# Dark Matter at Collider

#### Bhaskar Dutta Texas A&M University



6<sup>th</sup> November, 2012

### Discovery Time…

Dark Matter: we need new particles to explain the content of the universe

Standard Model: we need new physics

**Supersymmetry solves both problems!** 

The super-partners are distributed around 100 GeV to a few TeV

#### LHC: directly probes TeV scale

Future results from PLANCK, direct and indirect detection, rare decays etc. experiments in tandem with the LHC will confirm a model

This talk: How accurately we can calculate dark matter density? Can we establish the existence particles responsible for 23%?

### So Far…

- Recent Higgs search results from Atlas and CMS indicate that Higgs mass (if it is Higgs) ~125 GeV
  - in the tight MSSM window: 115-135 GeV
- →squark mass (first generation) ~ gluino mass ≥ 1.4TeV
- →For heavy squark mass, gluino mass is ≥ 900 GeV
- → stop (squark) produced from gluinos, stop mass ≥ 700 GeV
- → stop (squark) produced directly, stop mass ≥ 450 GeV
- ➔ Selectron/Smuon between 85 and 195 GeV for a 20 GeV neutralino are excluded at 95% confidence
- →Chargino masses between 110 and 340 GeV are excluded at 95% CL for a neutralino of 10 GeV for Chargino decaying into e/µ

## Dark Matter Content and SUSY…

**Dark Matter content calculation**:

Annihilation of lightest neutralinos → SM particles

Annihilation diagrams: mostly non-colored particles, e.g., sleptons, staus, charginos, neutralinos, etc.

How to produce these non-colored particles at the LHC?

In this talk:

**1.Cascade decays of squarks and gluinos** 

**2. Vector Boson fusion** 

### 1. Via Cascade decays at the



### **SUSY Particles via Cascade**

Masses of particles are needed to calculate the DM content But can we determine them?



### SUSY Cascade @ LHC Dilemma

Can we determine all the masses in the diagram?



## DM at the LHC

#### **Goal:**



#### **Solving for the MSSM : Very difficult**

## DM at the LHC via Cascade

**Solutions:** 

Prob.1. Identifying one side is very tricky!
→ We develop new strategies: BEST, apply OS-LS

**Prob. 2. Not all the sparticles appear in cascade decays** 

We can use simpler models to understand the cascades and solve for the model parameters

# DM at the LHC via cascade

We can use simpler models to understand the cascades and solve for the model parameters



**Calculate the Dark Matter content** 

#### The best strategy:

Solve for the minimal model: mSUGRA/CMSSM  $\rightarrow$  4 parameters + sign: m<sub>0</sub>, m<sub>1/2</sub>, A<sub>0</sub>, tan $\beta$  and Sign( $\mu$ )

The cascades can be understood in a simpler way [hopefully!]

#### Also test:

Models with more parameters or with different features, e.g., Next to minimal model (Higgs non-universality), Gaugino Non-universality (Mirage Mediation model) etc...

### **Case 1: Coannihilation Region**



 $\tilde{g}$   $\tilde{u}_L$ 

Jets +  $\tau$ 's<sup>+</sup> + missing energy

Lightest stau and the lightest neutralino masses are close

Low energy taus characterize the CA region

However, one needs to measure the model parameters to predict the dark matter content in this scenario

**SUSY Masses** 

in the interest ••••970  $\widetilde{\chi}_1^0$ (CDM) 2 quarks+2  $\tau$ 's  $\Delta M \equiv M_{\widetilde{\tau}_1} - M_{\widetilde{\chi}_1^0}$ +missing  $= 5 \sim 15 \text{ GeV}$ energy

U

#### SUSY at the LHC Dilemma...

The stau and the lightest neutralino masses are needed to establish coannihilation region

But identifying one side is tricky



#### SUSY at the LHC Dilemma...

#### **OS-LS Subtraction allows one side reconstruction**



### **Extracting One side: j**ττ

**OS-LS** selection of ditaus selects the entire side

, but if we need to reconstruct

We use the following subtraction scheme:



Normalize and perform the Same Jet - Previous Jet subtraction:

- <u>Random</u> pairs will cancel.
- Only the <u>related</u> pairs remain.

**Bi Event Subtraction technique: BEST** 

The OS-LS  $\tau$  pair has momentum related to the momentum of this Same Event Jet.

We collect all 2  $\downarrow$  Jet pairs: get <u>related</u> pairs plus <u>random</u> pairs.

Using Jets from Previous Events: get only <u>random</u> pairs.



#### BEST



#### What BEST Looks Like...



#### **Top reconstruction : BEST**

#### Even with backgrounds, BEST triumphs.

- 7 TeV collision energy @ LHC, 2 fb<sup>-1</sup>.
- ALPGEN tt signal and W+jets background
- PYTHIA shower
- PGS detector

- (i) Number of leptons =1, where  $p_T^l \ge 20 GeV$
- (i) Miss. transverse energy > 20 GeV
- (ii) Number of jets, N≥3,where p<sub>T</sub><sup>j</sup>≥30GeV and at least one jet has been tightly b-tagged
- (iv) Number of taus,  $N\tau = 0$  for taus with  $p_T^{\tau} \ge 20 GeV$



# **Coann. Region: Final States**





Different types of final states are needed for different models



1000

g

 $\widetilde{\chi}_2^0$ 

р

p



 $M_{\rm eff}^{\rm peak}$  = 1220 GeV

 $m_{1/2} = 351 \text{ GeV}$ 



 $M_{\text{eff}}$  (b) can be used to probe  $A_0$  and  $\tan\beta$  without measuring stop and sbottom masses  $\rightarrow 3^{\text{rd}}$  Gen. squarks gets involved

### **DM Relic Density in mSUGRA**



### **Determining mSUGRA Parameters**

✓ Solved by inverting the following functions:

$$M_{j\tau\tau}^{\text{peak}} = X_{1}(m_{1/2}, m_{0})$$

$$M_{\tau\tau}^{\text{peak}} = X_{2}(m_{1/2}, m_{0}, \tan\beta, A_{0})$$

$$M_{\text{eff}}^{\text{peak}} = X_{3}(m_{1/2}, m_{0})$$

$$M_{\text{eff}}^{\text{peak}} = X_{4}(m_{1/2}, m_{0}, \tan\beta, A_{0})$$

$$M_{\text{eff}}^{\text{hopeak}} = X_{4}(m_{1/2}, m_{0}, \tan\beta, A_{0})$$

$$M_{1}^{\text{hopeak}} = X_{1}(m_{1/2}, m_{0}, \tan\beta, A_{0})$$

$$M$$

### Comparison

|                    |   |     | ILC analysis:<br>500 GeV                                                                                                                       | LHC                                        |
|--------------------|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| $\boldsymbol{m}_0$ | = | 210 | $\Delta M = 9.5^{+1.1}_{-1.0}$ (500 fb <sup>-1</sup> )                                                                                         | We need 50fb <sup>-1</sup>                 |
| $m_{1/2}$          | = | 350 | Arnowitt, Dutta,<br>Kamon; PLB 05                                                                                                              |                                            |
| $oldsymbol{A}_0$   | = | 0   | $\downarrow$                                                                                                                                   | We can determine                           |
| tan <b>β</b>       | = | 40  | This result was used<br>in Baltz, Battaglia,<br>Peskin, Wizansky' 05<br>to extract relic<br>density by using<br>ILC and LHC<br>(LCC3 point)'05 | Arnowitt, Dutta,<br>Kamon et al,<br>PRL 08 |

# Case 2 : Non-U SUGRA

- **Nature may not be so kind ...** Our studies have been done based on a minimal scenario(= mSUGRA)...
- Let's consider a non-universal scenario: Higgs non-universality:
- $m_{Hu}, m_{Hd}$   $m_0$  (most plausible extension)
- → easy to explain the DM content:
- 1) Reduce  $\mu$  or 2) heavy Higgs/pseudoscalar (A) resonance

#### **Case 1 steps:**

Reduce Higgs coupling parameter, μ, by increasing m<sub>Hu</sub>, ...
 → More annihilation (less abundance) → correct values of Ωh<sup>2</sup>
 Find smoking gun signals → Technique to calculate Ωh<sup>2</sup>

$$\boldsymbol{m}_{Hu}^{2} = \boldsymbol{m}_{0}^{2}(1 + \boldsymbol{\delta}_{u}^{2}), \boldsymbol{m}_{Hd}^{2} = \boldsymbol{m}_{0}^{2}(1 + \boldsymbol{\delta}_{d}^{2}),$$
$$\boldsymbol{\mu}^{2} = \left[\frac{\boldsymbol{\delta}_{d}^{2}}{\tan^{2}\boldsymbol{\beta}} - \boldsymbol{\delta}_{u}^{2}\frac{(1 + \boldsymbol{D}_{0})}{2}\right]\boldsymbol{m}_{0}^{2} + \dots$$

Where *D*<sub>0</sub><0.23

For low and intermediate  $tan\beta...$ 

#### **Reference Point**

Parameters at the GUT scale:

- $m_0 = 360 \text{ GeV}, m_{1/2} = 500 \text{ GeV}, A_0 = 0 \text{ GeV}, \tan \beta = 40$
- Non-universal Higgs:  $m_{H_u} = 732 \text{ GeV}$ ,  $m_{H_d} = 732 \text{ GeV} *$

| SUSY masses (in GeV): |                                  |                                |                            |                      | <b>\$2h<sup>2</sup>=0</b> . | .112                                                                                                                            |                                                                             |
|-----------------------|----------------------------------|--------------------------------|----------------------------|----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| ĝ                     | ũ <sub>L</sub><br>ũ <sub>R</sub> | $\tilde{t}_2$<br>$\tilde{t}_1$ | $	ilde{b}_2 \\ 	ilde{b}_1$ | ẽ∟<br>ẽ <sub>R</sub> | $	ilde{	au_2} 	ilde{	au_1}$ | $\begin{array}{c} {	ilde{\chi}_{4}^{0}} \\ {	ilde{\chi}_{3}^{0}} \\ {	ilde{\chi}_{2}^{0}} \\ {	ilde{\chi}_{1}^{0}} \end{array}$ | $egin{array}{c} \tilde{\chi}^{\pm}_{2} \ 	ilde{\chi}^{\pm}_{1} \end{array}$ |
| 1161                  | 1114<br>1076                     | 992<br>780                     | 989<br>946                 | 494<br>407           | 446<br>255                  | 432<br>317<br>293<br>199                                                                                                        | 428<br>292                                                                  |

25

#### **Decays at Reference Point**

**Benchmark Point: Characteristic Decays** 



In the non-universal scenario: We use W + jets etc.

#### **BEST and nuSUGRA...**

#### In this scenario we have W's in the final states:



### **End Point Techniques with BEST**

#### Even with backgrounds on top of SUSY, BEST triumphs.

- 14 TeV collision energy @ LHC, 100 fb<sup>-1</sup>.
- nuSUGRA:  $m_0 = 360 \text{ GeV}, m_{1/2} = 500 \text{ GeV},$ tan  $\beta = 40, A_0 = 0$ , and  $m_H = 732 \text{ GeV}.$
- SM: tt
  , W+Jets, and Z+Jets.



Significance improves 5 times with BEST

 $> N_{iet} > 4, p_T > 30$ 

 $\succ E_{T}^{j1,2} > 100, E_{T}^{miss} > 180$ 

 $E_{T}^{\text{miss}} + E_{T}^{j1} + E_{T}^{j2} > 600$ > No e's,  $\mu$ 's with  $p_{T} > 5$ 

#### **Relic Density**

| $\mathcal{L}$ (fb <sup>-1</sup> ) | $m_{1/2}~({ m GeV})$ | $m_H~({ m GeV})$ | $m_0~({ m GeV})$ | $A_0$ (GeV) | aneta        | $\mu$ (GeV) | $\Omega_{{	ilde \chi}_1^0} h^2$ |
|-----------------------------------|----------------------|------------------|------------------|-------------|--------------|-------------|---------------------------------|
| 1000                              | $500\pm3$            | $727\pm10$       | $366\pm26$       | $3\pm34$    | $39.5\pm3.8$ | $321\pm25$  | $0.094^{+0.107}_{-0.038}$       |
| 100                               | $500\pm9$            | $727\pm13$       | $367\pm57$       | $0\pm73$    | $39.5\pm4.6$ | $331\pm48$  | $0.088^{+0.168}_{-0.072}$       |
| Syst.                             | ±10                  | $\pm 15$         | $\pm 56$         | $\pm 66$    | $\pm 4.5$    | $\pm 48$    | $+0.175 \\ -0.072$              |



# **Case 3 : Mirage Mediation**

#### Soft masses: Moduli mediation + anomaly mediation



Non universality of the Mirage Unification of the Gaugino Masses gaugino masses at the **GUT** scale Gaugino masses are unified at the mirage unification scale. The mirage unification scale is given as:  $\mu_{mir} = M_{GUT} e^{-8 \pi^2 / \alpha}$  $n_{\mu}=1, n_{m}=1/2: \alpha=6, m_{3/2}=12 \text{ TeV}, \tan\beta=10, \mu>0, m=175 \text{ GeV}$  $n_{\mu}=0, n_{m}=1: \alpha=-10, m_{3/2}=4 \text{ TeV}, \tan\beta=10, \mu>0, m_{t}=175 \text{ GeV}$ 800 -100 700 -200 M. [GeV] M<sub>i</sub> [GeV] -300 -400 -500 400 M<sub>GUT</sub> -600 M<sub>GUT</sub> 300 -700 200  $10^{0} \ 10^{1} \ 10^{2} \ 10^{3} \ 10^{4} \ 10^{5} \ 10^{6} \ 10^{7} \ 10^{8} \ 10^{9} \ 10^{10} \ 10^{11} \ 10^{12} \ 10^{13} \ 10^{14} \ 10^{15} \ 10^{16} \ 10^{17} \ 10^{18} \ 10^{19} \ 10^{20}$  $10^{0}$   $10^{1}$   $10^{2}$   $10^{3}$   $10^{4}$   $10^{5}$   $10^{6}$   $10^{7}$   $10^{8}$   $10^{9}$   $10^{10}$   $10^{11}$   $10^{12}$   $10^{13}$   $10^{14}$   $10^{15}$   $10^{16}$   $10^{17}$   $10^{18}$ Q [GeV] Q [GeV] Howard Baer, Eun-Kyung Park, etc., arXiv:hep-ph/0703024v2  $M_{a}(\mu) = \frac{m_{3/2}}{16 \pi^{2}} \alpha \left[ 1 - \frac{1}{8 \pi^{2}} b_{a} g_{a}^{2}(\mu) \ln \left( \frac{\mu_{\text{mir}}}{\mu} \right) \right]$ 



B. Dutta, T. Kamon, A. Krislock, K. Sinha, K. Wang, Phys.Rev. D85 (2012) 115007

$$\begin{split} m_{\tilde{g}} &= \text{function} \left( \alpha, m_{3/2} \right) \\ m_{\tilde{\chi}_{1}^{0}} &= \text{function} \left( \alpha, m_{3/2} \right) \\ m_{\tilde{q}} &= \text{function} \left( \alpha, m_{3/2}, n_{m} \right) \\ m_{\tilde{\chi}_{2}^{0}} &= \text{function} \left( \alpha, m_{3/2}, n_{m}, n_{H} \right) \\ m_{\tilde{\tau}_{1}} &= \text{function} \left( \alpha, m_{3/2}, n_{m}, n_{H}, \tan \beta \right) \\ & & & \\ & & \\ \hline \\ \log \left( PT_{\tau}^{\text{slope}} \right) = \text{function} \left( m_{\tilde{\tau}_{1}}, m_{\tilde{\chi}_{1}^{0}} \right) \\ M_{\tau\tau}^{\text{end}} &= \text{function} \left( m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\tau}_{1}}^{2}, m_{\tilde{\chi}_{1}^{0}} \right) \\ M_{j\tau}^{\text{end}} &= \text{function} \left( m_{\tilde{q}}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right) \\ M_{j\tau\tau}^{\text{end}} &= \text{function} \left( m_{\tilde{q}}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right) \\ M_{j\tau\tau}^{\text{peak}} &\simeq \text{function} \left( m_{\tilde{q}}, m_{\tilde{\chi}_{2}^{0}}^{2}, m_{\tilde{\chi}_{1}^{0}}^{2} \right) \end{split}$$

**Dark matter allowed regions:** 

- **1. Stop Coannihilation**
- 2. Stau Coannihilation
- 3. Higgsino domination
- 4. Wino domination
- **5. Pseudo scalar Higgs resonance**

Two main goals: Gaugino masses, DM content

#### **Typical stau-neutralino coannihilation region**

| Paramete     | r Value | Particle            | Mass   | Particle          | Mass   | Particle               | Mass   |
|--------------|---------|---------------------|--------|-------------------|--------|------------------------|--------|
|              | i value | $	ilde{d}_L$        | 845.49 | $\widetilde{e}_L$ | 426.91 | $	ilde{\chi}_1^0$      | 284.17 |
| $\alpha$     | 7.5     | $\widetilde{d}_R$   | 813.52 | ${	ilde e}_R$     | 367.70 | $	ilde{\chi}^0_2$      | 389.17 |
| malo         | 10000   | $\widetilde{u}_L$   | 841.39 | $	ilde{	au}_1$    | 309.75 | $	ilde{\chi}_3^0$      | 548.88 |
|              | 10000   | ${	ilde u}_{R}$     | 815.27 | $	ilde{	au}_2$    | 425.68 | $	ilde{\chi}_4^0$      | 569.04 |
| $n_m$        | 0.5     | $\widetilde{b}_{1}$ | 735.87 |                   |        | $\tilde{\chi}_1^{\pm}$ | 389.32 |
| $n_H$        | 1.0     | $\widetilde{b}_2$   | 791.30 |                   |        | $	ilde{\chi}_2^\pm$    | 568.10 |
| $\tan \beta$ | 30      | $\widetilde{t}_1$   | 600.23 |                   |        | $\widetilde{g}$        | 897.55 |
| ====         |         | $-	ilde{t_2}$       | 810.20 |                   |        |                        |        |

| Observable                | Value   | $100 \text{ fb}^{-1}$ Stat. |
|---------------------------|---------|-----------------------------|
| $M_{	au	au}^{	ext{end}}$  | 90.70   | $\pm 0.54$                  |
| $M_{i	au	au}^{	ext{end}}$ | 479.53  | $\pm 3.45$                  |
| $slope(p_{T,\tau})$       | -0.0849 | $\pm 0.0041$                |
| $M_{ m eff}^{ m peak}$    | 1257.26 | $\pm 10.33$                 |
| $M_{j	au}^{	ext{end}}$    | 448.40  | $\pm 16.20$                 |

| Particle                              | Mass | $100 \text{ fb}^{-1} \text{ Stat.}$ |
|---------------------------------------|------|-------------------------------------|
| $\tilde{g}$                           | 895  | -35, +50                            |
| $ar{	ilde{q}}_L$                      | 845  | -36, +24                            |
| $	ilde{\chi}^0_2$                     | 388  | -9, +25                             |
| $	ilde{	au}$                          | 298  | -8, +8                              |
| $	ilde{\chi}_{	extsf{1}}^{	extsf{o}}$ | 274  | -10, +10                            |

| Parameter | Value | Stat.        |
|-----------|-------|--------------|
| α         | 7.42  | $\pm 0.58$   |
| $m_{3/2}$ | 10171 | $\pm$ 882    |
| $n_m$     | 0.52  | $\pm$ 0.09   |
| $n_{H}$   | 1.17  | -0.07, +0.22 |
| aneta     | 33.1  | $\pm$ 7.8    |

#### $\Omega h^2 = 0.17^{+0.12}_{-0.13} .$

#### Gluino mass ~ 1.1 TeV



Using all the observables for this point:  $\Omega h^2 = 0.05^{+0.21}_{-0.04}$ .

#### **Typical stop-neutralino coannihilation region**

| m <sub>3/2</sub> | α   | tanβ | n <sub>m</sub> | $\mathbf{n}_{_{\mathrm{H}}}$ |
|------------------|-----|------|----------------|------------------------------|
| 14000            | 4.5 | 30   | 0              | 0.5                          |



| Particle          | Mass   | $50 \text{ fb}^{-1} \text{ Stat.}$    | $100 \text{ fb}^{-1} \text{ Stat}$ |
|-------------------|--------|---------------------------------------|------------------------------------|
| $\tilde{g}$       | 646    | -14,+19                               | -11,+14                            |
| ${	ilde q}_L$     | 638    | -34,+42                               | -23,+39                            |
| $	ilde{	au}$      | 318    | -3, +3                                | -3, +3                             |
| $	ilde{\chi}^0_2$ | 333    | -7,+11                                | -6, +8                             |
| $	ilde{\chi_1^0}$ | 276    | -8,+13                                | -7,+10                             |
| Particle          | Mass 5 | $0 \text{ fb}^{-1} \text{ Stat. } 10$ | $00 \text{ fb}^{-1} \text{ Stat.}$ |
| $\tilde{b}$       | 531    | -60, +60                              | -47, +47                           |
| $	ilde{t}$        | 326    | -5, +8                                | -4, +7                             |
|                   |        | 2152                                  |                                    |

Dutta, Kamon, Krislock, Sinha, Wang, Phys.Rev. D85 (2012) 115007

| Parameter | Value | $50 \text{ fb}^{-1} \text{ Stat.}$ | $100 \text{ fb}^{-1} \text{ Stat.}$ |
|-----------|-------|------------------------------------|-------------------------------------|
| α         | 4.58  | $\pm 0.21$                         | $\pm 0.14$                          |
| $m_{3/2}$ | 13717 | $\pm 688$                          | $\pm 517$                           |
| $n_m$     | 0.106 | $\pm 0.015$                        | $\pm 0.015$                         |
| $n_H$     | 0.578 | $\pm 0.095$                        | $\pm 0.091$                         |
| aneta     | 28.76 | $\pm 1.65$                         | $\pm 1.36$                          |

$$\Omega h^2 = 0.096 \pm 0.029$$

| Parameter | Value | Particle              | Mass |
|-----------|-------|-----------------------|------|
| α         | 3.8   | $	ilde{g}$            | 1187 |
| $m_{3/2}$ | 34800 | $	ilde{\chi}^{0}_{2}$ | 740  |
| $n_m$     | 0.0   | $	ilde{\chi}_{1}^{0}$ | 666  |
| $n_H$     | 0.5   | $	ilde{	au}$          | 721  |
| aneta     | 28    | $	ilde{q}$            | 1189 |

| Particle     | Mass | Stat.      | -                      |
|--------------|------|------------|------------------------|
| $\tilde{t}$  | 690  | $\pm 6$    |                        |
| ${	ilde b}$  | 1002 | $\pm 126$  | @ 200 fb <sup>-1</sup> |
| $	ilde{	au}$ | 717  | $\pm$ 10   |                        |
| $	ilde{q}$   | 1133 | -132, +167 |                        |

 $\Omega h^2 = 0.23 \pm 0.13.$ 

 $P_{T \text{ sum}}(m_{\tau 1}, m_{\gamma 2}, m_{\gamma 1});$  $P_{T_{diff}}(m_{\tau 1}, m_{\chi 2}, m_{\chi 1});$  $m_{\tau\tau} (m_{\tau 1}, m_{\chi 2}, m_{\chi 1});$  $M_{eff}$  ( $m_{qluino}$ ,  $m_{\chi 1}$ ) Particle Mass  $50 \text{fb}^{-1}$  Stat.  $\tilde{g}$ 1181  $\pm 50$  $ilde{\chi}^0_2 \ ilde{\chi}^0_1$ 738  $\pm 15$ 649  $\pm 20$ 



#### 2. DM at the LHC Via VBF

Direct probes of charginos, neutralinos and sleptons



Two high  $E_T$  forward jets in opposite hemispheres with large dijet invariant mass

#### Dutta, Gurrola, John, Kamon, Sheldon, Sinha, arXiv:1210.0964

#### DM at the LHC Via VBF

The decay modes of charginos, neutralinos:

$$\widetilde{\chi}_{1}^{\pm} \to \widetilde{\tau}_{1}^{\pm} \nu \to \tau^{\pm} \widetilde{\chi}_{1}^{0} \nu$$
$$\widetilde{\chi}_{2}^{0} \to \widetilde{\tau}_{1}^{\pm} \tau^{\mp} \to \tau^{\pm} \tau^{\mp} \widetilde{\chi}_{1}^{0}$$

Signal:  $\geq 2j + 2\tau + \text{missing energy}$ 

#### **Benchmark scenario:**

$$m_{\tilde{\chi}_1^{\pm}} \sim m_{\tilde{\chi}_2^0} = 180 \text{GeV}, m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0} = 30 \text{GeV}, \ m_{\tilde{\chi}_1^0} = 90 \text{GeV}$$

#### Also:

 $\widetilde{\chi}_{1}^{\pm} \to \widetilde{l}_{1}^{\pm} \nu \to l^{\pm} \widetilde{\chi}_{1}^{0} \nu$  $\widetilde{\chi}_{2}^{0} \to \widetilde{l}_{1}^{\pm} l^{\mp} \to l^{\pm} l^{\mp} \widetilde{\chi}_{1}^{0}$ 

Signal:  $\geq 2j + 2\mu + \text{ missing energy}$ 

### Signal: $\geq 2j+2\tau+missing$ energy

# 2 jets each with $p_T$ >50 GeV, leading $p_T$ >75 GeV $|\Delta\eta(j_1, j_2)|$ >4.2, $\eta_{j1}\eta_{j2}$ <0, $M_{j1j2}$ >650 GeV

#### Signal: $\geq 2j + 2\tau + \text{missing energy}$

| $m_{\tilde{\chi}_1^{\pm}} \sim m_{\tilde{\chi}_2^0} = 180 \mathrm{GeV}$ | V,                             | Signal | Z+jets | W+jets          | WW   | WZ   |
|-------------------------------------------------------------------------|--------------------------------|--------|--------|-----------------|------|------|
|                                                                         | VBF cuts                       | 4.61   | 10.9   | $3.70	imes10^3$ | 97.0 | 19.0 |
| <b></b>                                                                 | $ E_{\rm T} > 75 $             | 4.33   | 0.27   | $5.29	imes10^2$ | 17.6 | 3.45 |
| / <i>s</i> = 8 TeV                                                      | $2\tau$ , inclusive            | 0.45   | 0.06   | 0.23            | 0.09 | 0.04 |
|                                                                         | $(S/\sqrt{B})$                 |        |        | 3.47            |      |      |
| Lum: 25 fb <sup>-1</sup>                                                | $\overline{\tau}_{\tau}^{\pm}$ | 0.21   | 0      | 0.11            | 0.02 | 0.01 |
|                                                                         | $(S/\sqrt{B})$                 |        |        | 2.91            |      |      |
|                                                                         | $\tau_{\tau} \pm_{\tau} \mp$   | 0.24   | 0.06   | 0.12            | 0.07 | 0.03 |
|                                                                         | $(S/\sqrt{B})$                 |        |        | 2.27            |      |      |

Two  $\tau$  's with  $p_T > 20$  GeV in  $\eta < 2.1$ , with  $\Delta R(\tau \tau) > 0:3$ . All  $\tau$ 's are hadronic. The  $\tau$  ID efficiency is assumed to be 55% and the jet  $\rightarrow \tau$  Misidentification rate is taken to be 1%,

### Signal: $\geq 2j+2\tau+missing$ energy



### **Signal:** $\geq$ 2j+2µ+missing energy

2 jets each with  $p_T$ >50 GeV, leading  $p_T$ >75 GeV  $|\Delta\eta(j_1, j_2)|>4.2, \ \eta_{j1}\eta_{j2}<0, M_{j1j2}>650 GeV$ 

 $m_{\tilde{\chi}_1^{\pm}} \sim m_{\tilde{\chi}_2^0} = 180 \text{GeV},$ Signal:  $\geq 2j + 2\mu + \text{missing energy}$  $\overline{WZ}$ WWSignal Z+jets W+jets  $10.9 \quad 3.70 \times 10^3 \ 0.97 \times 10^2 \ 19.0$ VBF cuts 4.61 $5.29 imes10^2$ 4.33 0.2717.63.45  $E_{\rm T} > 75$  $\sqrt{s} = 8$  TeV 0.19  $2\mu$ , inclusive 1.83 0.120.150  $(S/\sqrt{B})$ 13.5 Lum: 25 fb<sup>-1</sup>  $\mu^{\pm}\mu^{\pm}$ 0.05 0.87 0.03 0 0  $(S/\sqrt{B})$ 15.4  $\mu^{\pm}\mu^{\mp}$ 0.96 0.150.140.090  $(S/\sqrt{B})$ 7.80

Two isolated  $\mu$  's with  $p_T$  >20 GeV in  $\eta$  < 2.1

For  $3\sigma$ :  $m_{\tilde{\chi}_1^{\pm}} \sim m_{\tilde{\chi}_2^0} = 330 \text{GeV}$ 

### Signal: $\geq 2j+2\mu$ +missing energy



### Conclusion

Annihilation diagrams: mostly non-colored particles,
e.g., sleptons, staus, charginos, neutralinos, etc
➔ Investigate sleptons, charginos, neutralinos etc. at the LHC

 Sleptons, charginos etc. can be produced via cascade decays: squarks, gluinos etc

Use the signatures and BEST to construct a decision tree → determine model parameters and the relic density based on the LHC measurements

 Sleptons, charginos etc. can be produced via vector boson fusion

Use high  $E_T$  forward jets in opposite hemispheres with large dijet invariant mass