Form of the Primordial Spectrum & Cosmological Parameter Estimation

Arman Shafieloo

APCTP

Asia Pacific Center for Theoretical Physics

4th-9th November 2012, KIAS, Seoul-Korea Conference on Particle Physics and Cosmology

Era of Precision Cosmology

Combining theoretical works with new measurements and using statistical techniques to place sharp constraints on cosmological models and their parameters.

Baryon density

Dark Matter: density and characteristics

FLRW?

Neutrino mass and radiation density

Dark Energy: density, model and parameters

Curvature of the Universe

Initial Conditions: Form of the Primordial Spectrum and Model of Inflation and its Parameters

Epoch of reionization

Hubble Parameter and the Rate of Expansion

Standard Model of Cosmology

Using measurements and statistical techniques to place sharp constraints on parameters of the standard cosmological models.

Baryon density

 $\Omega_{_{h}}$

Dark Matter is Cold and weakly Interacting: Ω_{dm}

FLRW

Neutrino mass and radiation density: assumptions and CMB temperature

Cosmological Constant:

Dark Energy is

Universe is Flat

 $\Omega_{\Lambda} = 1 - \Omega_{h} - \Omega_{dm}$

Initial Conditions: Form of the Primordial Spectrum is *Power-law*

 n_s, A_s

Epoch of reionization

au

Hubble Parameter and the Rate of Expansion

 H_{0}

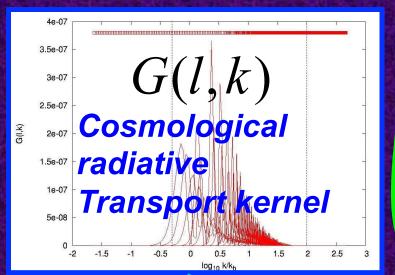
Inflation

- Extreme accelerated expansion of the early universe.
- It can be realized by scalar fields (or some other mechanisms).
- So far the best theory that can resolve the magnetic monopole problem (absence of relics), flatness problem, horizon problem and explain the initial perturbations from quantum fluctuations.
- It has many many models.
- These models are different in their statistical properties and we may be able to distinguish between them using cosmological observations.

<u>Models of Inflation</u>

old, new, pre-owned, chaotic, quixotic, ergodic, ekpyrotic, autoerotic, faith-based, free-based, D-term, F-term, summer-term, brane, braneless, brainless, supersymmetric, supercilious, natural, supernatural, *au natural,* hybrid, low-bred, white-bread, one-field, two-field, left-field, eternal, internal, infernal, self-reproducing, self-promoting, dilaton, dilettante,

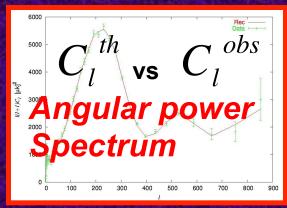
[shamelessly stolen from Rocky Kolb]

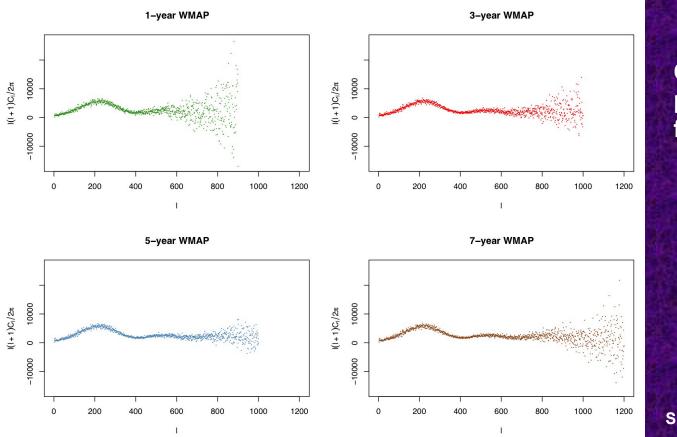

[Shamelessly stolen from Jan Hamann]

Constraints on inflationary scenarios from cosmological observations:

- Form of the primordial spectrum (degenerate with other cosmological quantities).
- Tensor-to-scalar ratio of perturbation amplitudes (near future potential probe)
- Primordial non-Gaussianities (near future potential probe)

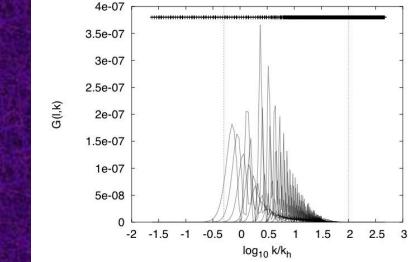
P(k)Primordial power Spectrum


Assumption suggested by inflation



Detected by observation

 $C_l = \sum G(l,k)P(k)$


Determined by background model and cosmological parameters

Observed angular power spectrum from WMAP

Shafieloo & Souradeep PRD 2004

Plot from Aghamousa et al, APJ 2011

Shape of the transfer kernel, G(I,k)

Standard Model of Cosmology-Vanilla Model

- Flat Lambda Cold Dark Matter Universe (LCDM) with power–law form of the primordial spectrum
- It has 6 main parameters:

Cosmological Parameters from WMAP

WMAP Cosmological Parameters						
Model: lcdm+sz+lens						
	Data: wmap5					
$10^2\Omega_b h^2$	2.273 ± 0.062	$1 - n_s$	$0.037^{+0.015}_{-0.014}$			
$1 - n_s$	$0.0081 < 1 - n_s < 0.0647$ (95% CL	-	0.457 ± 0.022			
C ₂₂₀	5756 ± 42	$d_A(z_{eq})$	14279 ⁺¹⁸⁶ / ₋₁₈₉ Mpc			
$d_A(z_*)$	14115 ⁺¹⁸⁸ ₋₁₉₁ Mpc	Δ_R^2	$(2.41 \pm 0.11) \times 10^{-9}$			
h	$0.719^{+0.026}_{-0.027}$	H_0	71.9 ^{+2.6} / _{2.7} km/s/Mpc			
keq	0.00968 ± 0.00046	leq	136.6 ± 4.8			
l _*	302.08 ^{+0.83}	n_s	0.963+0.014			
Ω_b	0.0441 ± 0.0030	$\Omega_b h^2$	0.02273 ± 0.00062			
Ω_c	0.214 ± 0.027	$\Omega_c h^2$	0.1099 ± 0.0062			
Ω_{Λ}	0.742 ± 0.030	Ω_m	0.258 ± 0.030			
$\Omega_m h^2$	0.1326 ± 0.0063	$r_{\rm hor}(z_{ m dec})$	$286.0\pm3.4~{\rm Mpc}$			
$r_s(z_d)$	$153.3\pm2.0~{\rm Mpc}$	$r_s(z_d)/D_v(z=0.2)$	0.1946 ± 0.0079			
$r_s(z_d)/D_v(z=0.35)$	0.1165 ± 0.0042	$r_s(z_*)$	$146.8\pm1.8~{ m Mpc}$			
R	1.713 ± 0.020	σ_{s}	0.796 ± 0.036			
A_{SZ}	A_{SZ} 1.04 ^{+0.96} _{-0.69}		$13.69\pm0.13~\mathrm{Gyr}$			
τ			0.010400 ± 0.000029			
θ_*	0.5959 ± 0.0017 °	t_*	$380081^{+5843}_{-5841} \mathrm{yr}$			
$z_{ m dec}$	$z_{\rm dec}$ 1087.9 ± 1.2		1020.5 ± 1.6			
$z_{ m eq}$	z_{eq} 3176 ⁺¹⁵¹ ₋₁₅₀		11.0 ± 1.4			
z_* 1090.51 ± 0.95		Table from NAS	SA - I AMBDA website			

Table from NASA - LAMBDA website

Parameter estimation within a cosmological framework

Harisson-Zel'dovich (HZ)

WMAP Cosmol	ogical Parameters		
Model: $lcdm+ns=1$			
Data	: wmap		
$10^2\Omega_bh^2$	$2.405\substack{+0.046\\-0.047}$		
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.1 \pm 1.2) \times 10^{-10}$		
h	0.778 ± 0.032		
H_0	$77.8\pm3.2~\mathrm{km/s/Mpc}$		
$\Omega_b h^2$	$0.02405\substack{+0.00046\\-0.00047}$		
Ω_{Λ}	0.788 ± 0.031		
Ω_m	0.212 ± 0.031		
$\Omega_m h^2$	$0.1271\substack{+0.0086\\-0.0087}$		
σ_8	$0.796\substack{+0.053\\-0.054}$		
A_{SZ}	$0.92^{+0.63}_{-0.61}$		
t_0	$13.353\pm0.096~\mathrm{Gyr}$		
au	0.141 ± 0.029		
$ heta_A$	$0.5986 \pm 0.0017 ~^{\circ}$		
z_r	14.6 ± 2.0		

Power-Law (PL)

WIND COLLECTION			
WMAP Cosmological Parameters			
Model: lcdm			
Data	: wmap		
$10^2\Omega_b h^2$	2.229 ± 0.073		
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.5\pm1.3)\times10^{-10}$		
h	$0.732\substack{+0.031\\-0.032}$		
H_0	$73.2^{+3.1}_{-3.2} \ \mathrm{km/s/Mpc}$		
$\log(10^{10}A_s)$	3.156 ± 0.056		
$n_s(0.002)$	0.958 ± 0.016		
$\Omega_b h^2$	0.02229 ± 0.00073		
$\Omega_c h^2$	$0.1054\substack{+0.0078\\-0.0077}$		
Ω_{Λ}	0.759 ± 0.034		
Ω_m	0.241 ± 0.034		
$\Omega_m h^2$	$0.1277\substack{+0.0080\\-0.0079}$		
σ_8	$0.761\substack{+0.049\\-0.048}$		
au	0.089 ± 0.030		
$ heta_A$	$0.5952 \pm 0.0021 ~^{\circ}$		
<i>z</i> _r	$11.0^{+2.6}_{-2.5}$		

PL with Running (RN)

WMAP Cosmological Parameters			
Model: lcdm+run			
Data: wmap			
$10^2\Omega_bh^2$	2.10 ± 0.10		
$\Delta_{\mathcal{R}}^2(k = 0.002/\mathrm{Mpc})$	$(23.9 \pm 1.3) \times 10^{-10}$		
$dn_s/d\ln k$	$-0.055\substack{+0.030\\-0.031}$		
h	$0.681\substack{+0.042\\-0.041}$		
H_0	$68.1^{+4.2}_{-4.1} \text{ km/s/Mpc}$		
$n_s(0.002)$	$1.050\substack{+0.059\\-0.058}$		
$\Omega_b h^2$	0.0210 ± 0.0010		
Ω_{Λ}	$0.703^{+0.056}_{-0.055}$		
Ω_m	$0.297\substack{+0.055\\-0.056}$		
$\Omega_m h^2$	$0.1350\substack{+0.0099\\-0.0097}$		
σ_8	$0.771_{-0.050}^{+0.051}$		
A_{SZ}	$1.06\substack{+0.62\\-0.65}$		
t_0	$13.97\pm0.20~{\rm Gyr}$		
au	0.101 ± 0.031		
θ_A	$0.5940 \pm 0.0021 \ ^{\circ}$		
z_r	12.8 ± 2.8		

Tables from NASA - LAMBDA website

Parameter estimation within a cosmological framework

Harisson-Zel'dovich (HZ)

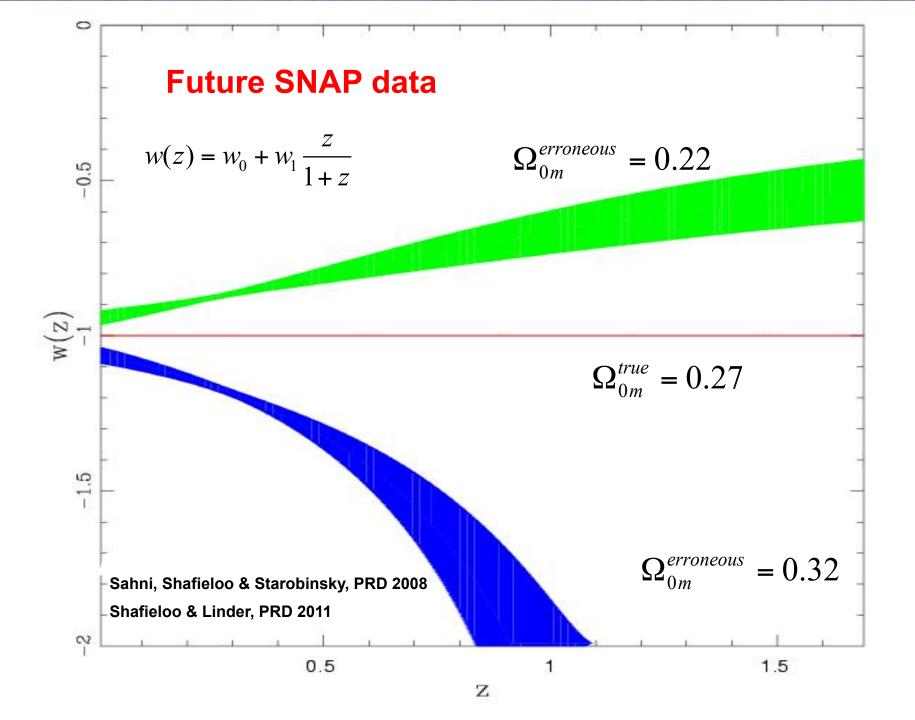
WMAP Cosmol	logical Parameters		
Model: lcdm+ns=1			
Data	: wmap		
$10^2\Omega_b h^2$	$2.405\substack{+0.046\\-0.047}$		
$\Delta_{\mathcal{R}}^2(k = 0.002/\mathrm{Mpc})$	$(23.1 \pm 1.2) \times 10^{-10}$		
h	0.778 ± 0.032		
H_0	$77.8\pm3.2~\mathrm{km/s/Mpc}$		
$\Omega_b h^2$	$0.02405\substack{+0.00046\\-0.00047}$		
Ω_{Λ}	0.788 ± 0.031		
Ω_m	0.212 ± 0.031		
$\Omega_m h^2$	$0.1271^{+0.0086}_{-0.0087}$		
σ_8	$0.796\substack{+0.053\\-0.054}$		
A_{SZ}	$0.92^{+0.63}_{-0.61}$		
t_0	$13.353\pm0.096~\mathrm{Gyr}$		
au	0.141 ± 0.029		
$ heta_A$	0.5986 ± 0.0017 °		
z_r	14.6 ± 2.0		

Power-	Law (P	L)
--------	-------	---	----

WMAP Cosmological Parameters			
Model: lcdm Data: wmap			
$10^2\Omega_b h^2$	2.229 ± 0.073		
$\Delta^2_{\mathcal{R}}(k=0.002/\mathrm{Mpc})$	$(23.5\pm1.3)\times10^{-10}$		
h	$0.732\substack{+0.031\\-0.032}$		
H_0	$73.2^{+3.1}_{-3.2} \text{ km/s/Mpc}$		
$\log(10^{10}A_s)$	3.156 ± 0.056		
$n_s(0.002)$	0.958 ± 0.016		
$\Omega_b h^2$	0.02229 ± 0.00073		
$\Omega_c h^2$	$0.1054\substack{+0.0078\\-0.0077}$		
Ω_{Λ}	0.759 ± 0.034		
Ω_m	0.241 ± 0.034		
$\Omega_m h^2$	$0.1277^{+0.0080}_{-0.0079}$		
σ_8	$0.761^{+0.049}_{-0.048}$		
au	0.089 ± 0.030		
$ heta_A$	$0.5952 \pm 0.0021 \ ^{\circ}$		
z_r	$11.0^{+2.6}_{-2.5}$		

PL with Running (RN)

i.					
WMAP Cosmological Parameters					
	Model: lcdm+run Data: wmap				
	Republic Contractor	. winap			
	$10^2\Omega_b h^2$	2.10 ± 0.10			
$\Delta^2_{\mathcal{R}}($	$k = 0.002/\mathrm{Mpc}$	$(23.9 \pm 1.3) imes 10^{-10}$			
	$dn_s/d\ln k$	$-0.055\substack{+0.030\\-0.031}$			
	h	$0.681^{+0.042}_{-0.041}$			
	H_0	$68.1^{+4.2}_{-4.1} \text{ km/s/Mpc}$			
	$n_s(0.002)$	$1.050^{+0.059}_{-0.058}$			
	$\Omega_b h^2$	0.0210 ± 0.0010			
	Ω_{Λ}	$0.703^{+0.056}_{-0.055}$			
	Ω_m	$0.297\substack{+0.055\\-0.056}$			
	$\Omega_m h^2$	$0.1350\substack{+0.0099\\-0.0097}$			
	σ_8	$0.771^{+0.051}_{-0.050}$			
	A_{SZ}	$1.06\substack{+0.62\\-0.65}$			
	t_0	$13.97\pm0.20~{\rm Gyr}$			
	au	0.101 ± 0.031			
	θ_A	$0.5940 \pm 0.0021 \ ^{\circ}$			
	z_r	12.8 ± 2.8			


Tables from NASA - LAMBDA website

Dark Energy Reconstruction

 Any uncertainties in matter density is bound to affect the reconstructed w(z).

$$H(z) = \left[\frac{d}{dz}\left(\frac{d_L(z)}{1+z}\right)\right]^{-1}$$

$$\omega_{DE} = \frac{\left(\frac{2(1+z)}{3}\frac{H'}{H}\right) - 1}{1 - \left(\frac{H_0}{H}\right)^2 \Omega_{0M} \left(1+z\right)^3}$$

Model Independent Estimation of Primordial Spectrum

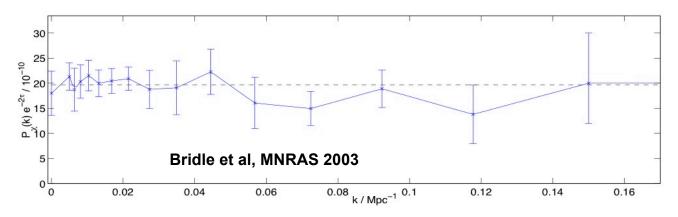
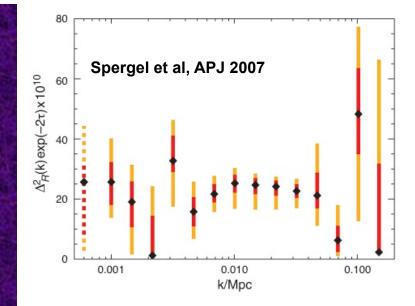
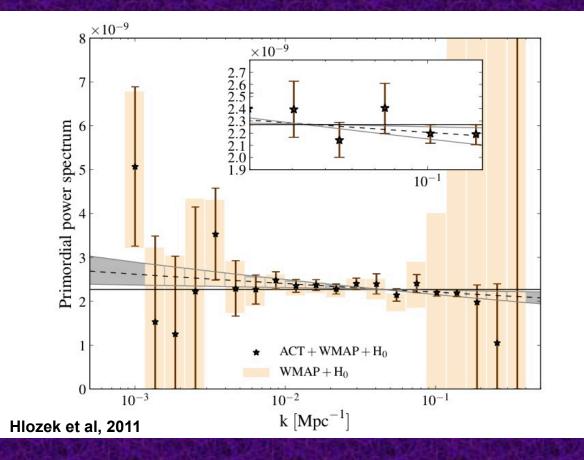
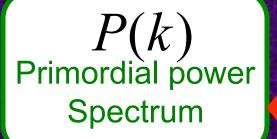
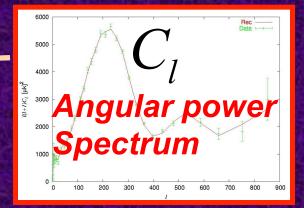




Figure 4. Reconstruction of the shape of the primordial power spectrum in 16 bands after marginalising over the Hubble constant, baryon and dark matter densities, and the redshift of reionization.


Binning Primordial Spectrum

Model Independent Estimation of Primordial Spectrum

Binning Primordial Spectrum

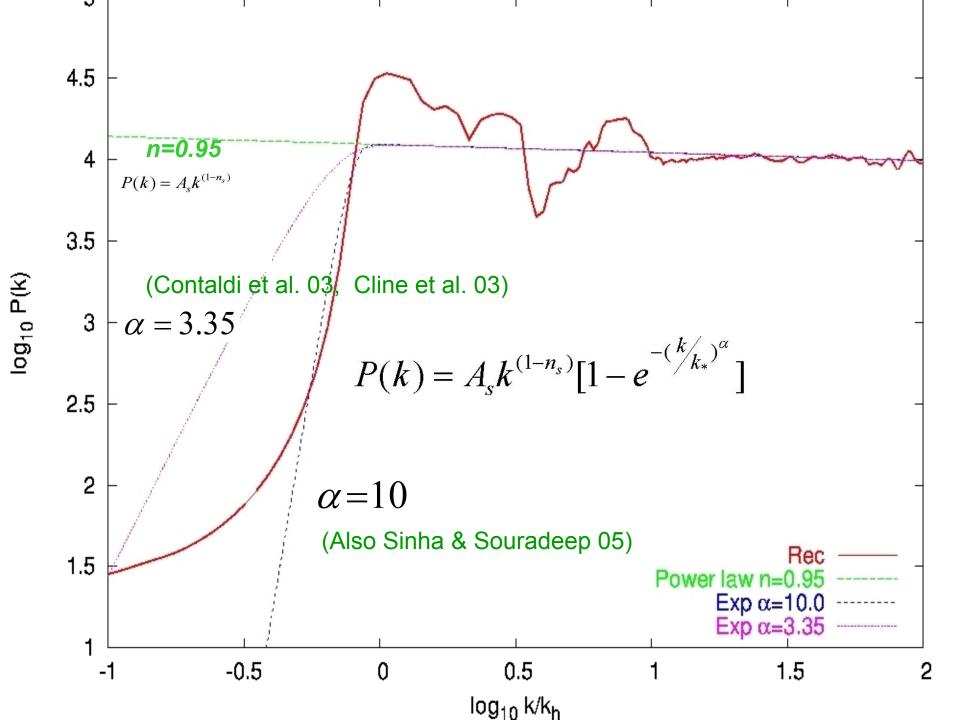

DIRECT RECONSTRUCTION

 $C_l = \sum G(l,k)P(k)$

Detected by observation

Determined by cosmological parameters

Richardson-Lucy Deconvolution

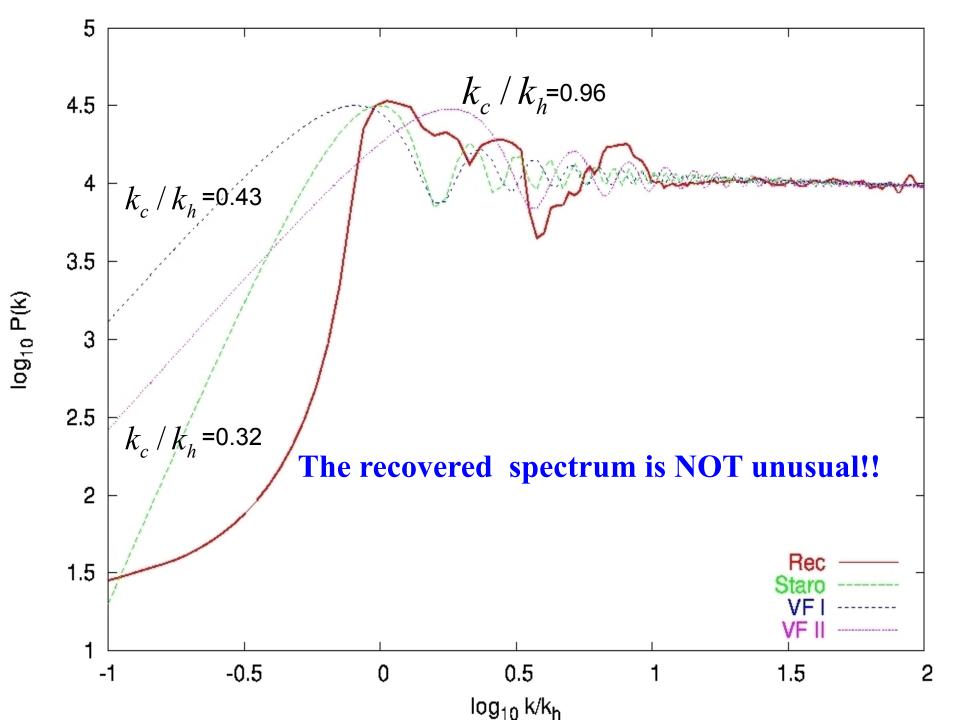

→ Iterative algorithm.
 → Not sensitive to the initial guess.
 → Enforce positivity of P(k).
 [G(l,k) is positive definite and C₁ is positive]

$$C_{l}^{(i)} = \sum_{l} G(l,k) P^{(i)}(k)$$

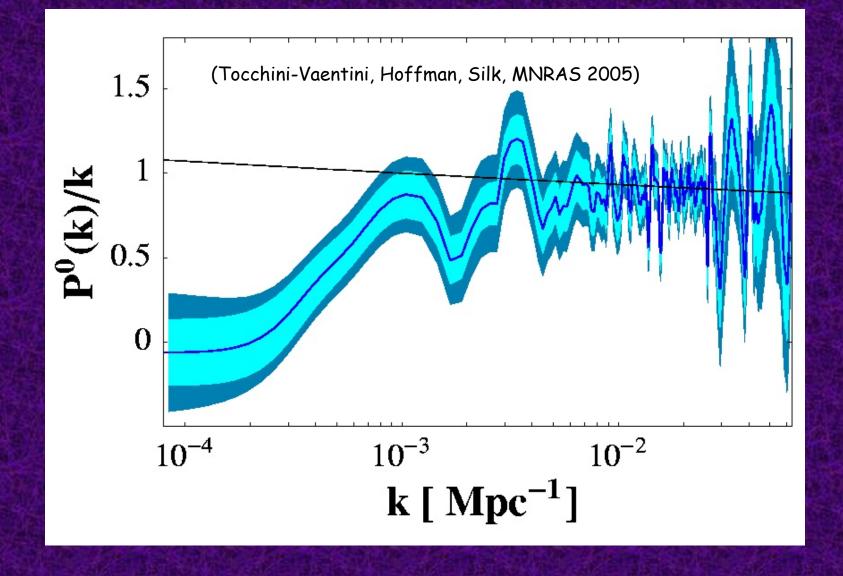
$$P^{(i+1)}(k) - P^{(i)}(k) = P^{(i)}(k) \sum_{l} G(l,k) \frac{C_{l}^{D} - C_{l}^{(i)}}{C_{l}^{(i)}} \tanh^{2} \frac{(C_{l}^{D} - C_{l}^{D})}{(C_{l}^{D})^{2}}$$

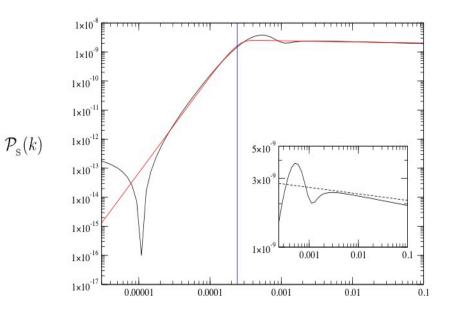
 C_l^D has some finite error bars.

Shafieloo & Souradeep PRD 2004 ; Shafieloo et al, PRD 2007; Shafieloo & Souradeep, PRD 2008; Nicholson & Contaldi JCAP 2009 **Regularizing function**


Inflationary scenarios

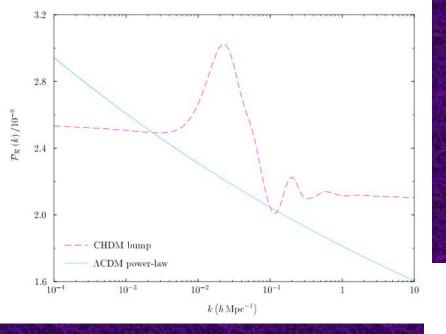
Is the recovered spectrum unusual for inflationary scenarios?


- Starobinsky (1992): sharp changes in the slope in the inflation potential.
- Vilenkin and Ford (1982): pre-inflationary radiation dominated epoch.


$$P(k) = P_{0}(k)D(k,k_{c},r) = A_{s}k^{1-n_{s}}[1-3(r-1)\frac{1}{y}((1-\frac{1}{y^{2}})\sin 2y + \frac{2}{y}\cos 2y + \frac{9}{2}(r-1)^{2}\frac{1}{y^{2}}((1+\frac{1}{y^{2}})\cos 2y - \frac{2}{y}\sin 2y)]$$
Starobinsky
$$y = k/k_{c}$$

$$P(k) = A_{s}k^{1-n_{s}}\frac{1}{4y^{4}} |e^{-2iy}(1+2iy)-1-2y^{2}|^{2}$$
Vilenkin and Ford

Regularized Least Square Method



Jain et al, (2008) Punctuated Inflation

Parameter	Reference model	Our model
$\Omega_{ m b}h^2$	$0.02242^{+0.00155}_{-0.00127}$	$0.02146^{+0.00142}_{-0.00108}$
$\Omega_{ m c} h^2$	$0.1075^{+0.0169}_{-0.0126}$	$0.12051\substack{+0.02311\\-0.02387}$
θ	$1.0395^{+0.0075}_{-0.0076}$	$1.03877^{+0.00979}_{-0.00931}$
au	$0.08695\substack{+0.04375\\-0.03923}$	$0.07220\substack{+0.04264\\-0.02201}$
$\log[10^{10}A_{\rm s}]$	$3.0456^{+0.1093}_{-0.1073}$	1
$n_{ m s}$	$0.9555\substack{+0.0394\\-0.0305}$	_
$\log [10^{10} m^2]$	<u></u>	$-8.3509\substack{+0.1509\\-0.1473}$
ϕ_0	<u>s</u> 8	$1.9594^{+0.00290}_{-0.00096}$
a_0		$0.31439^{+0.02599}_{-0.02105}$

LCDM Model

CHDM Model

Hunt & Sarkar, PRD 2008

Hunt & Sarkar, (2008) Bump model

	WMAP	+SDSS	+LRG	+SDSS+LRG
$\Omega_{ m b}h^2$	$0.01748\substack{+0.00073\\-0.00071}$	$0.01762\substack{+0.00080\\-0.00078}$	$0.01692^{+0.00047}_{-0.00047}$	$0.01688\substack{+0.00044\\-0.00045}$
θ	$1.0365^{+0.0051}_{-0.0051}$	$1.0378^{+0.0049}_{-0.0049}$	$1.0300^{+0.0040}_{-0.0040}$	$1.0300^{+0.0039}_{-0.0039}$
τ	$0.078^{+0.012}_{-0.011}$	$0.079^{+0.012}_{-0.012}$	$0.071^{+0.011}_{-0.011}$	$0.071^{+0.012}_{-0.011}$
$f_{ u}$	$0.096^{+0.017}_{-0.023}$	$0.103^{+0.011}_{-0.011}$	$0.1360^{+0.0092}_{-0.0092}$	$0.1353\substack{+0.0075\\-0.0067}$
$10^4 k_1 / {\rm Mpc}^{-1}$	86^{+15}_{-13}	$82^{+11}_{-9.8}$	77^{+12}_{-10}	$77^{+11}_{-9.5}$
$10^4 k_2 / {\rm Mpc}^{-1}$	527^{+78}_{-78}	539^{+84}_{-82}	380^{+24}_{-24}	379^{+22}_{-22}
$\ln\left(10^{10}\mathcal{P}_{\mathcal{R}}^{(0)}\right)$	$3.282^{+0.047}_{-0.047}$	$3.276^{+0.045}_{-0.046}$	$3.270^{+0.046}_{-0.046}$	$3.270^{+0.046}_{-0.047}$
$b_{ m LRG}$			$2.99_{-0.16}^{+0.16}$	$2.99_{-0.16}^{+0.16}$
$\Omega_{ m c}h^2$	$0.155^{+0.012}_{-0.011}$	$0.1539^{+0.0084}_{-0.0083}$	$0.1387^{+0.0041}_{-0.0044}$	$0.1387^{+0.0037}_{-0.0036}$
$\Omega_{ m d} h^2$	$0.1712^{+0.0063}_{-0.0062}$	$0.1715^{+0.0061}_{-0.0059}$	$0.1605\substack{+0.0030\\-0.0031}$	$0.1604^{+0.0030}_{-0.0030}$
Age/GYr	$15.01^{+0.27}_{-0.27}$	$14.99_{-0.27}^{+0.26}$	$15.48^{+0.14}_{-0.14}$	$15.48^{+0.14}_{-0.14}$
σ_8	$0.668^{+0.093}_{-0.089}$	$0.648^{+0.053}_{-0.054}$	$0.565\substack{+0.032\\-0.033}$	$0.565^{+0.029}_{-0.028}$
$z_{ m reion}$	$13.6^{+3.1}_{-3.1}$	$13.6^{+3.0}_{-3.1}$	$12.7^{+3.1}_{-3.1}$	$12.7^{+3.1}_{-3.2}$
h	$0.4344^{+0.0078}_{-0.0077}$	$0.4348^{+0.0079}_{-0.0076}$	$0.4212^{+0.0037}_{-0.0038}$	$0.4211^{+0.0038}_{-0.0038}$
Δm_1^2	$0.07476^{+0.00070}_{-0.00071}$	$0.07468^{+0.00068}_{-0.00069}$	$0.07459^{+0.00068}_{-0.00069}$	$0.07459^{+0.00068}_{-0.00070}$
Δm_2^2	$0.1510^{+0.0013}_{-0.0013}$	$0.1508\substack{+0.0012\\-0.0013}$	$0.1507\substack{+0.0012\\-0.0013}$	$0.1507^{+0.0012}_{-0.0013}$
$\widetilde{t}_2 - \widetilde{t}_1$	$1.82^{+0.16}_{-0.18}$	$1.89^{+0.15}_{-0.19}$	$1.62^{+0.12}_{-0.17}$	$1.62^{+0.11}_{-0.17}$
χ^2	11247	11265	11297	11315
$\Delta_{ m AIC}$	0	0	28	29

Combining different CMB data sets

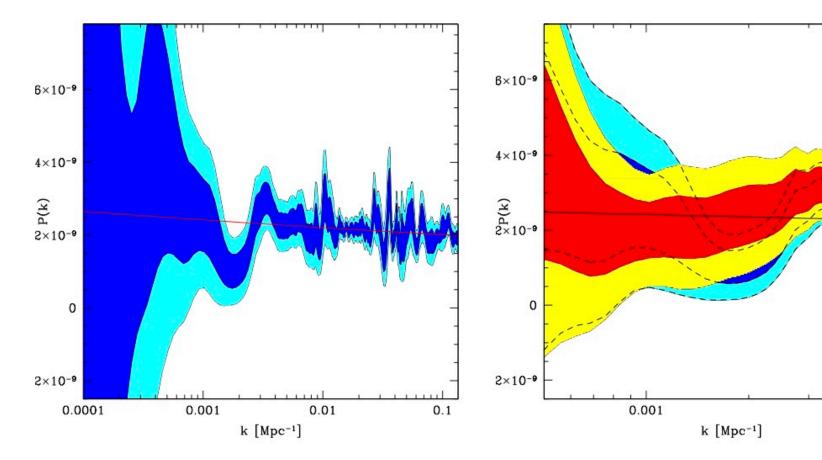
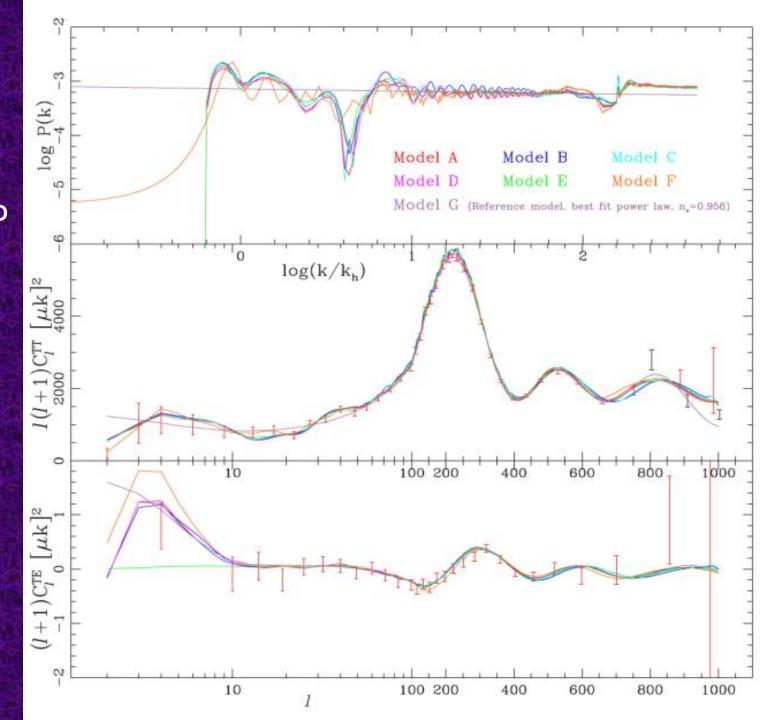
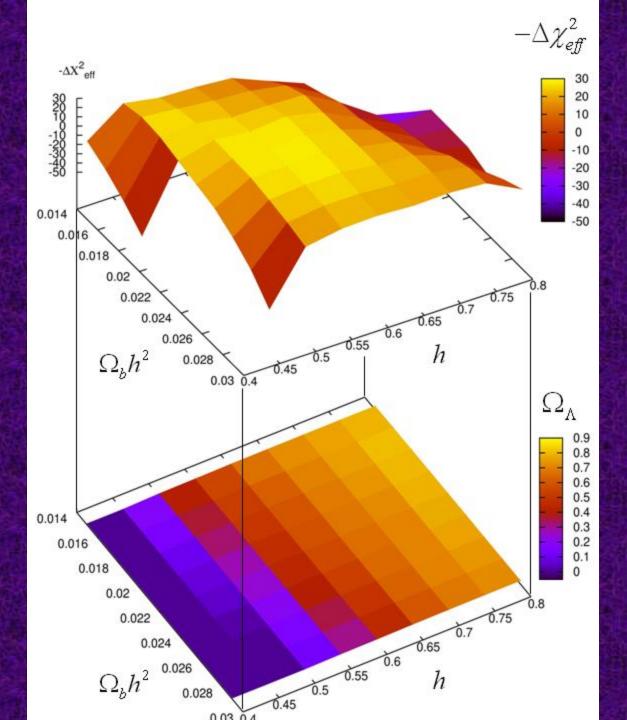
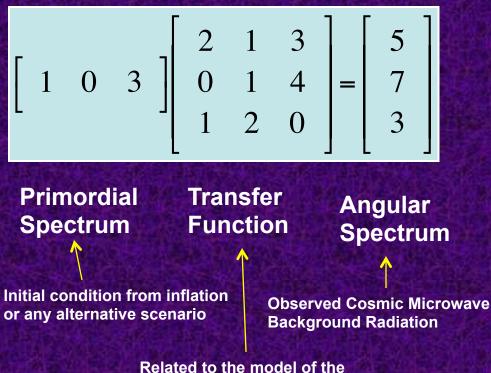



FIG. 3: Current limits from a combination of CMB data sets (WMAP, ACBAR, QUaD, BOOMERanG and CBI). There is some evidence of a dip in power at around $k \approx 0.002$ below the best fit power law model. Shaded regions are defined as in Fig. 2.

FIG. 4: As an indication of the origin of the dip at $k \approx 0.002$ Mpc⁻¹ we remove the data between $\ell = 18$ and $\ell = 26$ and re-run the estimator. The red/yellow contours show the effect of the removal over the original estimate (blue/cyan).

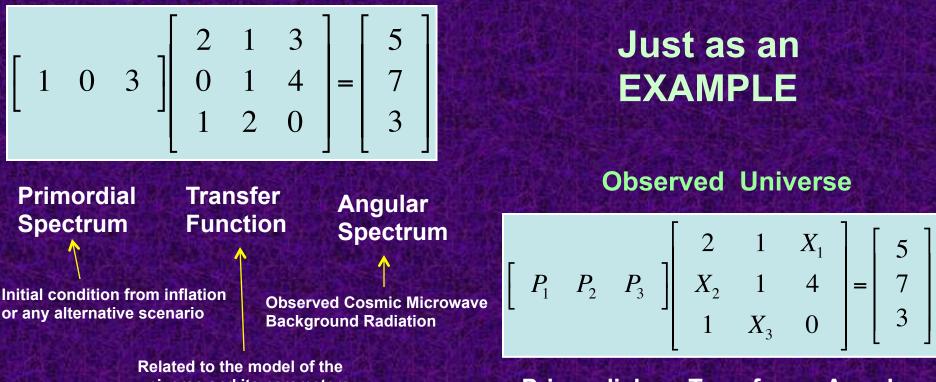
Model A: SDSS Model B: 2df Model C: BAO Model D: SN +BAO Model E: WMAP1 Model F: SCDM Model G: PL


Shafieloo & Souradeep, PRD 2008


 $\Omega_b = 0.058$ $\Omega_c = 0.416$ $\Omega_{\Lambda} = 0.526$ $H_0 = 60$

 $\Delta \chi^2 = -29.014$

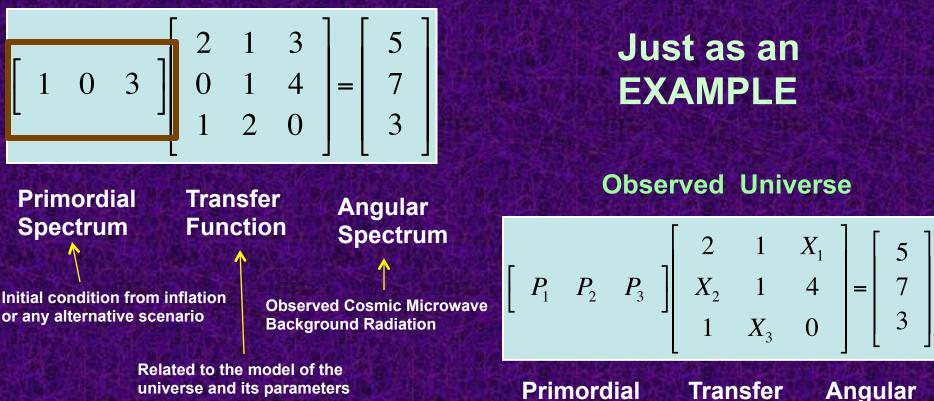
A. Shafieloo & T. Souradeep PRD 2008


If ... Actual Universe

universe and its parameters

Just as an **EXAMPLE**

Actual Universe

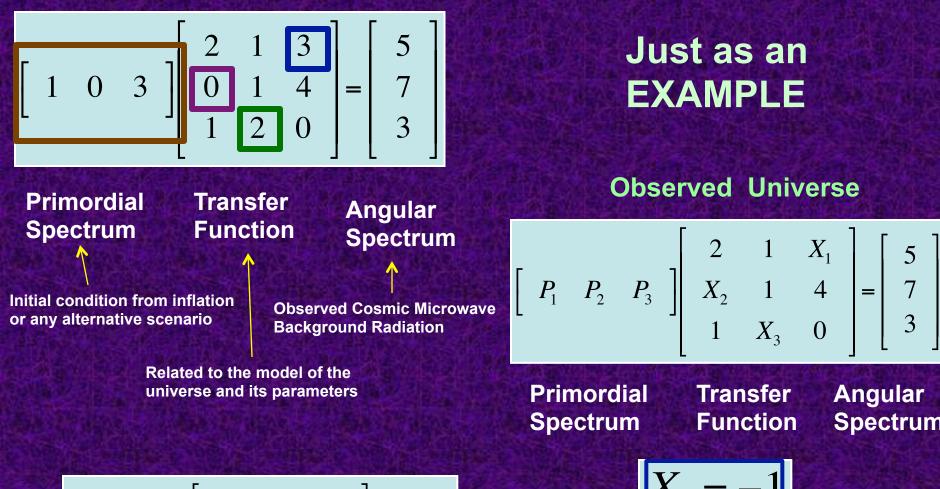

universe and its parameters

Primordial Spectrum

Transfer **Function**

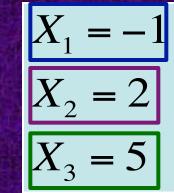
Angular Spectrum

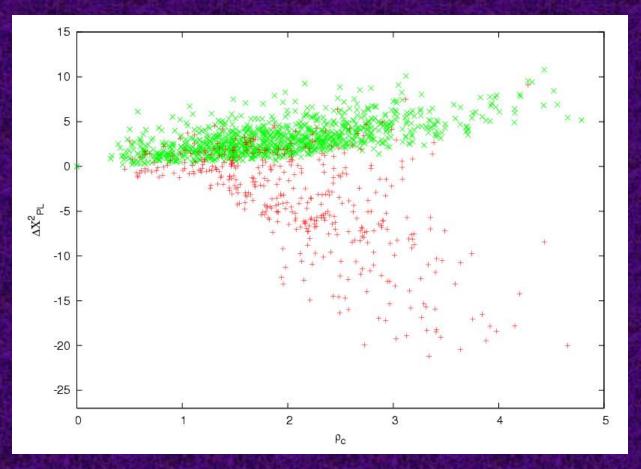



$$\begin{bmatrix} 2 & 1 & X_1 \\ X_2 & 1 & 4 \\ 1 & X_3 & 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}$$

assuming a form for the initial condition

Primordial Spectrum


Transfer Angular Function Spectrum


$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & X_1 \\ X_2 & 1 & 4 \\ 1 & X_3 & 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}$$

assuming a form for the initial condition

Angular

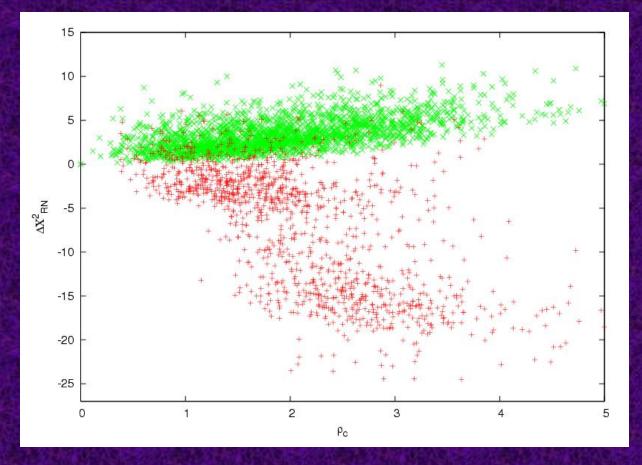
Spectrum

Power Law Assumption

Optimized over Primordial Spectrum

Shafieloo & Souradeep, NJP 2012

$$\rho(a,b) = \sqrt{\sum_{i} \frac{(P_i^a - P_i^b)^2}{(\sigma_i^b)^2}}$$


$\rho(a,b) \neq \rho(b,a)$

$$egin{array}{ccc} \Omega_b h^2 & h \ \Omega_{0m} h^2 & au \end{array}$$

 $\rho(HZ, PL) = 6.89$ $\rho(RN, PL) = 4.85$

 $\rho(HZ, RN) = 11.09$ $\rho(PL, RN) = 2.44$

 $\rho(PL, HZ) = 14.56$ $\rho(RN, HZ) = 43.79$

Power Law with Running Assumption

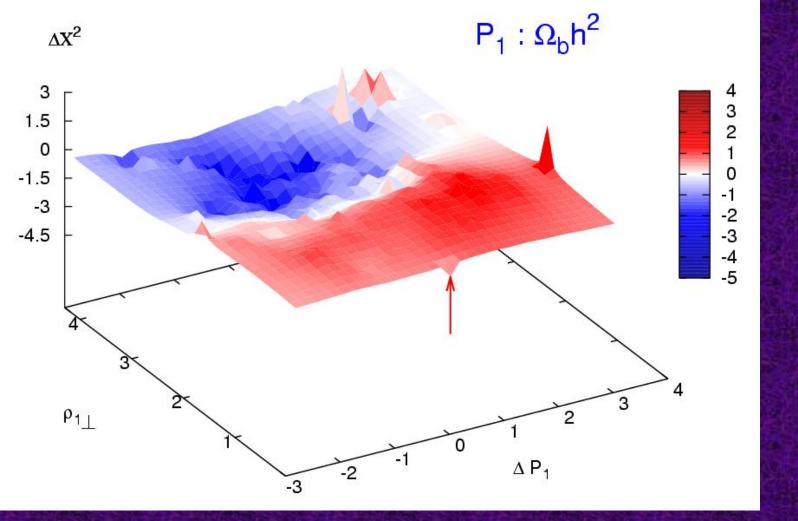
Optimized over Primordial Spectrum

$$\rho(a,b) = \sqrt{\sum_{i} \frac{(P_i^a - P_i^b)^2}{(\sigma_i^b)^2}}$$

$$\rho(a,b) \neq \rho(b,a)$$

$$\Omega_b h^2 \quad h$$

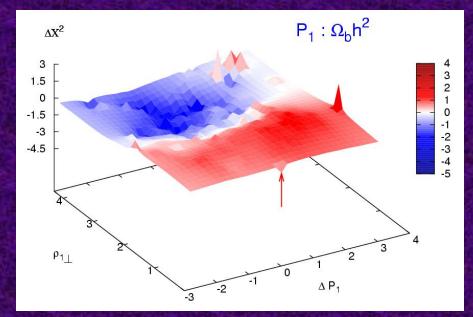
$$\Omega_{0m} h^2 \quad \tau$$

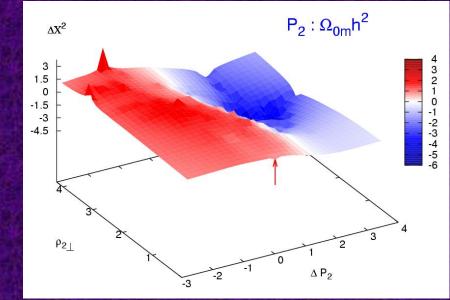

$$\rho(HZ, PL) = 6.89$$

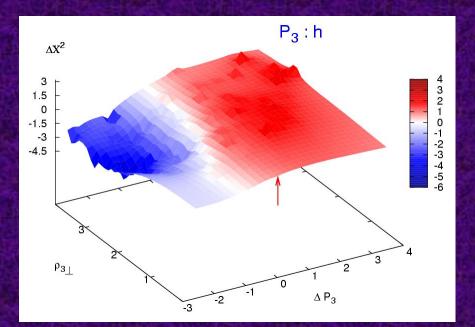
$$\rho(RN, PL) = 4.85$$

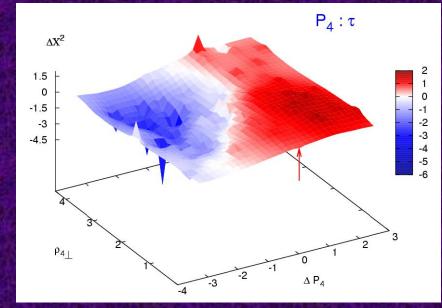
$$\rho(HZ, RN) = 11.09$$

$$\rho(PL, RN) = 2.44$$


 $\rho(PL, HZ) = 14.56$ $\rho(RN, HZ) = 43.79$

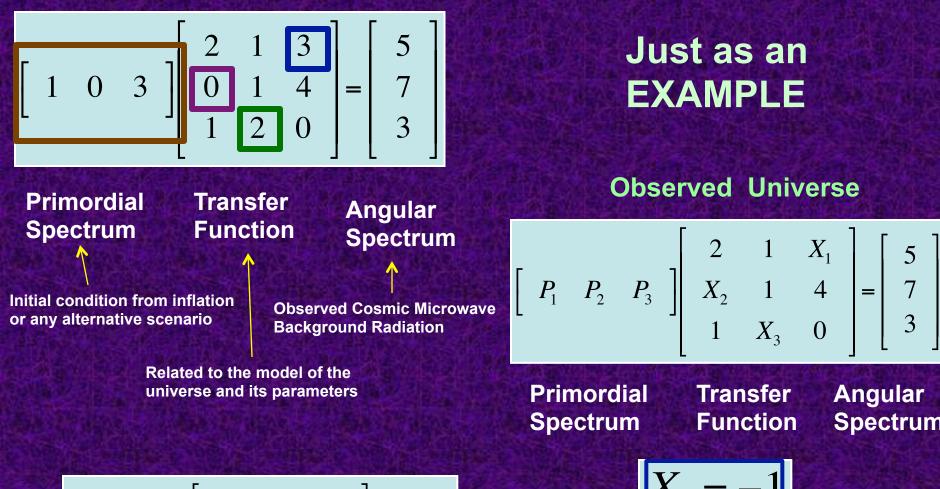


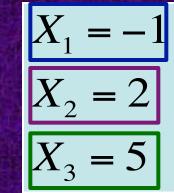

Using Power Law Sample

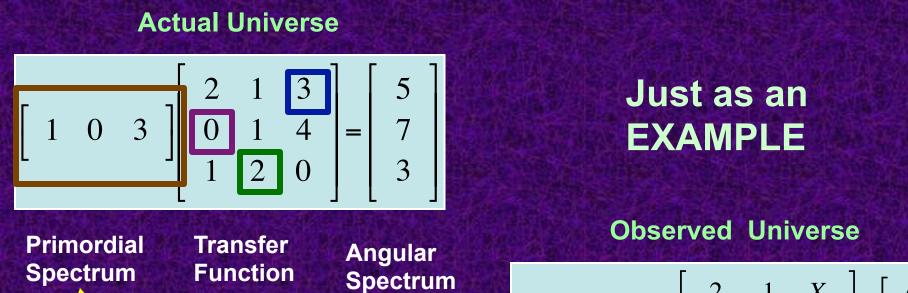

Shafieloo & Souradeep, NJP 2011

$$\Delta P_i = \frac{P_i^a - P_i^b}{\sigma_i^b}$$
$$\rho_{i\perp} = \sqrt{\sum_{j \neq i} \frac{(P_j^a - P_j^b)^2}{(\sigma_j^b)^2}}$$



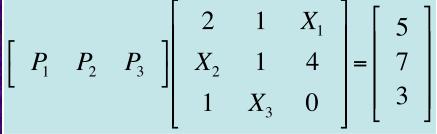



Shafieloo & Souradeep, NJP 2011


$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & X_1 \\ X_2 & 1 & 4 \\ 1 & X_3 & 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}$$

assuming a form for the initial condition

Angular


Spectrum

or any alternative scenario Background Radiation

Initial condition from inflation

Related to the model of the universe and its parameters

Primordial Spectrum Transfer A Function S

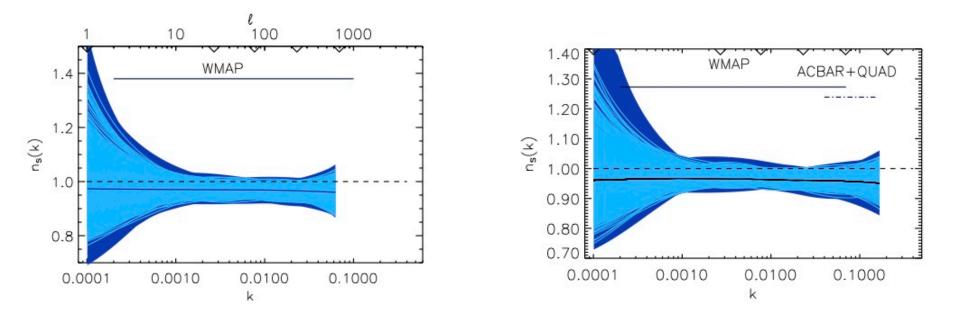
Angular Spectrum

$$\begin{bmatrix} P_1 & P_2 & P_3 \\ P_1 & F_2 & P_3 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & 4 \\ 1 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}$$

assuming a form for the initial condition

$$P_{1} = 1$$

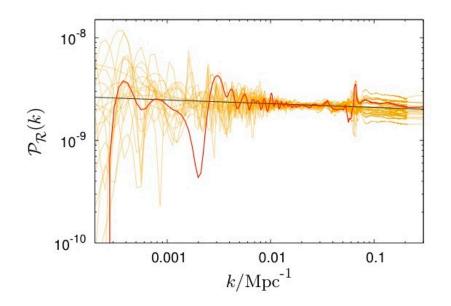
 $P_{2} = 1$
 $P_{3} = 1$

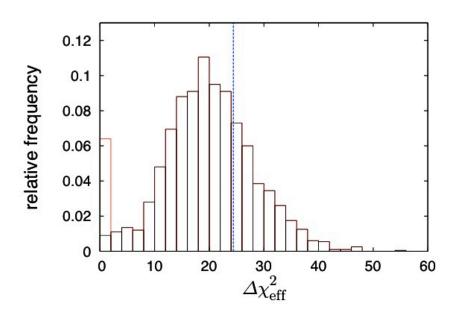

At the current status of cosmology one cannot tell with high certainty what is the actual form of the primordial spectrum, however, we can test the consistency of different forms to the data.

Note, that while there is only **ONE** actual model of the universe, depends on the precision of the observations many models can be consistent to the data.

If a model of the universe is consistent to the data, it does not mean that it is **THE** actual model of the universe.

Testing the Standard Power-Law form of PPS


Smoothing Spline Method along with Cross Validation


Peiris & Verde PRD 2010

Testing the Standard Power-Law form of PPS

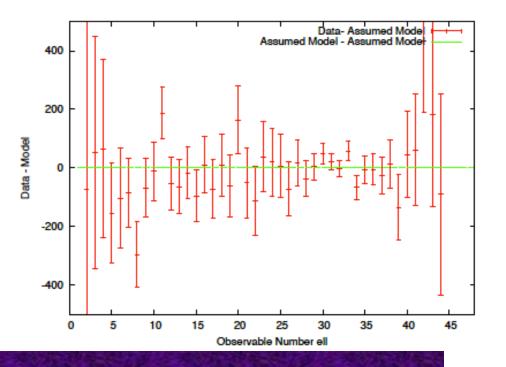
Frequentist test using IRL deconvolution method

It is evident that the spectrum reconstructed from real data does not have an unusual amount of features. The apparent feature at 0.05 Mpc < k < 0.07 Mpc is caused by the noise term becoming dominant at the corresponding multipoles in the WMAP data.

P-value = 26%

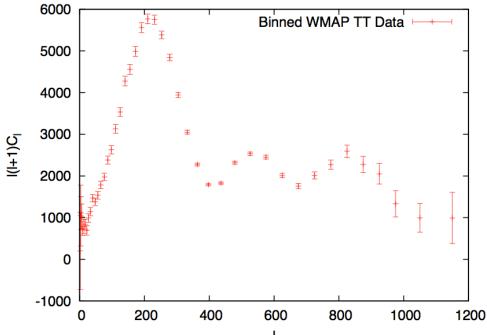
Hamann, Shafieloo & Souradeep, JCAP 2010

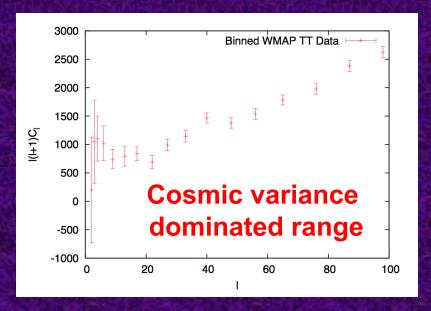
Full picture


$$C_{l}^{TT} = \int \frac{dk}{k} P(k) \quad G_{l}^{TT}(k)$$
$$C_{l}^{EE} = \int \frac{dk}{k} P(k) \quad G_{l}^{EE}(k)$$
$$C_{l}^{BB} = \int \frac{dk}{k} P(k) \quad G_{l}^{BB}(k)$$
$$C_{l}^{TE} = \int \frac{dk}{k} P(k) \quad G_{l}^{TE}(k)$$

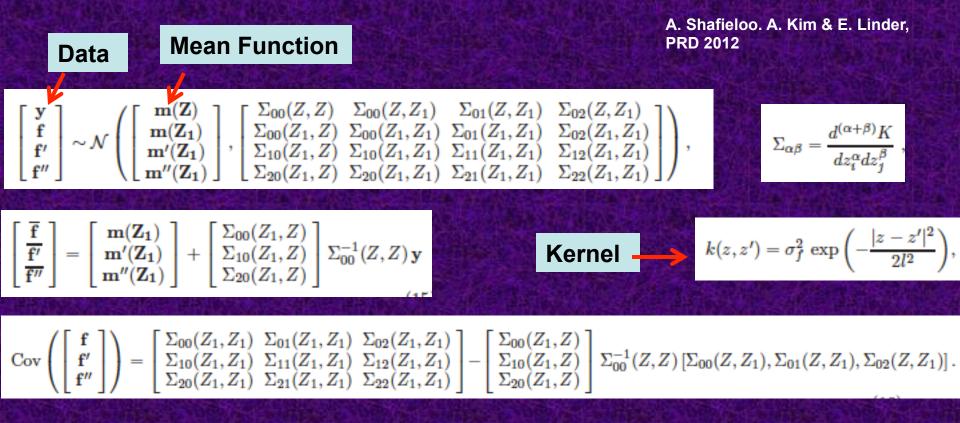
$$P_{S}(k), P_{T}(k), P_{iso}(k)$$

Primordial power spectra from Early universe


$$G_{\mathrm{l}}^{TT}(k), G_{\mathrm{l}}^{EE}(k), G_{\mathrm{l}}^{BB}(k), G_{\mathrm{l}}^{TE}(k)$$


Post recombination Radiative transport kernels in a **given** cosmology

Cosmic Variance & Observational Limits


Relative fluctuations of the WMAP7 data in comparison with best fit LCDM-PL standard model

Gaussian Process & Detecting Features

Efficient in statistical modeling of stochastic variables
 Derivatives of Gaussian Processes are Gaussian
 Processes
 Provides us with all covariance matrices

Note: Results shown in the talk are removed as they are not yet published.

Summary

- By assuming any form of PPS, we in fact find a region in the parameter space which prefers these specific forms.
- The regions where considerably better likelihoods are obtained allowing free PPS lie outside these basins.
- The current cosmological parameters estimates are strongly prejudiced by the assumed form of PPS.
- Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of primordial spectrum from upcoming cosmological data.
- Though standard power-law form of the PPS is very well consistent to the data, It is also important to keep an open mind towards early universe scenarios that produce features in the PPS.