Improved Measurement of Electronantineutrino Disappearance at Daya bay

Qun Wu Shandong University On Behalf of the Daya Bay Collaboration

Particle Physics and Cosmology 2012, Seoul, Korea, Nov 5-9,2012

Neutrino Oscillation Before 2011

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha} & 0 & 0 \\ 0 & e^{i\beta} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Atmospheric, MINOS, K2K, etc sin²(2θ₁₂) = 0.87 ± 0.03 sin²(2θ₂₃) > 0.92 $\Delta m_{21}^2 = m_2^2 - m_1^2 = (7.59^{+0.19}_{-0.21}) \times 10^{-5} eV^2$ $|\Delta m_{32}^2| = |m_3^2 - m_2^2| = (2.43 \pm 0.13) \times 10^{-3} eV^2$ CP violation phase δ

- θ₁₃
 - Gateway to CPV in lepton sector
- Mass hierarchy
- Is it its own antiparticle?

The Daya Bay Collaboration

Political Map of the World, June 1999

North America (16)

BNL, Caltech, Iowa State Univ., Illinois Inst. Tech., LBNL, Princeton, RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison, Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary

Asia (20)

 Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Univ.Tech., IHEP,
 Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ.,
 Univ. of Hong Kong, Chinese Univ. of Hong Kong,
 National Taiwan Univ., National Chiao Tung Univ., National United Univ.

~230 Collaborators

The Year of 2012: nonzero θ_{13}

hints in 2011:

Solar + KamLAND: G.L.Fogli *et al.*, Phys. Rev. D 84, 053007 (2011)
MINOS: P. Adamson *et al.*, Phys. Rev. Lett. 107, 181802 (2011)
T2K: K. Abe *et al.*, Phys. Rev. Lett. 107 041801 (2011)
Double CHOOZ: Y. Abe *et al.*, arXiv:1112.6353

2012: **Daya Bay**: Nonzero θ₁₃ @ 5.2 σ , F. P. An et. al. Phys. Rev. Lett, 108:171803, 2012 **Reno:** Confirms nonzero θ₁₃ arXiv:1204.0626

Pin Down θ_{13} by measuring reactor neutrinos

- Neutrinos come from subsequent beta-decays of fission fragment (Free) $\overline{v}_e + p \rightarrow e^+ + n \quad N_{det} = \frac{N_p}{4 \pi I_e^2} \int \varepsilon \sigma P_{sur}(E, L, \theta_{13}) S dE$
- clean measurement
 - no dependence on matter effect or CP violation phase

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Beat down the errors:
 - Increase statistics: high neutrino flux & large target mass
 - Relative measurement:

 $\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$

- reduce error on reactor neutrino flux
- Functionally identical detectors to minimize relative systematic errors
- Mountain shielding : reduce cosmic ray induced backgrounds
- Antineutrino detector design to maximize signals/backgrounds

The Daya Bay Experiment

Adjacent mountains with horizontal access provide 860 (250) m.w.e cosmic shielding.

Ling Ao I + II

6 commercial reactor cores with 17.4 GW_{th} total power.

6 Antineutrino Detectors (ADs) give 120 tons total target mass.

Via GPS and modern theodolites, relative detector-core positions known to 3 cm.

Antineutrino Detectors

6 'functionally identical' detectors: Reduce systematic uncertainties Calibration robots insert radioactive sources and LEDs.

All detectors filled from common GdLS tanks.

Target mass measured to

3 kg (0.015%) during filling.

192 8" PMTs detect light in target, ~163 p.e./MeV.

Reflectors improve light collection uniformity.

20t GdLS target

Interior of Antineutrino Detector

Muon Tagging System

Dual tagging systems: 2.5 meter thick two-section water shield and RPCs

EH1: Pool Filled

Hall 1: Completed

Hall 2 and Hall 3

Hall 2: Began 1 AD operation on Nov. 5, 2011

Hall 3: Began 3 AD operation on Dec. 24, 2011

2 more ADs assembled during summer of 2012

Data Period

A. Two Detector Comparison: arXiv:1202:6181

- Sep. 23, 2011 Dec. 23, 2011
- Side-by-side comparison of 2 detectors in Hall 1
- Demonstrated detector systematics better than requirements.
- Nucl. Inst. and Meth. A685,78 (2012)

B. First Oscillation Result: arXiv:1203:1669

- Dec. 24, 2011 Feb. 17, 2012
- All 3 halls (6 ADs) operating
- First observation of $\boldsymbol{\nu}_e$ disappearance
- Phys. Rev. Lett. 108, 171803 (2012)

C. This Update: arXiv:1210.6327

- Dec. 24, 2011 May 11, 2012
- More than 2.5x the previous data set
- Submitted to Chinese Physics C

Side-by-Side Comparison

Multiple detectors allows detailed comparison and cross-checks.

The Signals & Backgrounds

• Signals (Inverse Beta Decay) in AD

$$\overline{\nu}_{e} + p \to e^{+} + n$$

$$\downarrow \\ n + Gd \to x + 1 Gd + \gamma$$

- Prompt positron carries antineutrino energy: $E_{P_{+}} \approx E_{V} - 0.8$ MeV
- Delayed neutron capture has distinct energy (~ 8MeV) and time correlation with prompt signal
- Backgrounds:
 - Accidentals
 - Fast n: prompt: n scattering, delayed: n Capture
 - 8He/9Li: prompt: βdecay, delayed: n Capture
 - Am-C source: prompt:γrays, delayed:n Capture
 - α n: 13C(α,n)160

Backgrounds

Data Set Summary

> 200k antineutrino interactions!

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	69121	69714	66473	9788	9669	9452
DAQ live time (day)	127.5470		127.3763	126.2646		
Efficiency	0.8015	0.7986	0.8364	0.9555	0.9552	0.9547
Accidentals (/day)	9.73±0.10	9.61 ± 0.1 0	7.55 ± 0.08	3.05 ± 0.04	3.04 ± 0.04	2.93 ± 0.03
Fast neutron (/day)	0.77 ± 0.24	0.77 ± 0.2 4	0.58 ± 0.33	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.02
⁸ He/ ⁹ Li (/day)	2.9 ± 1.5		2.0 ± 1.1		0.22 ± 0.12	
Am-C corr. (/day)	0.2 ± 0.2					
$^{13}C(\alpha, n)^{16}O(/day)$	0.08 ± 0.04	0.07 ± 0.0 4	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
Antineutrino rate (/day)	662.47 ±3.00	670.87 ±3.01	613.53 ±2.69	77.57 ±0.85	76.62 ± 0.85	74.97 ±0.84
Consistent rates for side-hy-side detectors						

Uncertainty currently dominated by statistics

Uncertainty Summary

Far vs. Near Comparison

Compare the far/near measured rates and spectra

Rate Analysis

Estimate θ_{13} using measured rates in each detector.

Antineutrino Rate vs. Time

Detected rate strongly correlated with reactor flux expectations.

Predicted Rate:

- Normalization is determined by data fit.
- Absolute normalization is within a few percent of expectations.

More Work for Daya Bay

Primary Science Goals

- Definitive precision measurement of $sin^2 2\theta_{13}$
- Measurement of Δm^2_{31}

Additional Science Goals

- Precise reactor flux and spectra measurements. Will have largest reactor antineutrino data set collected.
- Measurement of cosmogenic neutrons & isotopes over a range of muon energies and (modest) depths.
- Search for new, non-standard antineutrino interactions

Technical studies

- Demonstrate multi-year operation of "functionally identical detectors". Track performance versus time.
- Verify long term GdLS stability.

Summary

 With 2.5x more data, the Daya Bay reactor neutrino experiment measures a far/near antineutrino deficit at ~2 km:

R = 0.944 ± 0.007 (stat) ± 0.003 (syst)

[Previous value: R = 0.940 ± 0.011 (stat) ± 0.004 (syst)]

- Interpretation of disappearance as neutrino oscillation yields:

 $sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{ (stat)} \pm 0.005 \text{ (syst)}$

[Previous value: $sin^2 2\vartheta_{13} = 0.092 \pm 0.016$ (stat) ± 0.005 (syst)]

- Final two ADs are installed during this summer.

