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Observations suggest the late-time cosmic acceleration.

Equation of state: w = Ppg/ppg (Ibr : pressure, ppg : energy density)

For constant w models: w = —1.0017)355s  (SNIa)
(Suzuki et al, 2011) w= — 1,()13J_r8'8(7j§ (SNIa+CMB+BAO-+HO0)

Dark energy candidates

. . . Equation of state
® The simplest candidate: Cosmological constant w=—1

- If the cosmological constant originates from the vacuum energy,
its energy scale 1s enormously larger than the dark energy scale.

® Dynamical dark energy models

Quintessence, k-essence, chaplygin gas, coupled dark energy,
f (R) gravity, scalar-tensor theories, DGP model, Galileon,...



Click to LOOK INSIDE!

Dynamical dark energy models Amendola and S.T.

Cambridge University
Press (2010)

1. Modified matter models

@ Quintessence: Acceleration driven by the potential energy V(¢) of a field ¢

L=X-V(¢) X =—¢"0,90,¢/2
@ K-essence: Acceleration driven by the kinetic energy X of a field ¢
L=K(p,X) e.g. Dilatonic ghost condensate:

K=—-X+ ce’X?
2. Modified gravity models

© f(R) gravity: The Lagrangian is the function of a Ricci scalar R.
@ Scalar-tensor gravity: £ = F(¢)R + K(¢, X)

@ DGP model: Acceleration by the gravitational leakage to extra dimensions.

@ Galileon gravity: The Lagrangian is constructed to satisfy the Galilean
symmetry 0,¢ — 0,¢ + b, in the flat spacetime.

Suchas X [lp
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Most general single-field scalar-tensor theories with

second-order equations of motion

Horndeski (1973)
Deffayet et al (2011)

S = ./d4x vV —4g [K(¢7 X) - G3<¢7 X)Ekb + £4 + LS] Charmousis et al (2011)

Kobayashi et al (2011)
Li=Ga(¢, X) R+ Gax [(06)” — (V.Vu9) (VIV"9)]
L5 = G3(6,X) Gy (V°V76) = <G5 x[(06)° = 3(06) (Vu909) (VAV79) + 2(V#Va) (VY 50) (VOV,.9)
This action covers most of the dark energy models proposed in literature.
® LCDM: K =-A, G3=0, Gy=M3/2, G5=0
® (Quintessence and K-essence: K = K(¢, X), Gz =0, G4= M§1/2, Gs =0

® f(R) gravity and scalar-tensor gravity: G, = F(¢), Gs=0, G5=0

C3

1
X, Gu=gMi-EXP Gi= X7

® Galileon: K =—-c;X, Gs= SMP - —
® Gauss-Bonnet coupling ¢(¢)G
K =8W(@X?%23-InX), G3=4®)(¢)X(7-3InX),

Gy =4 (X 2-InX), Gs=-4W(p)InX
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Horndeski’s paper in 1973

International Journal of Theoretical Physics, Vol. 10, No. 6 (1974), pp. 363-384

Second-Order Scalar-Tensor Field Equations
in a Four-Dimensional Space

Gregory Walter Horndeski

MathSciNet

Ph.D. University of Waterloo 1973 [l e [}

Dissertation: Invariant Variational Principles and Field Theories

Advisor: David Lovelock
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Friedmann equations on the flat FLRW background

Horndeski’
S— / d*ey/=gK($, X) — Ga(, X)T6 + La+ Lol + S + 80 ooy

Non-relativistic  Radiation
matter

The background equations of motion are
3M§1H2 = PDE 1+ Pm + Pn
—2M3H = ppg + Pog + pm + 4pr/3

ppE and Ppg are the density and pressure of the “dark” component.

poE = 2XK x — K —2XG34 +6XdHG3 x — 6H?>Ga + 3M2H? + 24H* X (G4 x + XGa xx)
—12HX ¢G4 4x — 6HOGy s — 6H> X (3G5.4 +2X G5 px) + 2H*X$(5G5 x +2X G5 xx)

The equation of state of dark energy 1s given by

The evolution of w 1s different
w = Ppr/ppE ‘

depending on dark energy models.
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Dark energy equation of state: modified matter models
(1) LCDM | B = —1

(2) Quintessence | B 1w depends on the potential.

(a) Freezing models (b) Thawing models c.g. PNGB
V(0) = p* [1 + cos(¢/ )] boson

V(g)=M""¢"", (n>0)

10 1 l”i .\
Caldwell and v] ) ]
Linder (2005) & w < () W > 0
\= Y
w decreases toward — 1 w 1ncreases from — 1

(3) k-essence

Typically the evolution of w is similar to that in thawing models.
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Quintessence equation of state: Freezing and Thawing models

The field equation of state satisfies

o = (1 —w) [—3(1+w)+)\\/3(1+w)9¢] where a=-Mle o, - L0
pl

There are two distinct cases
where w 1s constant.

. . . 3(1 +w
(i) Tracker solutions (freezing models): [{ = %
- ['=VVg/V2>1
Tracking (the decrase of A) occurs for b6/ Vs Steinhardt ot al
Along the tracker w is nearly constant: w = wq = _22(£ = ? (1998)

For the potential V(¢) = M*tP¢~P, we have wy = —2/(p + 2). (matter era)

(ii) Thawing models: [, ~ —1

Initially w 1s close to —1, but w deviates from —1 at late times.
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Tracker solutions Chiba (2010)

Considering a homogeneous perturbation around w = wq), it follows that

(a) + f: (_1)n—1w(0)(1 B w(20)) ( Qp(a) )n Two parameters
w(a) = w
o L (n + Lw(o) + 2n(n + 1)w%0) 1 —Qp(a) w(oy and Qg
g , | | _
V(o) = MP¢ ! —+, - /023 | _ Qpoa 3w ©
(¢) ¢ 777777777 (,%57 | Q¢(a) Q¢0a_3w(°) £ 1 — qu)O
N 8!/7 _
e . _2r-1) 2
: | YO=Tr o1 T Tpre

- for V(¢) = M*TPp=F
S (¢) ¢

The analytic solution shows
good agreement with
numerical results.

"P&
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Qq)o

Likelihood analysis for tracker solutions lczhln(l;e;sl;; Feltice, Sl.lT(.;O
(SNIa +CMB+BAO) . [astro-ph.CO]

With the BAO BOSS data: Dy /rs = 13.67 +£0.22 at z = 0.57

\ Without the BAO BOSS data
0.745 — /
074 I 9 Without the quintessence prior on w(g),
0735 | w(g) 1s bounded to be
073 | —1.211 < w( < —0.998  (20)
0725 1 Even with the prior wgy > —1,
0721 w(py is tightly bounded to be
0.715 r 0.95 (2 )
Wy < —U. o
071 | ©
0.705 | » p<0.1 for V(¢) = M¥ry=?
07 1 1 1 1 1 1
~125 -12 -1.15 -1.1 =105 -1 -0.95 -0.9 With the BAO data, even the

V) ACDM model is disfavored

over the models with w < —1.
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Approximate formula for thawing models  Dutta and Scherrer (2008)

Using the approximation |1 + w| < 1 around the initial field value ¢;, we have

(K — F(a))(F(a) + D" + (K + F(a))(F(a) — D"

w(a) = =1+ (1 + wg)a® &1 [

(K — Q;()l/g)(ﬂq_ml/g 0K 4 (K + Q;()l/g)md_)()l/g _ 1)K wp is the value of w today.
. Three parameters
where _ g AMG Voo (1) _ IR
K \/1 ;V(qji) . Fla) \/1+(Q¢0 1)a-3 w0, K, Qe
T Observational constraints Chiba, De Felice,
- V(¢) = A" [1+cos(o/f)] : 10 N —— S.T., 1210.3859
oo - (a) K =1.9 | ; With the
: (b) K = 2. BOSS data
19 % _ (C) K 8. °T | .
_ M —— Without the
~ [ 41 BOSS data
1948% |-
- 2 -
1% = 0 o i

) . ) -2 -18 -16 -14 =12 -1 -0.8 -0.6
Solid curves: numerical solutions
Dashed curves: approximation

. | . . . | . . . |

Yo
R I With the BAO data the upper bound on
% %8 4 o4 o

% " wq is very close to —1.




Dark energy equation of state: modified gravity models

. Viable dark energy models were proposed by Amendola et al,
(1) f(R) gl'aVlty Hu and Sawicki, Starobinsky, Appleby and Battye, and S.T. in 2007.

Hu and Sawicki model

R = R~ ARy 1%53): (0 (R) = R~ ARo[l — (R/Ro) "]
for R > RO (close to LCDM)

Ro ~ HZ2 for A = O(1)

Dark energy equation of state 0% | | |
. Weft g4 b Taken from n=21=0985 — ||
WDE = 1— frQ ' Motohashi et al. | P=3A=073 -
,R2Em 096 [ n=d A=0.61 »oeveeee 4
where ACDM ——
_ , , 098 1)
’weff — —1 —2H/(3H )? Qm :pm/(3f’RH ) E 4.00
g
. -1.02 |
wpr < —1 without ghosts
-104 |
At the background level, f(R) gravity is consistent 106 |
with observations. .08 ! ! !




(2) Covariant Galileon Nicolis et al., Deffayet et al. (2008)

In the DGP braneworld model a brane-bending mode ¢ gives rise to
a field self-interaction of the form D¢(8“ gb(‘)ﬂgb)
mmp However the DGP model is plagued by the ghost problem.

mmmp This problem can be evaded by considering more general field self
interactions respecting the Galilean symmetry: 0,¢ — 0,¢ + b,

_ _c3 15 C4 o 3¢5 9 . .
K = —c X, G3 = WX’ Gy = §Mp1 — WX : Gy = WX (Horndeski’s action)
0.0 — ‘
There 1s a tracker solution with T
I J" | "
-0.50 [ o i —-—--(a)] A
, oo ; — — -(b)
wpg = —2 (matter era) pe Felice, S.T. 2010) SR -
’ (e)

!
1

However the tracker 1s disfavored from the -
joint data analysis of SNIa, CMB, BAO. el

_ o
-2

Nesseris, De Felice, S.T. (2010) ’ : log,, 42y ’

~—___ Late-time
I 5

tracking

oo

Tracker

¢50<H_1 ]
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Discrimination of models from density perturbations

In order to place constraints on dark energy models from the observations of
large-scale structure, weak lensing, CMB (ISW effect) etc, we need to study
the evolution of density perturbations.

CMB

Multipole moment {
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Perturbed metric:  ds® = —(1 + 2U)dt* + a(t)(1 + 2®)d;;dz"dx?

Non-relativistic matter: P = pPm(t) + 0pm (¢, X)

with the four velocity w* = (1 — U, V'v)

v 1s the rotational-free velocity potential.
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Density perturbations in the Horndeski’s theory

SE= /d4a:\/—g [K(¢, X) — G3(p, X)Tp+ L4+ L5] + S, + S--
§ = 6pm/pm and 6 = V2v obey

d = —0 / a — 3P ﬁ The growth rate of matter perturbations
6= _H6O+ ( 1.2 /a)¥ is related with the peculiar velocity.

3aH
12
Under the quasi-static approximation on sub-horizon scales, it follows that

0

We introduce the gauge-invariant density contrast: § = § +

.. . k2 k2 (Modified Poisson
Om +2Hoy + 50 =0 and g0 AnGerpmdn | 20

where

QMSI[(BGDQ — B2) (k/a)z — BgM?] . The evolution of ¥ and 4,,, is
(A2Bg + B2Dg — 2AB7Bs) (k/a)® — B2M? ﬁ generally different from that in GR.

eff —

Ag = —2XG3,X —4H (G4’X + 2XG4’X)() gb + 2G4’¢ + 4XG4,¢X

+4H (G54 + XGs.9x) 6 — 2H?X (3G5.x +2XG5.xx) »---

M?=_—K
A See De Felice, Kobayashi, S.T. (2011) for full perturbation equations.
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Constraints from redshift-space distortions (RSD)

The galaxy perturbation 9, is related with oy,
via the bias factor b, i.e., 0, = bd,,.

0 = V20 is related with f,, = 6, /(H6,m) via
9/(QH) =~ —fm5m which comes from 0 = —0/a — 3P
The galaxy power spectrum in the redshift space can be modelled as
S 4 is the cosine of the angle of the
Pg (k) - ng(k) T 2M2P99(k) + H PQQ (k) ’lkj; veztor and along the l?ne of Z;ight.

The real space The cross power The real space

alaxy power velocity power
galaxy p spectrum yP oy :
spectrum spectrum within the radius

(60'8)2 (bUS)(me'S) (fm08)2 8 h~1 Mpec.

og is the rms mass

fluctuations in spheres

The redshitft-space distortions are known as an

additive component by observing bog and f,,0s.




"
Quintessence and perfect fluid models in GR

Unless ¢? < 1, it is possible to obtain an analytic formula of f,,0s.

Expansion of w: w=wo+ Z Wi ()" 2, is the dark energy
n=1 density parameter.

The growth index v defined from f,, = (1 —€,)7 is given by
3(1 —wo) 3 (1 —wo)(2—3w0) —|—2w1(5—6w0)

= TR Y Q,
=5 6w, 2 (5 — 6wo)2(5 — 12uwp) +
. 1 0, &8 cn . . S.T., De Felice,
We obtain g gy — (1 —0,)7 05(z = 0) exp {3—% o=+ — ((Q0)" = (Q) )] } Aleaniz, 1210.4239.
x n=1
|[Constant w models
' @ weel2 The full numerical solutions (solid curves) show
05 EE)) ““:_;)1'8 ] excellent agreement with the above analytic
050 @ Ed)) “;82 ] estimation (dashed curves).
e) w=-0.

We carried out the likelihood analysis by using

im_ the recent RSD data and derived the bound

f08

—1.245 <w < —0.347 (lo)

05 | Data * ﬁ Still weak in current observations.




Constraints on Galileons from redshift-space distortions

The covariant Galileon corresponds to the choice

c3 1 Cy 3¢y o and [ are parameters
K:—CQX, G3:WX, G4:§M§1_WX2, GS:WXZ /j P
related to ¢4 and cs.
0.8 Covariant Galileon
. T T T T T T T T T
L H H (l=1347,=0442 4 PO T T S I T T T T O S S S T N T T S
_C_<1)var|a_n1t Ggl_ﬂgon a=1.360, [E=o.433 ——— i
rk'=30h 'Mpc = a=1.347,p=0.424 ------- 1 1.39 - =
F 7 /’\\\\ ACDM ---------- 1 : ]
0.7 | i N SDZ‘SdSFEgg —e—i {| — — — Union2 I
,,'// N\ WiggleZ —x— { 1| Constitution |
o *Ih08s —a— | 1.3 - |
L \ ] 38 - — u
0.6 // 3 1 30 h 1 MpC |
© RS s | }
) % |
JE # / ] - Instability
o5/ ¢ 5 1.37 - |
‘ H R : Z
04 _} H J[ NN 1.36 -
I A 1
k 1 e S b.
ol ]
0 0.5 1 1.35 -~
z e
Because of large growth rate of 042 0425 043

matter perturbations, the covariant . .
Okada, Totani, S.T. , arXiv:1208.4681

Galileon is excluded at more than

See also Appleby and Linder, arXiv: 1204.4314.
100 CL.
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Conclusions and Outlook

The cosmological constant 1s still consistent with observational data,
but it seems that the recent BAO data from BOSS favor the dark
energy equation of state less than -1.

4

This may imply some modifications of gravity (because it 1s possible
to explain w < -1 without having ghosts).

4

On the other hand, recent LSS observations such as RSD started
to constrain modified gravity models tightly.

Let’s see how future observations constrain dark energy!



