PPC-2012 @ KIAS

Inflation using non-canonical scalar fields^a

Sanil Unnikrishnan

IISER, Trivandrum, India

^aBased on arXiv:1205.0786 (JCAP)

with Varun Sahni(IUCAA) and Aleksey Toporensky(MSU)

8 November 2012

The role of inflation

ullet Explains Large Scale Homogenity

• INFLATION \Rightarrow

• A mechanism for generating density perturbations

• Explanation for nearly flat universe

* What drives inflation \Rightarrow Scalar fields

Classification of scalar field models

• Canonical Scalar Field $\Longrightarrow \mathcal{L}_{\phi} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$

* $V(\phi) = V_0 \phi^n \rightarrow$ Chaotic inflation models (Linde 1983)

*
$$V(\phi) = V_0 \exp\left[-\sqrt{2/p}(\phi/M_{pl})\right] \rightarrow$$
Power law inflation $a(t) \propto t^p$

• Non canonical Scalar Field $\Longrightarrow \mathcal{L}_{\phi} = \mathcal{L}(X,\phi)$ where $X = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$ \downarrow $* \mathcal{L}(X,\phi) = F(X) - V(\phi)$ or

$$* \mathcal{L}(X,\phi) = V(\phi)F(X)$$

* These class of models are also known as K-inflation models

Inflation using canonical scalar fields

$$\mathcal{L}_{\phi} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi)$$

- Chaotic inflation models (Linde 1983) $\rightarrow V(\phi) = V_0 \phi^n$
- Power law inflation $a(t) \propto t^p \Rightarrow V(\phi) = V_0 \exp[-\sqrt{2/p}(\phi/M_{pl})]$

Figures from Komatsu et al (2011)

• From COBE normalization $\Rightarrow m \sim 10^{-6} \mathrm{M}_{\mathrm{pl}}$ and $\lambda \sim 10^{-13}$

Inflation using non canonical scalar fields

A specific model

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha - 1} - V(\phi)$$

where
$$X = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$$

- M is a constant with dimension of mass
- α is the dimensionless parameter of the theory.
- $\alpha = 1$ corresponds to canonical scalar field.

The above Lagrangian can be viewed as a generalization of the usual Lagrangian for the canonical scalar field

Slow roll parameters

• The slow roll parameters ϵ and δ are defined as

$$\varepsilon \equiv -\frac{\dot{H}}{H^2}$$
 and $\delta \equiv \varepsilon - \frac{\dot{\varepsilon}}{2 H \varepsilon}$

• It follows from the Friedmann equation that

$$\frac{\ddot{a}}{aH^2} = 1 - \varepsilon$$

- Therefore, inflation ($\ddot{a} > 0$) occurs when $\varepsilon < 1$ and ends at $\varepsilon = 1$
- EOS parameter w_{ϕ} is related to ε as $\rightarrow w_{\phi} \equiv \frac{p_{\phi}}{\rho_{\phi}} = \left(\frac{2\varepsilon}{3}\right) 1$
- Slow roll inflation occurs when $\varepsilon << 1$ which gives $p_{\phi} \simeq -\rho_{\phi}$
- Slow roll approximation is defined as

$$\varepsilon << 1$$
 and $|\delta| << 1$

Solution in the slow roll limit

The slow roll assumptions ($\varepsilon \ll 1$ and $|\delta| \ll 1$) leads to

$$\dot{\phi} = -\theta \left\{ \left(\frac{M_{pl}}{\alpha \sqrt{3}} \right) \left(\frac{\theta V'(\phi)}{\sqrt{V}} \right) \left(2M^4 \right)^{\alpha - 1} \right\}^{\frac{1}{2\alpha - 1}}$$

where

$$\theta = +1 \text{ when } V'(\phi) > 0$$

$$\theta = -1$$
 when $V'(\phi) < 0$.

• In which regime of the potential $V(\phi)$ is the above solution valid ?

Potential slow roll parameter

• The slow roll condition $\varepsilon \ll 1$ and $|\delta| \ll 1$ implies that

$$\varepsilon_{\rm v} \ll 1$$
 and $\delta_{\rm v} \ll 1$

$$\varepsilon_{\rm V} \equiv \left\{ \left(\frac{1}{\alpha} \right) \left(\frac{3M^4}{V(\phi)} \right)^{\alpha - 1} \left(\frac{M_{pl} V'(\phi)}{\sqrt{2} V(\phi)} \right)^{2\alpha} \right\}^{\frac{1}{2\alpha - 1}}$$

$$\delta_{\rm V} \equiv \left(\frac{\alpha}{2\alpha - 1} \right) (\eta_{\rm V} - \varepsilon_{\rm V})$$

where

$$\eta_{\mathrm{V}} \equiv 2 \, \varepsilon_{\mathrm{V}} \left(\frac{V(\phi) V''(\phi)}{V'(\phi)^2} \right)$$

In the canonical limit

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha - 1} - V(\phi)$$

- $\alpha = 1 \Rightarrow$ Canonical Scalar field $\rightarrow \mathcal{L}(X, \phi) = X V(\phi)$
- $\bullet \ \varepsilon_{_{
 m V}} \ {
 m and} \ \delta_{_{
 m V}} \ {
 m becomes}$

$$\varepsilon_{\rm V} = \left(\frac{M_{pl}^2}{2}\right) \left(\frac{V'(\phi)}{V(\phi)}\right)^2$$

$$\delta_{\rm V} = \eta_{\rm V} - \varepsilon_{\rm V}$$

where

$$\eta_{\rm V} = M_{\rm pl}^2 \left(\frac{V''(\phi)}{V(\phi)} \right)$$

PSR parameter for non canonical scalars

For the non-canonical model $\mathcal{L} = X^{\alpha} - V(\phi)$

$$\varepsilon_{\rm V} \equiv \left\{ \left(\frac{1}{\alpha} \right) \left(\frac{3M^4}{V(\phi)} \right)^{\alpha - 1} \left(\frac{M_{pl} V'(\phi)}{\sqrt{2} V(\phi)} \right)^{2\alpha} \right\}^{\frac{1}{2\alpha - 1}}$$

• $\varepsilon_{\rm v}$ can be expressed as

$$\varepsilon_V = \left(\frac{1}{\alpha}\right)^{\frac{1}{2\alpha - 1}} \left(\frac{3M^4}{V}\right)^{\frac{\alpha - 1}{2\alpha - 1}} \left[\varepsilon_V^{(c)}\right]^{\frac{\alpha}{2\alpha - 1}}$$

where $\varepsilon_{\scriptscriptstyle V}^{(c)}$ corresponds to the canonical value of $\varepsilon_{\scriptscriptstyle V}$

- For $3M^4 \ll V \Rightarrow \varepsilon_V < \varepsilon_V^{(c)}$
- $\varepsilon_{\scriptscriptstyle V}$ evolves from $\varepsilon_{\scriptscriptstyle V} << 1$ towards $\varepsilon_{\scriptscriptstyle V} \simeq 1$ for a wider class of potentials.
- For exponential potential $V(\phi) = V_0 \, \exp\left[-\lambda(\phi/M_{pl})\right]$ also it turns out that $\varepsilon_{_{\mathrm{V}}}$ evolves from $\varepsilon_{_{\mathrm{V}}} << 1$ to $\varepsilon_{_{\mathrm{V}}} \simeq 1$.

Scalar and Tensor perturbations

• FRW line element with scalar and tensor perturbations

$$ds^{2} = (1 + 2 A) dt^{2} - 2 a(t) (\partial_{i} B) dt dx^{i}$$
$$- a^{2}(t) [(1 - 2 \psi) \delta_{ij} + 2 (\partial_{i} \partial_{j} E) + h_{ij}] dx^{i} dx^{j}$$

• Curvature perturbation is defined as

$$\mathcal{R} \equiv \psi + \left(\frac{H}{\dot{\phi}}\right) \delta \phi$$

• From $\delta G^{\mu}_{\ \nu} = \kappa \, \delta T^{\mu}_{\ \nu}$ and equation of motion for $\delta \phi$

$$\mathcal{R}_{k}^{"} + 2\left(\frac{z^{\prime}}{z}\right)\mathcal{R}_{k}^{\prime} + c_{s}^{2}k^{2}\mathcal{R}_{k} = 0$$

where

$$z \equiv \frac{a \left(\rho_{\phi} + p_{\phi}\right)^{1/2}}{c_s H} \quad \text{and} \quad c_s^2 \equiv \left[\frac{(\partial \mathcal{L}/\partial X)}{(\partial \mathcal{L}/\partial X) + (2 X) \left(\partial^2 \mathcal{L}/\partial X^2\right)} \right]$$

Mukhanov Sasaki Equation

• In terms of the Mukhanov-Sasaki variable $u_k \equiv z \, \mathcal{R}_k$,

$$u_k'' + \left(c_s^2 k^2 - \frac{z''}{z}\right) u_k = 0$$

 \bullet For tensor perturbations $\to v_{\scriptscriptstyle k} \equiv (h/a)$ where h is the amplitude of the tensor perturbation

$$v_k'' + \left(k^2 - \frac{a''}{a}\right)v_k = 0$$

• Scalar and tensor power spectra are defined as

$$\mathcal{P}_{\scriptscriptstyle S}(k) \equiv \left(\frac{k^3}{2\pi^2}\right) |\mathcal{R}_{\scriptscriptstyle k}|^2 = \left(\frac{k^3}{2\pi^2}\right) \left(\frac{|u_{\scriptscriptstyle k}|}{z}\right)^2$$

$$\mathcal{P}_{\scriptscriptstyle T}(k) \equiv 2 \left(\frac{k^3}{2\pi^2}\right) |h_{\scriptscriptstyle k}|^2 = 2 \left(\frac{k^3}{2\pi^2}\right) \left(\frac{|v_{\scriptscriptstyle k}|}{a}\right)^2$$

Power spectra for non canonical model

• For the model

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha - 1} - V(\phi)$$

in the slow roll limit it turns out that

$$\mathcal{P}_{\scriptscriptstyle S}(k) = \left(\frac{1}{72\pi^2 c_{\scriptscriptstyle s}}\right) \left\{ \left(\frac{\alpha \, 6^{\alpha}}{\mu^{4(\alpha-1)}}\right) \left(\frac{1}{M_{\scriptscriptstyle pl}^{14\alpha-8}}\right) \left(\frac{V(\phi)^{5\alpha-2}}{V'(\phi)^{2\alpha}}\right) \right\}^{\frac{1}{2\alpha-1}}$$

$$\mathcal{P}_{\scriptscriptstyle T}(k) = \left(\frac{2 V(\phi)}{3 \pi^2 M_{\scriptscriptstyle pl}^4}\right)$$

where

$$c_S^2 = \frac{1}{2\alpha - 1}$$

• $\alpha \geq 1$ ensures that $c_s^2 \leq 1$

Scalar spectral index and T-to-S ratio

• Scalar spectral index n_s is defined as

$$n_{\scriptscriptstyle S} - 1 \equiv \frac{\mathrm{d} \ln \mathcal{P}_{\scriptscriptstyle S}}{\mathrm{d} \ln k}$$

• Tensor to scalar ratio

$$r \equiv rac{\mathcal{P}_{_T}}{\mathcal{P}_{_S}}$$

• For chaotic inflationary model $V(\phi) = V_0 \phi^n$, it turns out that

$$n_{\scriptscriptstyle S} = 1 - 2\left(rac{\gamma + n}{2N\gamma + n}
ight) \quad ext{ and } \quad r = \left(rac{1}{\sqrt{2\,\alpha - 1}}
ight)\left(rac{16\,n}{2\,N\gamma + n}
ight)$$

where

$$\gamma \equiv \frac{2\alpha + n \, (\alpha - 1)}{2\alpha - 1}$$

* This result was also independently obtained by Sheng and Liddle (arXiv:1204.6214)!

Scalar spectral index $n_{\scriptscriptstyle S}$

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha-1} - V(\phi)$$
 where $X = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

• The value of n_s for $m^2\phi^2$ potential is independent of α !

Tensor-to-Scalar ratio r

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha-1} - V(\phi)$$
 where $X = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

• Tensor-to-scalar ratio decreases as the parameter α is increased.

n_s -r Plain

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha-1} - V(\phi)$$
 where $X = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

CMB Normalization

• $\lambda \phi^4$ Potential

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha - 1} - \frac{\lambda}{4}\phi^4$$

• CMB Normalization $\rightarrow \mathcal{P}_s \simeq 2.4 \times 10^{-9}$ at $k = 0.002\,\mathrm{Mpc}^{-1}$ (pivot scale) (Komatsu et al 2011)

where $\mu \equiv M/M_{pl}$

Inflationary consistency relation

• For canonical scalar field

$$r = -8n_{\scriptscriptstyle T}$$

where

$$n_{\scriptscriptstyle T} \equiv \frac{\mathrm{d} \ln \mathcal{P}_{\scriptscriptstyle T}}{\mathrm{d} \ln k}$$

• For the model

$$\mathcal{L}(X,\phi) = X \left(\frac{X}{M^4}\right)^{\alpha - 1} - V(\phi)$$

It turns out that

$$r = -\frac{8 \, n_{\scriptscriptstyle T}}{\sqrt{2\alpha - 1}}$$

- For $\alpha > 1 \Rightarrow r < -8 n_T$
- \Rightarrow Non-canonical scalar fields violates the standard consistency relation

Summary and Conclusions

We considered a non-canonical model of inflation with

$$\mathcal{L}_{\phi} = \left(\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi\right)^{\alpha} - V(\phi)$$

- The tensor-to-scalar ratio decreases considerably as the parameter α is increased.
- Therefore non-canonical scalars can accommodate a wider class of potentials for driving inflation.
- The non-canonical version of $V(\phi) \sim \lambda \phi^4$ inflation model, is found to agree with observations for values of $\lambda \simeq 1$!
- This model violates the standard consistency relation $r = -8n_{\scriptscriptstyle T}$.
- When $\alpha >> 1$, it turns out that $f_{NL}^{equil} \simeq 0.65 \times \alpha \Rightarrow$ it can lead to large non-Gaussianity

* Thank you *