Kong, Matchev (2005); Burnell, Kribs (2005)]
 - ∘ *s*-channel resonances and co-annihilation only occur if the KK mass spectrum is given by $m_n \approx n/R \rightarrow$ can be ignored for $\mu L, r/L \gtrsim .1$.

In this case, the relic density can be calculated in the standard way from the non-relativistic limit of the annihilation X-section $\sigma_{tree}v = a + bv^2 + O(v^4)$ with

[Kong,Matchev (2005)]

$$\begin{aligned} a &= \sum_{f} \frac{32\pi \alpha_{Y}^{2} N_{c} m_{\gamma_{1}}}{9} - \left(\frac{Y_{f_{L}}^{4}}{(m_{\gamma_{1}}^{2} + m_{f_{L1}}^{2})^{2}} + \frac{Y_{f_{R}}^{4}}{(m_{\gamma_{1}}^{2} + m_{f_{R1}}^{2})^{2}} \right) \\ b &= -\sum_{f} \frac{4\pi \alpha_{Y}^{2} N_{c} m_{\gamma_{1}}}{27} - \left(Y_{f_{L}}^{4} \frac{11m_{\gamma_{1}}^{4} + 14m_{\gamma_{1}}^{2}m_{f_{L1}}^{2} - 13m_{f_{L1}}^{4}}{(m_{\gamma_{1}}^{2} + m_{f_{L1}}^{2})^{4}} + \right. \\ \left. Y_{f_{R}}^{4} \frac{11m_{\gamma_{1}}^{4} + 14m_{\gamma_{1}}^{2}m_{f_{R1}}^{2} - 13m_{f_{R1}}^{4}}{(m_{\gamma_{1}}^{2} + m_{f_{R1}}^{2})^{4}} \right) \end{aligned}$$

Constraints on the UED parameter space

Combined constraints on the UED parameter space (pre-LHC)

Outlook on further LHC constraints

Our W' analysis was particularly simple because

- for the signal, only one resonance $(W^{(2)})$ plays a role,
- the only relevant BSM coupling is the $Q^{(0)}Q^{(0)}W^{(2)}$ coupling.

⇒ This justifies to simply use model-independent bounds on $\frac{g_{200}}{g_{000}}(m_{W^{(2)}})$ provided by Atlas/CMS.

This does not hold for other channels. Example: resonant $pp \rightarrow X \rightarrow II$ ("Z' searches")

- Contributing resonances: $Z^{(2)}$, $\gamma^{(2)}$,
- relevant couplings: $q^{(0)}q^{(0)}Z^{(2)}/\gamma^{(2)}$ and $l^{(0)}l^{(0)}Z^{(2)}/\gamma^{(2)}$ where $q \in \{Q, U, D\}$ and $l \in \{L, E\}$,
- which are relevant for the process *and* branching ratios.

Resulting bound on the parameter space

 \Rightarrow need to make simplifying parameter choices and use event generators.

Example: resonance search in the di-lepton channel

- We assume universal boundary localized terms $r \equiv r_B = r_W = r_H = r_q = r_I$ and universal bulk mass terms $\mu \equiv \mu_q = \mu_I$.
- We use CalcHEP and CTEQ 5M PDF to evaluate cross sections.
- We compare results to current CMS bounds (CMS PAS EXO-12-015; 7 TeV run and 4.1 fb⁻¹ at 8 TeV)

Preliminary

Red: contours of maximal R^{-1} allowed by WMAP

Yellow: Parameter region allowed by resonance search in the di-lepton channel

Conclusions and Outlook

Conclusions:

- Modifications of the KK mass spectrum can occur due to boundary localized kinetic terms or fermion bulk mass terms.
- In both cases, the KK wave functions are altered, which implies interactions of Standard Model fermions with all even KK modes of the gauge bosons.
- Combination of DM, electroweak, and W', Z', γ', g', ... LHC constraints put substantial bounds on bulk masses while still allowing for large boundary kinetic terms.
- The presented results are only a first step. There is lots of work to do in terms of precision and more systematic studies of the general parameter space.