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UED: The basic setup

• UED models are models with flat, compact extra dimensions
in which all fields propagate. 5D and 6D: [Appelquist, Cheng, Dobrescu,(2001)]

see [Dobrescu, Ponton (2004/05), Cacciapaglia et al. , Oda et al. (2010)] for further 6D compactifications.

• The Standard Model (SM) particles are identified with the lowest-lying modes
of the respective Kaluza-Klein (KK) towers.

• Here, we focus on one extra dimension. Compactification on S1/Z2;
x5 ≡ y ∈ [−πR/2, πR/2] ≡ [−L, L]
◦ allows for chiral zero mode fermions
◦ allows for gauge field zero modes without additional scalars

• The presence of orbifold fixed points breaks 5D translational invariance.
⇒ KK-number conservation is violated, but

a discrete Z2 parity (KK-parity) remains.
⇒ The lightest KK mode (LKP) is stable.
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(M)UED pheno review

Phenomenological constraints on the compactification scale R−1

• Lower bounds:
◦ FCNCs [Buras, Weiler et al. (2003); Weiler, Haisch (2007)]

R−1 & 600 GeV at 95% cl.
◦ Electroweak Precision Constraints [Appelquist, Yee (2002); Gogoladze, Macesanu (2006); Gfitter (2011)]

R−1 & 750 GeV for mH = 125 GeV at 95% cl.
◦ no detection of KK-modes at LHC, yet [Murayama et al. (2011)]

R−1 & 600 GeV at 95% cl.
• Upper bound:
◦ preventing too much dark matter by B(1) dark matter

R−1 . 1.5TeV [Belanger et al. (2010)]

“Standard” mass spectrum:

m2
φ(n) = (

n
R

)2 + m2
φ,SM + δm2

φ(n)

Note:
UED Phenomenology depends sensitively on the KK mode mass spectrum.
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Relevance of the detailed mass spectrum

[Cheng, Matchev, Schmaltz, PRD66 (2002) 056006]

The KK mass spectrum determines
decay channels, decay rates, branching
ratios and final state jet/lepton energies
and MET at LHC.
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[Belanger, Kakizaki, Pukhov, JCAP 1102 (2011) 009]

The DM relic density is highly sensitive to
mass splittings at the first and between
the first and second KK level.
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Generalized UED

• UED is a five dimensional model⇒ non-renormalizable.
• It should be considered as an effective field theory with a cutoff Λ.
• Naive dimensional analysis (NDA) result: Λ . 50/R.

A light Higgs and vacuum stability even implies Λ . 6/R. [ Ohlsson et al. (2011)]

if higher dimensional operators and a Higgs brane mass are not included.

• Assumption in MUED: all higher dimensional operators vanish at Λ.
• Effective field theory⇒ include all operators allowed by symmetries.

1. Bulk mass terms for fermions (dim = dim(L))⇒ split UED (sUED),

2. kinetic and mass terms at the orbifold fixed points,
(dim = dim(L) + 1; radiatively induced in MUED)
⇒ nonminimal UED (nUED),

3. bulk or boundary localized interactions (dim > dim(L) + 1)

The former two operator classes modify the free field equations
and thereby alter the Kaluza-Klein decomposition
⇒ different mass spectrum and different KK wave functions.
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mass modifying operators

In sUED, a KK parity conserving fermion bulk mass term is introduced.
[Park, Shu (2009); Csaki et al. (2001)]

S ⊃
∫

d5x − µθ(y)ΨΨ.

In nUED one includes the boundary kinetic action

Sbd =

∫
M

∫
S1/Z2

d5x
(
− rB

4ĝ2
1

BµνBµν − rW

4ĝ2
2

W a
µνW a,µν − rG

4ĝ2
3

GA
µνGA,µν

+rhΨh /DΨh + rH(DµH)†DµH
)
×
[
δ

(
y − πR

2

)
+ δ

(
y +

πR
2

)]
,

where h = R, L represents the chirality.
For simplicity, in what follows we consider a common electroweak boundary
parameter rB = rW = rH ≡ rew . For the generic case, c.f. [TF,Menon,Phalen(2009)].
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Kaluza-Klein decomposition

KK decomposition: ΨR(x , y) =
∞∑

n=0

Ψ
(n)
R (x) f (n)R (y) , ΨL(x , y) =

∞∑
n=0

Ψ
(n)
L (x) f (n)L (y).

• Bulk mass terms modify the 5D EOM.
• BLKTs modify the boundary conditions of this Sturm-Liouville problem.
⇒ KK-masses and wave-functions are modified.
Solutions for a fermion with left-handed zero mode:

KK zero modes even numbered KK-modes odd numbered KK-modes

f ( 0 )
L (y) = N (0)

L eµ|y| f (n)L (y) = N (n)
L (cos(kny) f (n)L (y) = N (n)

L sin(kny)
+ µ

kn
sin(kn|y |)

)
f (0)R (y) = 0 f (n)R (y) = N (n)

R sin(kny) f (n)R (y) = N (n)
R (cos(kny)

− µ
kn

sin(kn|y |)
)

k2
0 = −µ2 tan(knL) = − (1+rµ)

rkn
tan(knL) = − (rm2

n+µ)
kn

and mn =
√

k2
n + µ2.

(Solutions for left-handed zero mode: L↔ R and µ→ −µ,
Solutions for gauge bosons / scalars: µ→ 0)
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Masses

Masses of the first and second KK
mode for different µ (mn vs. r/L)

Masses of the first and second KK
mode (r/L vs. µL for R−1 = 500 GeV)
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Couplings

Coupling g(1)f (1)f (0)

(normalized w.r.t. g(0)f (0)f (0) coupling)
Coupling g(2)f (0)f (0)

(normalized w.r.t. g(0)f (0)f (0) coupling)
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Constraints from pp → W (2) → tb [TF, Menon, Sullivan (2012)]

The KK number violating couplings in nUED and sUED imply W ′,Z ′, g′, ... - like
signatures from the s-channel resonances of W (2),Z (2), γ(2),G(2) at LHC.
We first focus on pp → W ′ → tb.

 Mass [GeV]RW'
800 1000 1200 1400 1600 1800 2000 2200

tb
) 

[p
b]

→
R

W
'

→
(p

p
σ

-210

-110

1

CMS Preliminary  = 7 TeVs at -15.0 fb

 1≥ 
b tags

+jets Nµe/
BDT Analysis

Boos et. al., PLB 655 (2007) 245-250

95% C.L. observed

95% C.L. expected

 expectedσ1±

 expectedσ2±

800 1000 1200 1400 1600 1800 2000

0.4

0.6

0.8

1.0

1.2

1.4

mW H2L

g 2
00

g 0
00

CMS bounds on pp → W ′ → tb CMS bounds on pp → W ′ → tb,
5fb−1@

√
s = 7 TeV, [CMS PAS EXO-12-001] converted into a bound on g′/g

for ATLAS bounds, c.f. [arXiv:1205.1016]

for earlier W ′ bounds c.f. Sullivan (2003)
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Resulting sUED bounds
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Resulting nUED bounds
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Electroweak precision I: S,T ,U parameters [TF, Pasold (2012); TF, Kong, Park (in prep.)]

In the presence of bulk masses and boundary terms, electroweak corrections
are not oblique but if we assume a common boundary term r and a common
boundary term µ, corrections are universal.
⇒ can be treated in terms of effective S,T ,U parameters: [Carena, Ponton, Tait, Wagner (2002)]

Seff = SUED

Teff = TUED + ∆TUED = TUED −
1
α

δGf

Gobl
f

Ueff = UUED = ∆UUED = UUED +
4 sin2 θW

α

δGf

Gobl
f

Experimental values: [Gfitter(2011)]

SBSM = 0.04± 0.10

TBSM = 0.05± 0.11 reference point: mh = 120 GeV, mt = 173 GeV,

UBSM = 0.08± 0.11

with correlations of +0.89 (S − T ), −0.45 (S − U), and −0.69 (T − U).
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At tree level in nUED/sUED, the only contributions to the effective parameters
arise from W KK excitations, so that

δGf

Gobl
f

= m2
W

∞∑
n=1

(F002n)2

m2
W +

( 2n
R

)2 ,

where again, F002n are the overlap integrals which depend on µ (sUED) or
respectively rf , rew (nUED).
The leading one-loop contributions are

SUED ≈
4 sin2 θW

α

[
3g2

4(4π)2

(
2
9

∑
n

m2
t

m2
t(n)

)
+

g2

4(4π)2

(
1
6

∑
n

m2
h

m2
h(n)

)]
,

TUED ≈
1
α

[
3g2

2(4π)2

m2
t

m2
W

(
2
3

∑
n

m2
t

m2
t(n)

)
+

g2 sin2 θW

(4π)2 cos2 θW

(
−

5
12

∑
n

m2
h

m2
h(n)

)]
,

UUED ≈ −
4g2 sin4 θW

(4π)2α

[
1
6

∑
n

m2
W

m2
W (n)

−
1

15

∑
n

m2
hm2

W

m4
W (n)

]
.

Compare to experimental values (χ2-test)⇒ Constraints on parameter space.

Thomas Flacke Phenomenological Implications of general UED



UED and Extensions
Constraints from pp → W ′ → tb at LHC

some Pre-LHC constraints
Outlook on further LHC constraints

Conclusions

Constraints on the UED parameter space
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EWPT II: (non-universal) four-fermi operator bounds

Parameterization of the four-fermi interactions:

Leff ⊃
∑
f1,f2

∑
A,B=L,R

ηs
f1f2,AB

4π
(Λs

f1,f2,AB)2 f 1,Aγ
µf1,Af 2,Bγµf2,B,

where f1,2 are the contributing fermions and ηs
f1f2,AB = ±1.

Four-fermi interaction bounds: [PDG 2011]

TeV eeee eeµµ eeττ ```` qqqq eeuu eedd
Λ+

LL > 8.3 > 8.5 > 7.9 > 9.1 > 2.7 > 23.3 > 11.1
Λ−LL > 10.3 > 9.5 > 7.2 > 10.3 2.4 > 12.5 > 26.4

Effective four-fermi operators in UED:

LUED
eff ⊃ 4πNc

∞∑
n=1

(
F2n

00 (r/L, µL)
)2
×

3
5
α1YeA YqB

Q2 −M2
B2n

+
α2T 3

eA T 3
qB

Q2 −M2
W 3

2n


≈ −12π

∞∑
n=1

(
F2n

00 (r/L, µL)
)2
×

3
5
α1YeA YqB

M2
B2n

+
α2T 3

eA T 3
qB

M2
W 3

2n

 ,
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Constraints on the UED parameter space
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Dark Matter relic abundance

• Obtaining (at most) as much DM as observed by WMAP
yields an upper bound on mLKP .

• In Minimal UED, the correct relic abundance is obtained for
◦ mLKP ∼ 1.5 TeV if 2nd KK mode s-channel resonances and co-annihilation are

taken into account [Belanger et al. (2010)]

◦ mLKP ∼ 800 GeV in the absence of co-annihilation [Kong, Matchev (2005); Burnell, Kribs (2005)]

◦ s-channel resonances and co-annihilation only occur if the KK mass spectrum is
given by mn ≈ n/R → can be ignored for µL, r/L >∼ .1.

In this case, the relic density can be calculated in the standard way from the
non-relativistic limit of the annihilation X-section σtreev = a + bv2 +O(v4) with
[Kong,Matchev (2005)]

a =
∑

f
32πα2

Y Ncmγ1
9

(
Y 4

fL

(m2
γ1 + m2

fL1
)2

+
Y 4

fR

(m2
γ1 + m2

fR1
)2

)

b = −
∑

f
4πα2

Y Ncmγ1
27

(
Y 4

fL

11m4
γ1 + 14m2

γ1 m2
fL1
− 13m4

fL1

(m2
γ1 + m2

fL1
)4

+

Y 4
fR

11m4
γ1 + 14m2

γ1 m2
fR1
− 13m4

fR1

(m2
γ1 + m2

fR1
)4

)
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Constraints on the UED parameter space
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Combined constraints on the UED parameter space (pre-LHC)
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Outlook on further LHC constraints

Our W ′ analysis was particularly simple because
• for the signal, only one resonance (W (2)) plays a role,
• the only relevant BSM coupling is the Q(0)Q(0)W (2) coupling.

⇒ This justifies to simply use model-independent bounds on g200
g000

(mW (2))

provided by Atlas/CMS.

This does not hold for other channels.
Example: resonant pp → X → ll (“Z ′ searches”)
• Contributing resonances: Z (2), γ(2),
• relevant couplings: q(0)q(0)Z (2)/γ(2) and l (0)l (0)Z (2)/γ(2)

where q ∈ {Q,U,D} and l ∈ {L,E},
• which are relevant for the process and branching ratios.

Resulting bound on the parameter space
⇒ need to make simplifying parameter choices and use event generators.
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Example: resonance search in the di-lepton channel

• We assume universal boundary localized terms r ≡ rB = rW = rH = rq = rl

and universal bulk mass terms µ ≡ µq = µl .
• We use CalcHEP and CTEQ 5M PDF to evaluate cross sections.
• We compare results to current CMS bounds

(CMS PAS EXO-12-015; 7 TeV run and 4.1 fb−1 at 8 TeV)

Preliminary

/,

Red: contours of maximal R−1

allowed by WMAP

Yellow: Parameter region
allowed by resonance search
in the di-lepton channel
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Conclusions and Outlook

Conclusions:

• Modifications of the KK mass spectrum can occur due to boundary localized
kinetic terms or fermion bulk mass terms.

• In both cases, the KK wave functions are altered, which implies interactions
of Standard Model fermions with all even KK modes of the gauge bosons.

• Combination of DM, electroweak, and W ′,Z ′, γ′, g′, ... LHC constraints put
substantial bounds on bulk masses while still allowing for large boundary
kinetic terms.

• The presented results are only a first step.
There is lots of work to do in terms of precision
and more systematic studies of the general parameter space.
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