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Outline 

 Introduction: observing neutrinos from nuclear 
reactors with Double Chooz 
 

  Detector - overview 
 

 Double Chooz data analysis 
 Predicted neutrino rate and spectrum 
 Signal and event selection criteria 
 Detector systematic errors 
 Background estimation and measurement 
 

 Oscillation analysis results and future prospects 
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Site in French Ardennes 
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East Reactor 
West Reactor 

351 m 

465 m 

115 mwe 
Flat topology 

300 mwe 
Hill topology 

Started 12/10 
Physics data taking 04/11 

Start  by the  
end of 2013 

France  

Jelena Maricic, University of Hawaii 
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Reactor Neutrino Detection Signature 
• Reactors as neutrino sources: 

 

Nν s−1( )= 6NFiss s−1( )≈ 2 ×1011P s−1( )

Chooz: P =2x4.25 GWth ⇒Nν~2x1021s-1  

Neutrino detection via inverse β decay 

Gadolinium 

Target: 
Gd doped  
scintillator 
 
 
 

¹ºe + p+ ! e+ + n

 Double Chooz scintillator: 
-Solvent: 20% PXE (C16H18) +  
 80% Dodecane (C12H24)    +  
 PPO/Bis-MSB. 
- 1 g/l Gd(dpm)3  
 tris-(2,6-tetramethyl-3,5-heptanedione)     
 Gd(III)  

Double Chooz Scintillator 

Jelena Maricic, University of Hawaii 
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Reactor Neutrino Detection Signature 
• Reactors as neutrino sources: 

 

Nν s−1( )= 6NFiss s−1( )≈ 2 ×1011P s−1( )
Chooz: P =2x4.25 GWth ⇒Nν~2x1021s-1  

Neutrino detection via inverse β decay 

Distinctive two-step signature: 
 -prompt event 
     Photons from e+ annihilation 
     Ee = Eν - 0.8 MeV +  O(Ee/mn) 
 -delayed event 
     Photons from n capture   
     on dedicated nuclei (Gd) 
    ∆t ~ 30 µs     E ~ 8 MeV Gadolinium 

Target: 
Gd doped  
scintillator 
 
 
 
1 g/l Gd  
in LS 

¹ºe + p+ ! e+ + n
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The Double Chooz Far Detector 
Outer Veto (OV) 
plastic scintillator strips 

Outer Steel Shielding 
250 t steel (15 cm) 

Inner Veto (IV) 
90 m3 of scintillator in a steel vessel 
(10 mm) equipped with 78 PMTs (8 
inches) 

Buffer 
110 m3 of mineral oil in a steel vessel 
(3 mm) equipped with 390 PMTs (10 
inches) 

γ-Catcher (GC) 
22.3 m3  scintillator in an acrylic 
vessel (12 mm) 

Target 
10.3 m3 scintillator doped with 1g/l 
of Gd compound in an acrylic vessel 
(8 mm) 

~7m 

Calibration Glove Box 

Jelena Maricic, University of Hawaii 



Double Chooz θ13 Data Analysis 
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Data taking is stable 

 

Jelena Maricic, University of Hawaii 8 



Expected Neutrino Rate 
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Neutrino interaction c-s: 
The probability that  
an average reactor fission  
will create a neutrino  
interaction with a single  
target proton.  
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thermal 
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Core thermal power 
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 Precise weekly measurements of steam 
generator enthalpy balance. 

 Monitoring every minute based on 
temperature in primary loop. 

 Full error treatment by EDF 

δPth/Pth = 0.46% 



Reactor core fuel composition 
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Two validated reactor simulations: 

•  DRAGON: deterministic 

•  MURE (MCNP Utility for Reactor Evolution): 
Monte-Carlo Based 

•  Benchmarked against fuel assays:  
   C. Jones et al. arxiv.org/pdf/1109.5379 

Time-Dependent Fuel Inventory 
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Interaction Cross-Section 

• Recalculations of spectra introduced normalization shift; 
“anomaly”? 

• Th.A. Mueller et al, Phys.Rev. C83(2011) 054615. 
• P. Huber, Phys.Rev. C84 (2011) 024617 
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Reference Spectra + Bugey4 “Anchor” 

Normalize to Total Rate Measurement of 
Bugey4 (14 m from reactor core) 
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Reduces reactor  
normalization uncertainty  

from 2.70% to 1.76% 
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Neutrino Candidate Selection 
 Prompt signal Evis = [0.7, 12.2] MeV 

 Delayed signal Evis = [6.0, 12.0] MeV 

 Delayed Coincidence Δt = [2, 100] µsec  

 Require Δt μ > 1 msec 

 PMT light noise rejection cuts  

• PMT hits approx. homogeneous 

• PMT hits approx. coincident in time 

 Multiplicity conditions: 

• No extra events around signal 

(100 µs prior and 400 µs after prompt ev) 

 Background rejection: 

• No coincident signal in OV 

• Require Δt μ > 500 msec if Eμ > 600 MeV 

Plus three irreducible backgrounds: 

•  Accidentals 

•  Cosmogenic 9Li 

•  Fast neutrons/stopping muons 
Jelena Maricic, University of Hawaii 
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Neutrino Candidate Selection 
 Prompt signal Evis = [0.7, 12.2] MeV 

 Delayed signal Evis = [6.0, 12.0] MeV 

 Delayed Coincidence Δt = [2, 100] µsec  

 Require Δt μ > 1 msec 

 PMT light noise rejection cuts  

• PMT hits approx. homogeneous 

• PMT hits approx. coincident in time 

 Multiplicity conditions: 

• No extra events around signal 

 Background rejection: 

• No coincident signal in OV 

• Require Δt μ > 500 msec if Eμ > 600 MeV 

Preliminary 

Trigger efficiency 
• Threshold at 400keV (ε=50%) 
• ε=100% above 700keV 

Minimum visible 
energy of ν signal Prompt  

energy cut 

Jelena Maricic, University of Hawaii 
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Neutrino Candidate Selection 
 Prompt signal Evis = [0.7, 12.2] MeV 

 Delayed signal Evis = [6.0, 12.0] MeV 

 Delayed Coincidence Δt = [2, 100] µsec  

 Require Δt μ > 1 msec 

 PMT light noise rejection cuts  

• PMT hits approx. homogeneous 

• PMT hits approx. coincident in time 

 Multiplicity conditions: 

• No extra events around signal 

 Background rejection: 

• No coincident signal in OV 

• Require Δt μ > 500 msec if Eμ > 600 MeV 

Jelena Maricic, University of Hawaii 
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Neutrino Candidate Selection 
 Prompt signal Evis = [0.7, 12.2] MeV 
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Neutrino Candidate Selection 
 Prompt signal Evis = [0.7, 12.2] MeV 

 Delayed signal Evis = [6.0, 12.0] MeV 

 Delayed Coincidence Δt = [2, 100] µsec  

 Require Δt μ > 1 msec 

 PMT light noise rejection cuts  

• PMT hits approx. homogeneous 

• PMT hits approx. coincident in time 

 Multiplicity conditions: 

• No extra events around signal 

 Background rejection: 

• No coincident signal in OV 

• Require Δt μ > 500 msec if Eμ > 600 MeV 
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Neutrino Candidate Selection 
 Prompt signal Evis = [0.7, 12.2] MeV 

 Delayed signal Evis = [6.0, 12.0] MeV 

 Delayed Coincidence Δt = [2, 100] µsec  

 Require Δt μ > 1 msec 

 PMT light noise rejection cuts  

• PMT hits approx. homogeneous 

• PMT hits approx. coincident in time 

 Multiplicity conditions: 

• No extra events around signal 

 Background rejection: 

• No coincident signal in OV 

• Require Δt μ > 500 msec if Eμ > 600 MeV 

• 41% of  9Li BG is rejected by 
additional muon veto  (~5% live-
time loss) 

• 28% of  fast neutron/stop μ BG 
is rejected by OV anticoincidence 

Jelena Maricic, University of Hawaii 
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Candidate Rate Variation 

 Before 9Li reduction cut, no OV anticoincidence 
applied 

 Not background-subtracted 
 Rate consistent with expectation 

Jelena Maricic, University of Hawaii 
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Cross-check:  
Reconstructed Vertex Position 

 Events well-localized within target 
 Note: no spatial cuts applied in candidate selection 

Jelena Maricic, University of Hawaii 



Jelena Maricic, University of Hawaii 22 

Detector calibration 
  Energy calibration: PMT and electronics gain non-linearity, correct for position 
 dependence, correct for time stability, energy scale non-linearity 
  Neutron detection efficiency calibration:  
   Energy & time window, Gd fraction, spill in/out effects 
    Goal: 0.5% total systematic error with 2 detectors! 
  

Glovebox 

Fish-line 
Energy scale 
Neutron det. eff. 

Articulated Arm 
Energy scale 
Spill-out 
Neutron det. Eff. 

Buffer guide tube 

Gamma-catcher  
guide tube 
Energy scale 
Spill-in 
Neutron det. Eff. 

Natural sources: 
- Spallation nH-capture  
   peak – spacial non-unif. 
-Spallation n Gd-capture 
 peak – time stability 

Deployed in NT and GC: 
137Cs, 60Co, 68Ge, 252Cf 

LED LI system 
PMT and electronic gain  
non-linearity calibration 



Z-axis (fish-line) and guide tube 

Jelena Maricic, University of Hawaii 23 
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Design details: Articulated Arm 

Glove box 

AA inserted 
from top 

Retracted 
telescope 

Pivot 

Arm  

Telescope 
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Detector Calibration 
Energy Calibration 

Jelena Maricic, University of Hawaii 

1. PMT and electronics gain  
non-linearity calibration 

LED light injection system 

Correct for position dependence 
Spallation neutron H captures 

Correct for time stability 
Spallation neutron Gd captures 
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60Co 
at bottom 

60Co 
at center 

Detector Calibration 

Energy scale 
 Radioactive sources 

deployed  
into ν-target and γ-
catcher 

 Deployed in NT and GC: 

 137Cs, 60Co, 68Ge, 252Cf 
 

Energy Calibration 

Jelena Maricic, University of Hawaii 
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Detector Calibration 
Neutron Detection Efficiency 

Energy & time window, Gd fraction, spill in/out effects 
• 252Cf source deployed into ν-target and γ-catcher 

Jelena Maricic, University of Hawaii 
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Backgrounds 
Accidentals 
•  Prompt: radiation hit on PMT 
•  Delayed: spallation neutron capture 
•  Prevented by radiopurity & shielding 
•  Measured from off-time windows:  

    0.261 +/- 0.002 day-1 

Cosmogenic 9Li 
•  Prompt: beta emission 
•  Delayed: neutrons from long-lived decays 
•  Measured from Δtμ & spatial muon  
    coincidence:   

    1.25 +/- 0.54 day-1 

Fast-n & Stopping muons 
•  Prompt: proton recoil or muon track 
•  Delayed: neutron capture or muon decay 
•  Measured from high-energy spectrum:  

    0.67 +/- 0.20 day-1 Jelena Maricic, University of Hawaii 
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Check Rate 
vs. Reactor 
Power 

One week of both reactors off 
data obtained. 
BG rate measured: 
1.0 ±0.4 events/day 

→ Background rate consistent 
 with estimation 
 (2.0±0.6 event/day) 

arXiv:1210.3748  

Jelena Maricic, University of Hawaii 
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Summary of Rate Uncertainties 

 

Source Uncertainty w.r.t. signal 

Statistics 1.1%  

Flux 1.7% 

 
 
 
 

Detector 

Energy response 0.3%   
 
 

1.0% 

Edelay containment 0.7% 

Gd fraction 0.3% 

Δt cut 0.5% 

Spill in/out 0.3% 

Trigger efficiency <0.1% 

Target H 0.3% 

 
Background 

Accidental  <0.1%  
1.6% Fast-n + stop μ 0.5%  

9Li 1.4%  Jelena Maricic, University of Hawaii 
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Summary of Candidates 
Both Reactors On One Reactor  

Pth < 20% 
Total 

Livetime [days] 139.27 88.66 227.93 
IBD Candidates 6088 2161 8249 

Prediction 
Reactor B1 ν 2910.9 774.6 3685.5 
Reactor B2 ν 3422.4 1331.7 4754.1 

9Li 174.1 110.8 284.9 
FN & SM 93.3 59.4 152.7 

Accidentals 36.4 23.1 59.5 
Total Prediction 6637.1 2299.7 8936.8 

 Data divided into two integration periods based on reactor 
power 
 Allows use of changing signal/background ratio in fit 

Jelena Maricic, University of Hawaii 
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Double Chooz 
Prompt Spectrum 

Data w/ Stat. Error Bars 

Best Fit Prediction 

(w/ Syst. Errors) 

Null Oscillation Prediction 

Backgrounds 

Jelena Maricic, University of Hawaii 
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Rate+Shape: sin22θ13= 0.109 ± 0.030 (stat.) ± 0.025 (syst.) 
    χ2/d.o.f. = 42.1/35 
Rate-only:  sin22θ13 = 0.170 ± 0.035 (stat.) ± 0.040 (syst.) 
Frequentist analysis: sin22θ13 = 0 excluded at 99.8% (2.9σ) 
Presented in  arXiv:1207.6632, accepted by PRD  
 Jelena Maricic, University of Hawaii 



Summary and Prospects 
 Double Chooz updated measurement of θ13, that 

includes rate + energy spectrum shape fit: 
 
 

 Results obtained with far detector only: 99.8% 
exclusion of the zero θ13. 
 

 One full week of data taking with both reactors 
off : directly cross-check background estimates. 
 

 Two detector phase to commence by the end of  
2013. 

Jelena Maricic, University of Hawaii 34 

Rate+Shape: sin22θ13= 0.109 ± 0.030 (stat.) ± 0.025 (syst.) 
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Rate+Shape: sin22θ13= 0.109 ± 0.030 (stat.) ± 0.025 (syst.) 
     



37 

Detector Calibration 

1. PMT and electronics gain  
non-linearity calibration 

 LED light injection system 

2. Correct for position 
dependence 

 Spallation neutron H captures  

3. Correct for time stability 
 Spallation neutron Gd captures 

4. Energy scale 
 Radioactive sources deployed  

into ν-target and γ-catcher 

Energy Calibration 

Neutron Detection Efficiency 
Energy & time window, Gd fraction, spill in/out effects 
• 252Cf source deployed into ν-target and γ-catcher 

Spallation n-H  
Detector Response Map 

Jelena Maricic, University of Hawaii 

Presenter
Presentation Notes
Stress uniformity in target region
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Detector Calibration 

1. PMT and electronics gain  
non-linearity calibration 

 LED light injection system 

2. Correct for position 
dependence 

 Spallation neutron H captures  

3. Correct for time stability 
 Spallation neutron Gd captures 

4. Energy scale 
 Radioactive sources deployed  

into ν-target and γ-catcher 

Energy Calibration 

Neutron Detection Efficiency 
Energy & time window, Gd fraction, spill in/out effects 
• 252Cf source deployed into ν-target and γ-catcher 

Spallation n-H capture peak 
position after stability correction 

Jelena Maricic, University of Hawaii 
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Backgrounds 
Accidentals 
•  Prompt: radiation hit on PMT 
•  Delayed: spallation neutron capture 
•  Prevented by radiopurity & shielding 
•  Measured from off-time windows:  
    0.261 +/- 0.002 day-1 

Cosmogenic 9Li 
•  Prompt: beta emission 
•  Delayed: neutrons from long-lived decays 
•  Measured from Δtμ & spatial muon  
    coincidence:  1.25 +/- 0.54 day-1 

Fast-n & Stopping muons 
•  Prompt: proton recoil or muon track 
•  Delayed: neutron capture or muon decay 
•  Measured from high-energy spectrum:  
    0.67 +/- 0.20 day-1 

Preliminary 

Jelena Maricic, University of Hawaii 
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Backgrounds 
Accidentals 
•  Prompt: radiation hit on PMT 
•  Delayed: spallation neutron capture 
•  Prevented by radiopurity & shielding 
•  Measured from off-time windows:  
    0.261 +/- 0.002 day-1 

Cosmogenic 9Li 
•  Prompt: beta emission 
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Jelena Maricic, University of Hawaii 
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Backgrounds 
Accidentals 
•  Prompt: radiation hit on PMT 
•  Delayed: spallation neutron capture 
•  Prevented by radiopurity & shielding 
•  Measured from off-time windows:  
    0.261 +/- 0.002 day-1 

Cosmogenic 9Li 
•  Prompt: beta emission 
•  Delayed: neutrons from long-lived decays 
•  Measured from Δtμ & spatial muon  
    coincidence:  1.25 +/- 0.54 day-1 

Fast-n & Stopping muons 
•  Prompt: proton recoil or muon track 
•  Delayed: neutron capture or muon decay 
•  Measured from high-energy spectrum:  
    0.67 +/- 0.20 day-1 

Red: Best-fit  Spectrum  
Grey: Tagged background events 
White: IBD Signal 

Jelena Maricic, University of Hawaii 
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