

HIGGS SEARCHES WITH THE ATLAS EXPERIMENT AT THE LHC

Marine Kuna On behalf of The ATLAS Collaboration

Particle Physics and Cosmology 2012, Seoul November 5, 2012

Marine Kuna - Higgs ATLAS LHC- PPC 2012

Motivations

- Standard Model of Particle Physics:
 - 6 quarks, 6 leptons, bosons: strong interaction (gluons) and electroweak (photon, Z°, W⁺, W⁻)
- Gauge bosons Z[°], W⁺, W⁻ have masses (resp. 91 and 80 GeV) → ElectroWeak Symmetry breaking:
 - Solution is introduction of a massive scalar particle (electric charge & spin = 0): the Higgs Boson

The Higgs boson is the only elementary particle from the Standard Model that had not been experimentally observed prior to this year.

- Constraints on Higgs mass: previous collider experiments, electroweak precision measurements (indirect), theory
- Previous experimental results exclude: LEP (1989-2000) M_H < 114.4 GeV @ 95% CL and TeVatron between 147 and 180 GeV, and between 100 and 103 GeV

→ <u>Vector Boson Fusion:</u> 2 energetic forward jets

 $\sigma(pp \rightarrow H+X) [pb]$

→ Associated production: useful for trigger and bkg rejection for H→bb
Marine Kuna - Higgs ATLAS L

M_H [GeV]

200

250

q = udscb

150

 10^{-4}

100

LHC HIGGS XS WG 2012

Good Understanding of the SM

 \rightarrow Important ground for Higgs searches: most of processes are backgrounds for Higgs

ightarrow All the Standard Model processes are well measured and understood by ATLAS

Non Standard Model Higgs Searches

- In the Minimal Supersymmetric Standard Model (MSSM): 3 neutral Higgs: h, H and A
 - + 2 charged Higgs: H^+ and H^-
 - Results for Charged MSSM Higgs:
 - → Combination for τ + leptons and τ + jets
 - → Upper limit on the top to bH+ branching ratio

- Results for neutral MSSM Higgs:
- \rightarrow Combination for μμ, τ(e) τ(μ), τ(lep)τ(had) and τ(had) τ(had) final states

- The fermiophobic Higgs doesn't couple to fermions, so VBF and VH productions are the only ones not suppressed
- Exclusion: 110.0–118.0 GeV and 119.5 – 121.0 GeV at 95% confidence level

MOST SENSITIVE CHANNELS IN THE SEARCH OF SM HIGGS

Н→үү

110-150 GeV

σ x BR ~ 50 fb @ m_H ~ 126 GeV

- Small rate but good mass resolution
- **QCD** $\gamma\gamma$ (irreducible background)
- γj, jj where jets are mis-identified as a photon due to hard π⁰ (reducible background):

Photon identification

$$\begin{split} & \text{Selection}: \\ & \text{P}_{\text{T}}{}^{\gamma 1} \! > \! 40 \; \text{GeV}, \, \text{P}_{\text{T}}{}^{\gamma 2} \! > \! 25 \; \text{GeV} \\ & |\eta_{1,2}| < 1.37, \, 1.52 < |\eta_{1,2}| < 2.37 \end{split}$$

Marine Kuna - Higgs ATLAS LHC- PPC 2012

$H \rightarrow \gamma \gamma$: signal resolution

Discriminating variable for $H \rightarrow \gamma \gamma$ analysis: the di-photon invariant mass. Look for a peak.

$$M_{\gamma\gamma} = 2p_T^{\gamma_1} p_T^{\gamma_2} \left[\cosh(\eta_1 - \eta_2) - \cos(\varphi_1 - \varphi_2) \right]$$

Signal parameterisation as a Crystal Ball + Gaussian function

Photon energy scale extrapolated from electrons in Z→ee decays → Small MC-based corrections for both converted and unconverted photons

Vertex selection

→ Calorimeter pointing (longitudinal segmentation)

 \rightarrow Conversion vertex if available

$H \rightarrow \gamma \gamma$: Categorisation

- Motivation: optimising events categories by S/B with:
 - Both γ unconverted or at least one converted
 - Photons reconstructed in central, transition or other ("rest") regions in η (amount of upstream material affects energy resolution)
 - Di-photon transverse momentum with respect to thrust axis (p_{Tt}) > or < 60 GeV</p>
 - + 1 category sensitive to VBF topology events (2 jets p_T > 30-25 GeV, $\Delta\eta$ >2.8, m_{ij} >400 GeV, di-jet and di-photon systems back to back with $\Delta\phi$ >2.6)

@ m_H = 126.5 GeV

Category	σ_{CB}	FWHM	Observed	S	В	
	[GeV]	[GeV]	$[N_{\rm evt}]$	$[N_{\rm evt}]$	$[N_{\rm evt}]$	
Inclusive	1.63	3.87	3693	100.4	3635	
Unconverted central, low p_{Tt}	1.45	3.42	235	13.0	215	
Unconverted central, high p_{Tt}	1.37	3.23	15	2.3	14	
Unconverted rest, low p_{Tt}	1.57	3.72	1131	28.3	1133	
Unconverted rest, high p_{Tt}	1.51	3.55	75	4.8	68	
Converted central, low p_{Tt}	1.67	3.94	208	8.2	193	
Converted central, high p_{Tt}	1.50	3.54	13	1.5	10	
Converted rest, low p_{Tt}	1.93	4.54	1350	24.6	1346	
Converted rest, high p_{Tt}	1.68	3.96	69	4.1	72	
Converted transition	2.65	6.24	880	11.7	845	
2-jets	1.57	3.70	18	2.6	12	

$H \rightarrow \gamma \gamma$: Background

Di-electron, Drell-Yan background < 1% $m_{\gamma\gamma}$ [GeV]

Data-driven background estimation

Background model choice:

- Among models with sufficiently low bias choose the one to optimise significance
- Largest bias over 100-150 GeV taken as signal yield systematics

Category	Parametrization	Uncertainty [N _{evt}]	
		$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$	
Inclusive	4th order pol.	7.3	10.6
Unconverted central, low p_{Tt}	Exp. of 2nd order pol.	2.1	3.0
Unconverted central, high p_{Tt}	Exponential	0.2	0.3
Unconverted rest, low p_{Tt}	4th order pol.	2.2	3.3
Unconverted rest, high p_{Tt}	Exponential	0.5	0.8
Converted central, low p_{Tt}	Exp. of 2nd order pol.	1.6	2.3
Converted central, high p_{Tt}	Exponential	0.3	0.4
Converted rest, low p_{Tt}	4th order pol.	4.6	6.8
Converted rest, high p_{Tt}	Exponential	0.5	0.7
Converted transition	Exp. of 2nd order pol.	3.2	4.6
2-jets	Exponential	0.4	0.6

$H \rightarrow \gamma \gamma$: Systematic Uncertainties

Profiled likelihood ratio with di-photon invariant mass is the discriminating variable:

$$f_{S+B}(m_{\gamma\gamma}) = n_S f_S(m_{\gamma\gamma}) + n_B f_B(m_{\gamma\gamma})$$

$$\lambda(\mu) = -2\ln\frac{L(\mu, \hat{\theta})}{\hat{\lambda}}$$
$$L(\mu, \hat{\theta})$$

List of Dominant Syste	Uncertainty	
	Theory	~ 20%
Signal Yield	Photon Efficiency	~ 10%
	Background Model	~ 10%
Categories Migration	Higgs pT modelling	Up to ~ 10%
	Converted/Unconv γ	Up to ~ 6%
	Jet Energy Scale	Up to ~ 20% (2-jet cat)
	Underlying Event	Up to ~ 30% (2-jet cat)
$H \rightarrow \gamma \gamma$ mass resolution	~ 14%	
Photon Energy Scale	~ 0.6%	

$H \rightarrow \gamma \gamma$: Results

Exclusion (signal strength in terms of SM cross section excluded at 95% CL):

- Expected exclusion from 110-139.5 GeV
- Observed exclusion from 112-122.5 GeV and 132-143 GeV
- p₀ (probability to be in agreement with background only hypothesis):
 - Most significant deviation from background hypothesis at m_H=126.5 GeV
 - > Expected significance: 2.4 σ . Observed: local 4.7 σ (4.5 σ with ESS) global 3.6 σ
 - Similar size and compatible mass excesses for 2011 and 2012
- Fitted signal strength at 126.5 GeV: μ =1.9 ± 0.5

ATLAS-CONF-2012-091

H→ZZ(*)→4l (4e, 4µ, 2e2µ)

110-600 GeV

$\sigma xBR \simeq 2.5 \text{ fb } @ \text{ m}_{\text{H}} \simeq 126 \text{GeV}$

- Small rate, mass fully reconstructed so good resolution and very pure
- Largest background comes from continuum ZZ(*) production (irreducible)
- For low-mass region m_H < 2m_z: Zbb, Z+jets, ttbar with two fake leptons from b-jets or qjets (reducible)
- → Suppressed with isolation and impact parameter cuts

Selection: 4 leptons: $pT_{1,2,3,4} > 20,15,10,7/6$ (e/ μ) GeV 50 < m_{12} < 106 GeV; $m_{34} > 17.5-50$ GeV (vs mH) + Isolation and impact parameter cuts on the four leptons

 m_{12} = same flavour and opposite-sign lepton pair closest to the Z boson mass m_{34} = remaining same flavour opposite sign lepton pair

$H \rightarrow ZZ$: Signal Resolution

The final discriminating variable for this search is the invariant mass of the 4 leptons (m₄₁) and look for a peak.

→ The signal peak resolution is improved by constraining leading lepton pair to m_z for m_{4l} <190 GeV, both pairs otherwise.

$H \rightarrow ZZ$: Analysis Optimisation

- Objective: increase the analysis acceptance to improve its significance
- Improved electron reconstruction and e-ID selection stable against pileup
- Allowing for bremsstrahlung in path reconstruction, electron tracks fitted
- $\Box \quad \text{Improvement of efficiency at low } p_{T}$

 m_{\min} threshold [GeV]

→ Total acceptance x efficiency for H→4e: ~23% (+60% gain)

Selection	Original	Optimised				
Lepton p _T (e/µ)	20, 20, 7, 7		20, 15	, 10, 7	/6	
m ₁₂ selection	m ₁₂ -m _z <1	50 <m<sub>12<106</m<sub>			\rightarrow 1	
m ₃₄ selection	m _{min} <m<sub>34<115</m<sub>		m _{min} <m<sub>34<115</m<sub>		15	ŀ
$m_{4\ell}$ [GeV]	≤120	130	150	160	165	180

17.5

22.5

30

- Muons reconstructed down to pT = 6 GeV over |η|<2.7 (accept standalone |η|>2.5)
- → Total acceptance x efficiency for $H \rightarrow 4\mu$: ~ 40% (+45% gain)

≥190

50

40

30

35

ATLAS-CONF-2012-092

$H \rightarrow ZZ$: Background (1)

Expected background yield and composition estimated:

- > For ZZ(*) with MC simulation normalised to the ZZ(*) theoretical cross section
- ➢ With data-driven methods for the di-lepton + jets and tt processes.

Cross-check background estimates by applying isolation to first lepton pair only \rightarrow Agreement at high mass (ZZ(*)) and low mass (Zbb, Zqq, ttbar)

$H \rightarrow ZZ$: Background (2)

Image m₄₁ > 160 GeV (dominated by ZZ background): 147 ± 11 events expected 191 observed: ~ 1.3 times more ZZ events in data than SM prediction → in agreement with measured ZZ cross-section in 4l final states at √s = 8 TeV

ATLAS-CONF-2012-092

7+8 TeV	4μ	2e2µ	4e	
Data	6	5	2	
Background	1.3±0.1	2.2±0.2	1.6±0.2	
m _H =125 GeV	2.1±0.3	2.3±0.3	0.9±0.1	
S/B	1.6	1.0	0.6	

Marine Kuna - Higgs ATLAS LHC- PPC 2012

$H \rightarrow ZZ$: Results

- The SM Higgs boson is excluded at 95% CL in the mass ranges 131– 162 GeV and 170–460 GeV
- An excess of events is observed around $m_H = 125$ GeV, whose local significance is 3.4 σ , and globally 2.1 σ with the Look Elsewhere Effect (LEE) over 110-600 GeV
- Both 2011 and 2012 data contribute to excess in same mass range
- Signal strength 125 GeV: μ =1.3 ± 0.6

$H \rightarrow WW \rightarrow ev\mu v, \mu vev$

110-200 GeV

Selection: exactly two oppositely charged leptons of different flavours, pT > 25, 15 GeV fully identified electron, muons reconstructed in both Inner tracker and spectrometer Isolated leptons, $E_{T, rel}^{miss} > 25$ GeV, jets pT > 25 GeV Di-lepton angle and mass: $\Delta \varphi_{||} < 1.8 \& mll < 50$ GeV (0/1 jet), < 80 GeV (2 jets)

σ x BR ~ 500 fb @ m_H~126GeV

■ eµ final state provides the large majority of the sensitivity of the search → only this final state has been used in the 2012 analysis

Drell-Yan and QCD multijet events are suppressed by requiring large E_{τ}^{miss}

$H \rightarrow WW$: Analysis

Discriminating variable: reconstructed transverse mass

 $m_{\rm T} = \sqrt{(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss})^2 - |\mathbf{p}_{\rm T}^{\ell\ell} + \mathbf{E}_{\rm T}^{\rm miss}|^2} \qquad \text{where} \qquad E_{\rm T}^{\ell\ell} = \sqrt{|\mathbf{p}_{\rm T}^{\ell\ell}|^2 + m_{\ell\ell}^2}$ (II stands for di-lepton)

The background rate/composition & signal topology depend significantly on the jet multiplicity

- Data subdivided into 3 jet bins. Their main backgrounds are:
 - ✓ H + 0-jet analysis: WW
 - ✓ H + 1-jet analysis: WW & top (ttbar & Wt single-top)
 - ✓ H + ≥2-jet analysis: top

+ Subleading backgrounds: W+jets, W+ γ , W+Z/ γ^* , Z/ γ^*

ATLAS-CONF-2012-098

$H \rightarrow WW$: Control Regions

- WW and top estimated using partially data-driven techniques, normalising the MC predictions to the data in control regions
- The W+jets background fully estimated from data for all jet multiplicities.
- Drell-Yan, diboson processes other than WW, and the WW background for the H+ 2-jet analysis estimated using simulation. VBF signal in the 2-jet bin is expected to be very low.
- □ W+jet control sample: one of the □ Top control sample: leptons fails tight ID/isolation criteria but pass relaxed ones ("anti-identified"), validated in the same-sign region where the OS requirement is inverted:

Normalise 1-jet, 2-jet top background from b-tagged control region □ *WW* control sample (H + 0 - jet and H + 1 - 1)

jet) summed over lepton flavours, Δφll cut removed and *m*ll relaxed < 80 GeV.

$H \rightarrow WW$: Yield

Transverse mass distributions in data after all selection criteria have been applied, with the total estimated background subtracted

Signal region yield for $e\mu$ and μe channels separately								
	0-jet $e\mu$ 0-jet μe 1-jet $e\mu$ 1-jet μe							
Total bkg.	177 ± 4	162 ± 4	43 ± 2	40 ± 3				
Signal	18.7 ± 0.3	14.9 ± 0.2	4.3 ± 0.1	4.2 ± 0.1				
Observed	213	194	54	52				

 \rightarrow In the *H* + 2-jet channel only two events in the data pass all of the selection

The statistical analysis of the data employs a binned likelihood function L(μ , θ) → product of Poisson probability terms (low stat.) in each lepton flavour channel.

ATLAS-CONF-2012-098

$H \rightarrow WW$: Results

- □ The expected 95% *CLs* limit on σ/σ_{SM} excludes a SM Higgs boson with a mass down to 124 GeV. Observed: >137 GeV.
- □ For m_{H} =125 GeV, combination of \sqrt{s} = 7 TeV and 8 TeV data, the observed excess in the $H \rightarrow WW(*) \rightarrow |v|v : 2.8 \sigma$
- The fitted signal strength at mH = 126 GeV is $\mu = 1.3 \pm 0.5$

ATLAS-CONF-2012-098

COMBINATION

Combined Results: Exclusion

- Expected at 95% CL if no signal: 110-582 GeV
- Observed exclusion on the SM Higgs at 95% CL: 110-122.6 and 129.7-558 GeV
- □ Observed exclusion on the SM Higgs at 99% CL: 111.7-121.8 GeV and 130.7-523 GeV

arXiv:1207.7214

Combined Results: Discovery

- Local significance of the excess: 5.9 σ at m_H = 126.5 GeV (4.8 expected)
- The global significance:
 - > 5.1 σ in the range 110–160 GeV
 - 5.3 σ in the range 110–150GeV (mass range not excluded at the 99% CL by the LHC and the indirect constraints from the global fit to precision electroweak measurements)

Combined Results: Signal Strength

- **C** Estimate for the mass of the observed particle is 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV
- □ Measurements of the signal strength parameter $\mu = 1.4 \pm 0.3$ for M_H = 126 GeV, which is consistent with the SM Higgs boson hypothesis $\mu = 1$

Essential Property Measurements (1)

- The new observed boson is compatible with the Standard Model Higgs boson. Important checks in the future include:
 - > Checking its spin. Presence of excess in the $H \rightarrow \gamma \gamma$ channel tells us spin is either 0 or 2 (spin 1 excluded by the Landau-Yang theorem)
 - > Measure the couplings: check the μ_{ggF} , μ_{VBF} , μ_{VH} , μ_{ttH} are consistent with SM
 - \succ First results with fits with 2 parameters: vector bosons μ_{VBF+VH} & fermions $\mu_{ggF+ttH}$

Essential Property Measurements (2)

For the moment compatible with SM, but more measurements will be pursued

 \rightarrow New particle in a mass range where it can be seen in many channels which is good for properties measurement

ATLAS-CONF-2012-127

This is an exciting time, and this is only the beginning !

BACKUP

Conclusions

□ The search for a Standard Model Higgs boson with the ATLAS experiment with:

- > H→ $\gamma\gamma$, H→ZZ→4l, H→WW→ $l\nu l\nu$ with up to 10.7 fb⁻¹
- \rightarrow H \rightarrow tt, H \rightarrow bb, H \rightarrow ZZ \rightarrow IIqq, H \rightarrow ZZ \rightarrow IIvv, H \rightarrow WW \rightarrow Ivqq with 4.7 fb⁻¹
- A boson with the SM cross section has been excluded
 - > at 95% CL in the regions [110;122.6] and [129.7;558] GeV
 - > at 99% CL in the regions [111.7;121.8] GeV and [130.7-523] GeV
- A neutral boson with a measured mass of 126.0 ± 0.4 (stat) ± 0.4 (sys) GeV has been observed with a significance of 5.9 standard deviations (background fluctuation probability of 1.7 × 10⁻⁹) This new particle is compatible with the production and decay of the Standard Model Higgs boson.
- After this observation we need to study the properties of this boson, in particular its
 - > Spin
 - Couplings

Summary of Channels

-					
Higgs Boson Decay	Subsequent Decay	Sub-Channels	m _H Range [GeV]	$\int \mathbf{L} dt$ [fb ⁻¹]	
		2011 $\sqrt{s} = 7 \text{ TeV}$			
	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	4.8	
$H \rightarrow ZZ^{(*)}$	$\ell\ell v\bar{v}$	$\{ee, \mu\mu\} \otimes \{\text{low, high pile-up}\}$	200-280-600	4.7	
	llqq	{b-tagged, untagged}	200-300-600	4.7	
$H \rightarrow \gamma \gamma$	-	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	110-150	4.8	
$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu/\mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low, high pile-up}\}$	110-200-300-600	4.7	
$H \rightarrow WW^{(1)}$	lvqq'	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	300-600	4.7	
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	110-150	4.7	
$H \rightarrow \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}\} \otimes \{E_{\mathrm{T}}^{\mathrm{miss}} < 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \geq 20 \text{ GeV}\}$	110-150	4.7	
$\Pi \rightarrow \iota \iota$		$\oplus \{e, \mu\} \otimes \{1 \text{-jet}\} \oplus \{\ell\} \otimes \{2 \text{-jet}\}$	110-150		
	$ au_{ m had} au_{ m had}$	{1-jet}	110-150	4.7	
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6	
$VH \rightarrow Vbb$	$W \rightarrow \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7	
	$Z \rightarrow \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7	
2012 $\sqrt{s} = 8 \text{ TeV}$					
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$	110-600	5.8	
$H \rightarrow \gamma \gamma$	-	10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$	110-150	5.9	
$H \rightarrow WW^{(*)}$	ενμν	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	110-200	5.8	

Summary of Excess and Exclusion

Search channel	Dataset	m _{max} [GeV]	$Z_l[\sigma]$	$E(Z_l)[\sigma]$	$\hat{\mu}(m_H = 126 \text{ GeV})$	Expected exclusion [GeV]	Observed exclusion [GeV]
	7 TeV	125.0	2.5	1.6	1.4 ± 1.1		
$H \to ZZ^{(*)} \to 4\ell$	8 TeV	125.5	2.6	2.1	1.1 ± 0.8		
	7 & 8 TeV	125.0	3.6	2.7	1.2 ± 0.6	124–164, 176–500	131-162, 170-460
	7 TeV	126.0	3.4	1.6	2.2 ± 0.7		
$H \rightarrow \gamma \gamma$	8 TeV	127.0	3.2	1.9	1.5 ± 0.6		
	7 & 8 TeV	126.5	4.5	2.5	1.8 ± 0.5	110–140	112-123, 132-143
	7 TeV	135.0	1.1	3.4	0.5 ± 0.6		
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$	8 TeV	120.0	3.3	1.0	1.9 ± 0.7		
	7 & 8 TeV	125.0	2.8	2.3	1.3 ± 0.5	124–233	137–261
	7 TeV	126.5	3.6	3.2	1.2 ± 0.4		
Combined	8 TeV	126.5	4.9	3.8	1.5 ± 0.4		
Combined	7 & 8 TeV	126.5	6.0	4.9	1.4 ± 0.3	110–582 113–532 (*)	111–122, 131–559 113–114, 117–121, 132–527 (*)

Confidence Intervals from Channels

Confidence intervals in the (mu, mH) plane for the H to ZZ(*) to 4l, H to gamma gamma, and H to WW(*) to l nu l nu channels, including all systematic uncertainties. The markers indicate the maximum likelihood estimates (muhat, mHhat) in the corresponding channels (the maximum likelihood estimates for H to ZZ(*) to 4l and H to WW(*) to l nu l nu coincide).

Η

Effect of categories

$H \rightarrow \gamma \gamma$: Signal Strength per Category

