DOUBLE CHOOZ RESULTS

PPC 2012 meeting, Seoul

Jelena Maricic for Double Chooz Collaboration University of Hawaii November 8, 2012

Outline

- Introduction: observing neutrinos from nuclear reactors with Double Chooz
- Detector overview
- Double Chooz data analysis
 - Predicted neutrino rate and spectrum
 - Signal and event selection criteria
 - Detector systematic errors
 - Background estimation and measurement
- Oscillation analysis results and future prospects

Site in French Ardennes

Reactor Neutrino Detection Signature

Reactors as neutrino sources:

 $N_{V}(s^{-1}) = 6N_{Fiss}(s^{-1}) \approx 2 \times 10^{11} P(s^{-1})$

Chooz: P = 2x4.25 GW_{th} \Rightarrow N_v~2x10²¹S⁻¹

<u>Neutrino detection via inverse β decay</u>

 $\bar{\nu_e} + p^+ \rightarrow e^+ + n$

Double Chooz Scintillator

Double Chooz scintillator: -Solvent: 20% PXE $(C_{16}H_{18}) +$ 80% Dodecane $(C_{12}H_{24}) +$ PPO/Bis-MSB. - 1 g/l Gd(dpm)₃ tris-(2,6-tetramethyl-3,5-heptanedione) Gd(III)

8 10 12 MeV

2 4 6

The Double Chooz Far Detector

Calibration Glove Box

Jelena Maricic, University of Hawaii

<u>Outer Veto (OV)</u> plastic scintillator strips

Outer Steel Shielding 250 t steel (15 cm)

Inner Veto (IV)

90 m³ of scintillator in a steel vessel (10 mm) equipped with 78 PMTs (8 inches)

<u>Buffer</u>

110 m³ of mineral oil in a steel vessel (3 mm) equipped with 390 PMTs (10 inches)

<u>γ-Catcher (GC)</u>

22.3 m³ scintillator in an acrylic vessel (12 mm)

<u>Target</u>

10.3 m³ scintillator doped with 1g/l * of Gd compound in an acrylic vessel (8 mm)

Double Chooz θ_{13} Data Analysis

Jelena Maricic, University of Hawaii

Data taking is stable

Expected Neutrino Rate

Core thermal power

$$N_{\nu}^{\exp}(E,t) = \sum_{\substack{\text{Reactors}\\R=\{1,2\}}} \frac{N_{p} \varepsilon}{4\pi L_{R}^{2}} \times \frac{\langle P_{th,R}(t) \rangle}{\langle E_{f} \rangle_{R}(t)} \times \langle \sigma_{f} \rangle_{R}(E,t)$$

Precise weekly measurements of steam generator enthalpy balance. Monitoring every minute based on temperature in primary loop. Full error treatment by EDF

 $\delta P_{th}/P_{th} = 0.46\%$

Reactor core fuel composition

$$N_{v}^{\exp}(E,t) = \sum_{\substack{\text{Reactors}\\R=\{1,2\}}} \frac{N_{p}\varepsilon}{4\pi L_{R}^{2}} \times \frac{P_{th,R}(t)}{\langle E_{f} \rangle_{R}(t)} \times \langle \sigma_{f} \rangle_{R}(E,t)$$

Two validated reactor simulations:

- DRAGON: deterministic
- MURE (MCNP Utility for Reactor Evolution): Monte-Carlo Based
- Benchmarked against fuel assays:
 C. Jones et al. arxiv.org/pdf/1109.5379

Interaction Cross-Section

$$N_{v}^{\exp}(E,t) = \sum_{\substack{\text{Reactors}\\R=\{1,2\}}} \frac{N_{p}\varepsilon}{4\pi L_{R}^{2}} \times \frac{P_{th,R}(t)}{\left\langle E_{f}\right\rangle_{R}(t)} \times \left\langle \sigma_{f}\right\rangle_{R}(E,t)$$

$$\left\langle \sigma_{f} \right\rangle_{k} = \int_{0}^{\infty} dE \underbrace{S_{k}(E)}_{IBD} \sigma_{IBD}(E)$$

• Recalculations of spectra introduced normalization shift; "anomaly"?

- Th.A. Mueller et al, Phys.Rev. C83(2011) 054615.
- P. Huber, Phys.Rev. C84 (2011) 024617

Reference Spectra + Bugey4 "Anchor"

- Prompt signal Evis = [0.7, 12.2] MeV
- Delayed signal Evis = [6.0, 12.0] MeV
- Delayed Coincidence $\Delta t = [2, 100] \mu sec$
- Require $\Delta t_{\mu} > 1$ msec
- PMT light noise rejection cuts
 - PMT hits approx. homogeneous
 - PMT hits approx. coincident in time
- Multiplicity conditions:
 - No extra events around signal
 - (100 µs prior and 400 µs after prompt ev)
- Background rejection:
 - No coincident signal in OV
 - Require $\Delta t_{\mu} > 500$ msec if $E_{\mu} > 600$ MeV

Plus three irreducible backgrounds:

- Accidentals
- Cosmogenic ⁹Li
- Fast neutrons/stopping muons

Require $\Delta t_{\mu} > 500$ msec if $E_{\mu} > 600$ MeV

Trigger efficiency

- Threshold at 400keV (ε=50%)
- ε=100% above 700keV

- Prompt signal Evis = [0.7, 12.2] MeV
- Delayed signal Evis = [6.0, 12.0] MeV
- Delayed Coincidence $\Delta t = [2, 100] \mu sec$
- Require $\Delta t_{\mu} > 1$ msec
- PMT light noise rejection cuts
 - PMT hits approx. homogeneous
 - PMT hits approx. coincident in time
- Multiplicity conditions:
 - No extra events around signal
- Background rejection:
 - No coincident signal in OV

- Prompt signal Evis = [0.7, 12.2] MeV
- Delayed signal Evis = [6.0, 12.0] MeV
- Delayed Coincidence $\Delta t = [2, 100] \mu sec$
- Require $\Delta t_{\mu} > 1$ msec
- PMT light noise rejection cuts
 - PMT hits approx. homogeneous
 - PMT hits approx. coincident in time
- Multiplicity conditions:
 - No extra events around signal
- Background rejection:
 - No coincident signal in OV

- Prompt signal Evis = [0.7, 12.2] MeV
- Delayed signal Evis = [6.0, 12.0] MeV
- Delayed Coincidence $\Delta t = [2, 100] \mu sec$
- Require $\Delta t_{\mu} > 1$ msec
- PMT light noise rejection cuts
 - PMT hits approx. homogeneous
 - PMT hits approx. coincident in time
- Multiplicity conditions:
 - No extra events around signal
- Background rejection:
 - No coincident signal in OV

- Prompt signal Evis = [0.7, 12.2] MeV
- Delayed signal Evis = [6.0, 12.0] MeV
- Delayed Coincidence $\Delta t = [2, 100] \mu sec$
- Require $\Delta t_{\mu} > 1$ msec
- PMT light noise rejection cuts
 - PMT hits approx. homogeneous
 - PMT hits approx. coincident in time
- Multiplicity conditions:
 - No extra events around signal
- Background rejection:
 - No coincident signal in OV

- 41% of ⁹Li BG is rejected by additional muon veto (~5% livetime loss)
- 28% of fast neutron/stop μ BG is rejected by OV anticoincidence

Candidate Rate Variation

Neutrino rate

- Before ⁹Li reduction cut, no OV anticoincidence applied
- Not background-subtracted
- Rate consistent with expectation

Cross-check: Reconstructed Vertex Position

Prompt vertex XY position

Prompt vertex $Z\rho^2$ position

- Events well-localized within target
- Note: no spatial cuts applied in candidate selection

Detector calibration

Energy calibration: PMT and electronics gain non-linearity, correct for position dependence, correct for time stability, energy scale non-linearity Neutron detection efficiency calibration:

Energy & time window, Gd fraction, spill in/out effects <u>Goal: 0.5% total systematic error with 2 detectors!</u>

Natural sources:

- Spallation nH-capture peak – spacial non-unif. -Spallation n Gd-capture peak – time stability

Buffer guide tube

Gamma-catcher guide tube Energy scale Spill-in Neutron det. Eff.

LED LI system PMT and electronic gain non-linearity calibration

Z-axis (fish-line) and guide tube

Inside glove box: Z-axis setup

20

Inside clean tent:

2011/07/28 07:49

Design details: Articulated Arm

Detector Calibration

Energy Calibration

Energy scale

- Radioactive sources deployed into v-target and γcatcher
- Deployed in NT and GC:
- ¹³⁷Cs, ⁶⁰Co, ⁶⁸Ge, ²⁵²Cf

E_{vis} [MeV]

Detector Calibration

Neutron Detection Efficiency

Energy & time window, Gd fraction, spill in/out effects

• 252 Cf source deployed into v-target and γ -catcher

<u>Accidentals</u>

- Prompt: radiation hit on PMT
- Delayed: spallation neutron capture
- Prevented by radiopurity & shielding
- Measured from off-time windows: $0.261 + /- 0.002 \text{ day}^{-1}$

<u>Cosmogenic ⁹Li</u>

- Prompt: beta emission
- Delayed: neutrons from long-lived decays
- Measured from Δt_{μ} & spatial muon coincidence:

```
1.25 \pm - 0.54 \text{ day}^{-1}
```

<u>Fast-n & Stopping muons</u>

- Prompt: proton recoil or muon track
- Delayed: neutron capture or muon decay
- Measured from high-energy spectrum:
 0.67 +/- 0.20 day⁻¹

Check Rate vs. Reactor Power

One week of both reactors off data obtained. BG rate measured: 1.0 ± 0.4 events/day

Background rate consistent with estimation $(2.0\pm0.6 \text{ event/day})$

arXiv:1210.3748

Summary of Rate Uncertainties

Source		Uncertainty w.r.t. signal	
Statistics		1.1%	
Flux		1.7%	
	Energy response	0.3%	
Detector	E _{delay} containment	0.7%	
	Gd fraction	0.3%	1.0%
	Δt cut	0.5%	
	Spill in/out	0.3%	
	Trigger efficiency	<0.1%	
	Target H	0.3%	
Background	Accidental	< 0.1%	1.6%
	Fast-n + stop μ	0.5%	
	⁹ Li Jel	ena Maricic, t $1.4\%_0$ of Hawaii	

Summary of Candidates

	Both Reactors On	One Reactor $P_{th} < 20\%$	Total
Livetime [days]	139.27	88.66	227.93
IBD Candidates	6088	2161	8249
Prediction			
Reactor B1 v	2910.9	774.6	3685.5
Reactor B2 v	3422.4	1331.7	4754.1
⁹ Li	174.1	110.8	284.9
FN & SM	93.3	59.4	152.7
Accidentals	36.4	23.1	59.5
Total Prediction	6637.1	2299.7	8936.8

 Data divided into two integration periods based on reactor power

Allows use of changing signal/background ratio in fit

Double Chooz Prompt Spectrum

Data w/ Stat. Error Bars

Best Fit Prediction

(w/ Syst. Errors)

Null Oscillation Prediction

Backgrounds

Rate+Shape: $\sin^2 2\theta_{13} = 0.109 \pm 0.030$ (stat.) ± 0.025 (syst.)

 χ^2 /d.o.f. = 42.1/35

Rate-only: $\sin^2 2\theta_{13} = 0.170 \pm 0.035 \text{ (stat.)} \pm 0.040 \text{ (syst.)}$ Frequentist analysis: $\sin^2 2\theta_{13} = 0$ excluded at 99.8% (2.9 σ) Presented in arXiv:1207.6632, accepted by PRD Jelena Maricic, University of Hawaii

Summary and Prospects

Double Chooz updated measurement of θ₁₃, that includes rate + energy spectrum shape fit:

Rate+Shape: $\sin^2 2\theta_{13} = 0.109 \pm 0.030$ (stat.) ± 0.025 (syst.)

- Results obtained with far detector only: 99.8% exclusion of the zero θ_{13} .
- One full week of data taking with both reactors off : directly cross-check background estimates.
- Two detector phase to commence by the end of 2013.

Rate+Shape: $\sin^2 2\theta_{13} = 0.109 \pm 0.030$ (stat.) ± 0.025 (syst.)

Fit Parameter	Initial Value	Best-Fit Value
⁹ Li Bkg. 69 _{Li}	$(1.25 \pm 0.54) \mathrm{d^{-1}}$	$(1.00 \pm 0.29) d^{-1}$
FN/SM Bkg. $\epsilon_{FN/SM}$	$(0.67 \pm 0.20) \mathrm{d^{-1}}$	$(0.64 \pm 0.13) \mathrm{d}^{-1}$
Energy Scale α_E	1.000 ± 0.011	0.986 ± 0.007
$\Delta m_{31}^2 \ (10^{-3} \ {\rm eV}^2)$	2.32 ± 0.12	2.32 ± 0.12

Detector Calibration

Energy Calibration

- 1. PMT and electronics gain non-linearity calibration
 - LED light injection system
- Correct for position dependence
 - Spallation neutron H captures
- 3. Correct for time stability
- Spallation neutron Gd captures
- 4. Energy scale
 - Radioactive sources deployed into v-target and γ-catcher

Spallation n-H Detector Response Map

Neutron Detection Efficiency

Energy & time window, Gd fraction, spill in/out effects

• 252 Cf source deployed into v-target and γ -catcher

Detector Calibration

Energy Calibration

- 1. PMT and electronics gain non-linearity calibration
 - LED light injection system
- 2. Correct for position dependence
 - Spallation neutron H captures
- 3. Correct for time stability
 - Spallation neutron Gd captures
- 4. Energy scale
 - Radioactive sources deployed into v-target and γ-catcher

Neutron Detection Efficiency

Energy & time window, Gd fraction, spill in/out effects

• 252 Cf source deployed into v-target and γ -catcher

Spallation n-H capture peak position after stability correction

<u>Accidentals</u>

- Prompt: radiation hit on PMT
- Delayed: spallation neutron capture
- Prevented by radiopurity & shielding
- Measured from off-time windows: 0.261 +/- 0.002 day⁻¹

<u>Cosmogenic ⁹Li</u>

- Prompt: beta emission
- Delayed: neutrons from long-lived decays
- Measured from Δt_µ & spatial muon coincidence: 1.25 +/- 0.54 day⁻¹

Fast-n & Stopping muons

- Prompt: proton recoil or muon track
- Delayed: neutron capture or muon decay
- Measured from high-energy spectrum: 0.67 +/- 0.20 day⁻¹

Jelena Maricic, University of Hawaii

<u>Accidentals</u>

- Prompt: radiation hit on PMT
- Delayed: spallation neutron capture
- Prevented by radiopurity & shielding
- Measured from off-time windows: 0.261 +/- 0.002 day⁻¹

<u>Cosmogenic ⁹Li</u>

- Prompt: beta emission
- Delayed: neutrons from long-lived decays
- Measured from Δt_{μ} & spatial muon coincidence: 1.25 +/- 0.54 day⁻¹

<u>Fast-n & Stopping muons</u>

- Prompt: proton recoil or muon track
- Delayed: neutron capture or muon decay
- Measured from high-energy spectrum: 0.67 +/- 0.20 day⁻¹

<u>Accidentals</u>

- Prompt: radiation hit on PMT
- Delayed: spallation neutron capture
- Prevented by radiopurity & shielding
- Measured from off-time windows: 0.261 +/- 0.002 day⁻¹

<u>Cosmogenic ⁹Li</u>

- Prompt: beta emission
- Delayed: neutrons from long-lived decays
- Measured from Δt_{μ} & spatial muon coincidence: 1.25 +/- 0.54 day⁻¹

<u>Fast-n & Stopping muons</u>

- Prompt: proton recoil or muon track
- Delayed: neutron capture or muon decay
- Measured from high-energy spectrum: 0.67 +/- 0.20 day⁻¹

Red: Best-fit Spectrum Grey: Tagged background events White: IBD Signal