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The role of inflation

)
e Explains Large Scale Homogenity

e A mechanism for generating

e INFLATION =«
density perturbations

o Explanation for nearly flat universe

x What drives inflation = Scalar fields




Classification of scalar field models

e Canonical Scalar Field = L, = 10,¢0"¢ — V(9)

x* V(o) = Voo™ — Chaotic inflation models (Linde 1983)
x V(¢p) = Vyexp [—\/2/p(q5/Mpl)} — Power law inflation a(t) o t?

e Non canonical Scalar Field = L, = L(X,¢) where X = %8M¢0“gb

x L(X,0) = V(o) F(X)

* These class of models are also known as K-inflation models




Inflation using canonical scalar fields

1

Ly = 50,00"¢ — V(o)
e Chaotic inflation models (Linde 1983) — V(¢) = Vo™
e Power law inflation a(t) < t? = V(¢) = Vj exp[—+/2/p(¢/M ;)]

Chaotic Inflation
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Figures from Komatsu et al (2011)

Power-law Inflation
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e From COBE normalization = m ~ 10—61\/[pl and \ ~ 1013
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Inflation using non canonical scalar fields

A specific model

cx.0) = x

where X = %(%gb(’?“gb

e ) is a constant with dimension of mass
e o is the dimensionless parameter of the theory.
e o = 1 corresponds to canonical scalar field.

The above Lagrangian can be viewed as a generalization of the usual
Lagrangian for the canonical scalar field




Slow roll parameters

The slow roll parameters ¢ and ¢ are defined as

J

It follows from the Friedmann equation that
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Therefore, inflation (i > 0) occurs when ¢ < 1 and ends at ¢ =1

EOS parameter w, is related to ¢ as — wy = "¢ — (2—5) —1

Py 3
Slow roll inflation occurs when ¢ <<'1 which gives p, ~ —p,

Slow roll approximation is defined as

e<<1l and |§<<1




Solution in the slow roll limit

The slow roll assumptions (¢ < 1 and |[§| < 1) leads to
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where
6 = +1 when V'(¢) > 0
6 = —1 when V'(¢) < 0.

e In which regime of the potential V' (¢) is the above solution valid ?




Potential slow roll parameter

e The slow roll condition ¢ < 1 and |§| < 1 implies that

e, <1 and I, K1

() ()™ (Mewioy™} ™
(ma— 1) (v = &v)
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In the canonical limit

cx.0) =X (1) - Vo)

e o =1 = Canonical Scalar field — L(X,¢) =X — V(¢)

e ¢, and 0, becomes

(Az) (V)




PSR parameter for non canonical scalars
For the non-canonical model £ = X — V (¢)

e )

e, can be expressed as

1 20‘1_ 1 3 M = 2%‘__11 5o —T
v o) V v

where 5(VC) corresponds to the canonical value of ¢,

For 3M* <V = ¢, < s(vc>
e, evolves from ¢, << 1 towards ¢, ~ 1 for a wider class of potentials.

For exponential potential V(¢) =V, exp |-A(¢/M ,)| also it turns out
that ¢, evolves from ¢, << 1 to ¢, >~ 1.




Scalar and Tensor perturbations

e FRW line element with scalar and tensor perturbations

ds? = (1 +2A)dt* — 2a(t) (0;B) dt dz’
— CL2(t) [(1 — 2¢) 5@' + 2 (8@ ajE) + hw] dxz dxj

e Curvature perturbation is defined as

H
R=y+|—= )0
o (5)

e From 0G#, = koT* and equation of motion for d¢
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Mukhanov Sasaki Equation

e In terms of the Mukhanov-Sasaki variable u, = zR

u’ + (02/{2—2—//)11, =0
k s k

Z

e For tensor perturbations — v, = (h/a) where h is the amplitude of

the tensor perturbation

a//
v, + (kQ——)ka =0

a

e Scalar and tensor power spectra are defined as

() (5) (2




Power spectra for non canonical model

e For the model

£(X,4)= X (;}L)l V(9

in the slow roll limit it turns out that

0= () {5) (i) (¥

Pl = <327T‘g§\q4521 )

1

e o > 1 ensures that cz <1




Scalar spectral index and T-to-S ratio

e Scalar spectral index n  is defined as

1= dInP,
~ dnk

e Tensor to scalar ratio

Pr

r -
S

e For chaotic inflationary model V(¢) =V,

0

=2 (amis) () )
n,=1-— nd r=
° 2N~ +n 20— 1 2Ny +n

where

¢", it turns out that

20+ n (a—1)
20 — 1

~

* This result was also independently obtained by Sheng and Liddle (arXiv:1204.6214) !




Scalar spectral index n,

£(X,4) = X (;}1)&_1 - V(9)

V($) = (MF/2)¢*
V($) = (A/Bg*

e The value of n_ for m?¢? potential is independent of o !




Tensor-to-Scalar ratio r

V($) = (MF/2)¢*
V() = (A4

e Tensor-to-scalar ratio decreases as the parameter « is increased.
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CMB Normalization
e \¢* Potential

X a—1 \ )

e CMB Normalization — P, ~ 2.4 x 107 at k = 0.002 Mpc™* (pivot
scale) (Komatsu et al 2011)

where p = M /M |




Inflationary consistency relation

e For canonical scalar field

where

e For the model

cx0) =X (1) - Vo)

It turns out that
81,

V2o — 1

= =

e Fora>1=r<—-8n,

= Non-canonical scalar fields violates the standard consistency relation




Summary and Conclusions
We considered a non-canonical model of inflation with

£o=(30000) ~ V(&)

The tensor-to-scalar ratio decreases considerably as the parameter o

1S Increased.

Therefore non-canonical scalars can accommodate a wider class of

potentials for driving inflation.

The non-canonical version of V(¢) ~ A\¢* inflation model, is found to

agree with observations for values of A ~ 1!

This model violates the standard consistency relation r = —8n.,..

When a >> 1, it turns out that f;qL“” ~ (0.65 X a = it can lead to large

non-Gaussianity




* Thank you *




