

Outline

- Observation of a new state with mass of 125.3±0.6
 GeV
 - 5.0 σ excess observed, 5.8 σ expected.
 - Consistent with SM prediction
 - More data and more studies needed to draw final conclusions
 - HIG-12-028, arXiV:1207.735, Phys. Lett. B 716 (2012) 30-61
- The CMS experiment at LHC and data taking in 2012
- SM Higgs boson search
 - Decay modes with high mass resolution
 - Decay modes with low mass resolution
- Results and combination of the searches
- Conclusions PPC 2012 - KIAS - Nov 5th

CMS: a simple and elegant concept

Fast detectors: 25-50ns bunch crossing High granularity: 20-40 overlapping complex events High radiation resistance: >10 years of operation

PPC 2012 – KIAS – Nov 5th σ(p_T)/p_T<1% @ 100GeV σ(p_T)/p_T<10%@1 TeV

The CMS detector

CMS

Detector operations in 2010-11-12

Excellent performance over the three years. Data taking efficiency always higher than 91%

Record efficiency achieved in 2012 despite the most challenging condition: Instantaneous luminosity higher than **7.5x10³³ cm⁻²s⁻¹** Typical yields of physics quality data: 90-95% of the recorded data.

The challenge of 2012: 8 TeV and high pile-up.

The challenge of 2012: 8 TeV and high pile-up.

PPC 2012 – KIAS – Nov 5th

Javier Cuevas, University of Oviedo

Particle Flow (global event description)

• Rely on high granularity of CMS detector to identify and reconstruct each individual particle in the event in an optimal way.

- Allows tagging of charged particles from pile-up: minimize impact of PU on jet reconstruction, and lepton or photon isolation.
 - Charged particles well separated in large tracker volume and 3.8 T magnetic field
 - Excellent tracking, able to go to down to very low momenta (~100 MeV)
 - Granular electromagnetic calorimeter with excellent energy resolution
 - In multi-jet events, only 10% of the energy goes to neutral (stable) hadrons (~60% charged, ~30% neutral electromagnetic)

Electron/photon reconstruction and identification

- Dedicated track reconstruction for electrons Gaussian Sum Filter allows for tracks with large curvature due to brems and enables hit collection up to ECAL; ECAL-seeded reconstruction complemented by a tracker-seeded reconstruction to gain efficiency at low p_T

Energy scale and resolution

• Extensive control at the Z peak (and at the $J/\psi \rightarrow ee$ for low p_T electrons)

Electron reconstruction and identification

- Multivariate electron identification in 2012
 - ECAL, tracker, ECAL-tracker-HCAL matching and impact parameter (IP) observables
- Background from data samples
 - W+jet for training
 - Z+jet for testing
- Performance
 - 30% efficiency improvement in H->ZZ->4e wrt cut based ID
- Efficiencies
 - Via tag-and-probe at the Z->ee peak

Photon Energy Corrections, Scale and Resolution

- ECAL cluster energies corrected using a MC trained multivariate regression
 - Improves resolution and restores flat response of energy scale versus pileup
 - Inputs: Raw cluster energies and positions, lateral and longitudinal shower shape variables, local shower positions w.r.t. crystal geometry, pileup estimators
- Regression also used to provide a per photon energy resolution estimate
- Energy Scale and resolution: use $Z \rightarrow e^+e^-$

Progress in ECAL calibration

July 2011 EPS

March 2012 Moriond

July 2012 ICHEP

FWHM/2.35 =1.80 GeV (1.50%)

FWHM/2.35 =

FWHM/2.35 =1.40 GeV (1.17%) 1.35 GeV (1.13%)

For the golden categories, both photons in the barrel and no conversions: FWHM/2.35=1.04GeV (0.87%) approaching the nominal value. Still room for improvement.

Muon reconstruction and identification

- PF Muon Identification in 2012
 - Exploit information from all subdetectors
- High efficiency >96% for p_T=5 GeV; >99% for p_T=10 GeV;
 - Exploit also tracker-based muon ID
 - Important for H->ZZ->4I
 - Efficiency controlled in data with J/ Ψ and Z T&P

Tighter quality criteria applied in some analyses to further suppress reducible backgrounds

Particle-based isolation

- Created by summing energy deposits from individual particles in DR=0.4 cone around the lepton
 - Avoids double counting of the energy deposit in the calorimeters from charged particles
- Pile-up contribution:
 - Negligible for charged hadrons from vertex
 - Neutral contribution corrected using the average energy density, ρ from the pile-up and underlying event.

Important in VBF searches.

Validation on data: jet counting in $Z \rightarrow \mu\mu$ events vs vertex multeplicity. Stable to <1% for jet p_T > 20 GeV

- Pileup jets structure differs wrt regular jets:
 - Pileup jets originate from several overlapping jets which merge together
 - Likelihood grows rapidly with high pileup
 - discriminant exploits shape and tracking variables
 - discrimination both inside and outside tracker acceptance

PPC 2012 - KIAS - Nov 5th

Javier Cuevas, University of Oviedo

Jet Energy Correction Uncertainties

- the contribution of different uncertainty sources depends on p_T and η
- total uncertainty of the jet energy scale is close to 1% for $|\eta| < 2.4$

Missing Energy Resolution and PU

• MET resolution for different *N*_{PV} is fitted with:

$$\sigma_{\rm tot} = \sqrt{c^2 + \frac{N_{\rm PV}}{0.7} \cdot \sigma_{\rm PU}}$$

- the fit yields:
 - c : average resolution without PU
 σ_{PU}: degradation in resolution caused by PU
- improved resolution in 2012 for fixed N_{PV}
 - improved ECAL/HCAL energy reconstruction
 - ⇒ reduces out-of-time pileup effects
 - MET pile-up corrections applied
- pile-up introduces an additional smearing of
 - ~ 3 GeV on MET resolution σ_{PU} (in quadrature)

dN/dm_{tt} [1/GeV]

2.2

2.0

1.8

1.6

1.4 1.2

1.0 0.8

0.6 0.4

0.0

Tau Identification

\s = 8 TeV, L = 5.261

Data

ZZ

WZ/Z+Jets

500

mur [GeV]

600

400

Tau identification:

CMS 2011+2012. \s = 7-8 TeV.

100

200

 $e-\tau_h$ visible Mass

5×) H→ττ m.=125

300

m_{rt} [GeV]

observed

electroweak

- Searches for major τ decay modes within PF jets. Mainly τ decaying to 1 or 3 charged hadrons.
- Photons/Electrons clustered in strips to reconstruct π^0
- Discriminating variables computed on reconstructed τ object.
- Tau isolation: Multivariate discriminator using sum of energy deposits in dR rings around the τ.

Events / 25 GeV

Tau ID + Isolation efficiency

70% efficiency with 5% fake! τ's in CMS have become "normal" leptons.

300

 $ZZ \rightarrow II\tau\tau$ invariant Mass

200

Top mass

CMS average: 172.6 \pm 0.4 \pm 1.2 GeV

μ+Jets analysis CMS-PAS-TOP-11-015

$m_{\rm c} =$	172.64 ± 0.57 (stat+JES) ± 1.18 (syst) GeV
JES =	1.004± 0.005(stat)± 0.012(syst)

~1.3 (syst) GeV including color reconnection Effect of the underlying event expected to be small

Standard Model at 7TeV (2010-12)

(WW, WZ, ZZ production).

Standard Model rare processes.

800 $WW \rightarrow lv/v$ events observed 4-fermion $Z \rightarrow IIII$ decays in 2011, $\pm 10\%$ xsec precision. observed at a hadron collider! It constrains Higgs backgrounds $(BR = 4.4 \cdot 10^{-6}), \sigma \approx 125 \pm 26 \text{ fb}$ and anomalous trilinear couplings. $Z \rightarrow \mu^+ \mu^- \mu^+ \mu^ Z/\gamma^*$ Z/y* 180 events/bin √s = 7 TeV, L = 4.7 fb⁻¹ CMS Preliminary Data preliminary 2012 $Z/Z\gamma^* \rightarrow 4I$ 160 V Events/2 GeV WW s = 7 TeV. L = 4.92 fb 12 WZ + ZZ Z+X 140 Тор Fakes Data Z+jets 120 10 100 80 60 40 20 0 Ratio 2 0 160 180 20 p_{Tmax} (GeV) 80 60 100 120 140 160 140 M₄L (GeV) CMS-PAS-SMP-12-005 CMS-PAS-SMP-12-009

Search for the SM Higgs Boson

Higgs Boson Production

- Dominant production mode: gluon-gluon fusion followed by Vector Boson Fusion (VBF)
- All production modes exploited (gg, VBF, VH, ttH)
 Latter 3 have smaller σ but better S/B in many cases
- 10² (dp → H+X) [pb] √s= 8 TeV Pp → H (NNLO+NNLL QCD + NLO EW) ~25-30% higher σ HIGGS than at 7 TeV at |**0**∣ low m_H Pp → qqH (NNLO QCD + NLO EW) WH (NNLO QCD + NLO EW) INNLO QCD +NLO EN pp - tith (NLO QCD) 10⁻¹ 10⁻² 150 200 300 250 100 M_u [GeV]

Higgs Decays

- Five important decay modes:
 - High mass: WW, ZZ
 - Low mass bb, ττ, WW, ZZ,
 γγ
- Low mass region really reach and challenging:
 - Main identifiable decay modes, bb and ττ hard to identify in a huge background
- Two high resolution mass (~
 1%) decay modes: H → γγ and H → ZZ → 4I
- H → ZZ → 4l has in addition very low background

Search for the SM Higgs Boson

Channel	Mass range [GeV]	Lumi'11 [1/fb]	Lumi'12 [1/fb]	Topologies	gF	VBF	νн	ttH
Н → үү	110-150	5.1	5.3	incl. + VBF	6	6	-	-
Н⇒тт	110-145	4.9	5.0	0/1 jet + VBF + WH + ZH	6	6	6	-
H → bb	110-135	5.0	5.0	WH + ZH + ttH	-	-	6	3
H → ZZ → 4I	110-600	5.1	5.3	inclusive	6	-	-	-
H → WW → 2I2v	110-600	4.9	5.3	0/1 jet + VBF + WH + ZH	6	6	0	-
H → ZZ → 2l2v	200-600	5.0	5.0	0/1 jet + VBF	٢	٢	-	-
H → ZZ → 2l2q	130-600	4.9	-	0/1/2 b-tags	٢	-	-	-
H → WW → Ivqq	240-600	4.9	5.1	inclusive	٢	-	-	-

High mass resolution decay mode

GeV

Events / 2

- Search for a narrow peak in the diphoton mass spectrum with two isolated high ET photons on a smoothly falling background
 - In barrel resolution $\sim 1\%$
- Analysis optimized categorizing events according to purity and mass resolution.
 - Specific di-jet tag categories targeting VBF production mode.
- Several complementary analysis: Main analysis optimized using a MultiVariate technique to identify and classify events, cross-checked with (independent) cut based and mass sideband background MVA model PPC 2012 - KIAS - Nov 5th Javier Cuevas, University of Oviedo

Background model derived from data Simultaneous polynomial fits of the m_{yy} in all the categories

- Analysis selection (MultiVariate Analysis MVA)
 - Vertex ID
 - Input variables: $\Sigma p_T^{2(tracks)}$, p_T balance wrt $\gamma\gamma$, conversions information
 - ID photons $p_{T1} > m_{\gamma\gamma} / 3 p_{T2} > m_{\gamma\gamma} / 4$

• MVA Diphoton discriminant categories

- High score
 - signal-like events
 - good m_{yy} resolution
- Designed to be $m_{\gamma\gamma}$ independent
- Trained on signal and background MC
- Input variables:
 - Kinematic variables: $p_{T\gamma}/m_{\gamma\gamma}$, η_{γ} , $cos(\phi_1 \phi_2)$
 - Photon ID MVA output for each photon
 - Per-event mass resolutions for the correct and incorrect choice of vertex

$H \rightarrow \gamma \gamma$: what's new in 2012

- 2011 data reprocessed with new energy calibrations in ECAL to further improve the mass resolution.
- 2012 prompt reco. data: calibration stable vs time thanks to live light monitoring corrections.

Laser calibration: Automated 48-hour calib. loop.

$H \rightarrow \gamma \gamma$: what's new in 2012

- 2011 data reprocessed with new energy calibrations in ECAL to further improve the mass resolution.
- 2012 prompt reco. data: calibration stable vs time thanks to live light monitoring corrections.
- Re-optimized photon selection using isolation based on Particle Flow reconstruction
- Split di-jet tag events in two categories with different purity (15% better sensitivity)

$H \rightarrow \gamma \gamma$: mass dstributions

S/(S+B) weighted mass distribution

- S and B are the number of signal and background events calculated from the simultaneous fit to all categories
- Summed plot for illustration, results obtained with simultaneous ML fit to all categories

As suggested in R. J. Barlow, "Event classification using Weighting Methods", J. Comp. Phys. 72 (1982) 202

$\begin{array}{l} H \rightarrow \gamma\gamma \ results \\ \mbox{Excess of events observed for diphoton masses} \\ \mbox{around 125 GeV, consistently in 7 and 8 TeV data} \\ \mbox{Local significance 4.10. Signal strength 1.6 } \pm 0.4 \times \sigma_{\rm SMH} \end{array}$

Evidence for a new state

High mass resolution decay mode

$H \rightarrow ZZ \rightarrow 4I$

- Golden channel: clean experimental signature
 - Narrow resonance
 - Four (potentially low p_T) tightly identified and isolated leptons
- Low level of background: irreducible ZZ*, reducible Z+jets, t tbar with two leptons from b or light jets, WZ, estimated from data - 50 % uncertainty: fake rate method applied from signalfree control samples, validation (data wrong flavours and charges)
- A great performing channel in the whole mass range, but extremely demanding in terms of selection efficiency down to the lowest $p_{\rm T}\,\epsilon^4$

$H \rightarrow ZZ \rightarrow 4I$

Improvements in 2012:

- New lepton selection
- Recovery of photons from final state radiation
- Exploit angular information to discriminate signal from irreducible ZZ background
- ~20% gain in sensitivity with respect to the 2011 analysis
- Optimization done without looking at the data in the signal region.

Matrix Element Likelihood Analysis

qqZZ

SM H(125 GeV)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2D analysis using m_{41} and MELA

PPC 2012 - KIAS - Nov 5th

uormalized to unity 0.12 0.1 0.08 0.00

0.06

0.04

0.02

0

Ó

Javier Cuevas, University of Oviedo

MELA

1

$H \rightarrow ZZ \rightarrow 4I$ results

• Localized excess of events observed around 126 GeV

$H \rightarrow ZZ \rightarrow 4I$ results

• Localized excess of events observed around 126 GeV and at signal-like values of the angular discriminator

$H \rightarrow ZZ \rightarrow 4I$ results

- Localized excess of events observed around 126 GeV and at signal-like values of the angular discriminator
- Local significance 3.2σ (expected from SM H: 3.8σ)

5 fb/1 at 7 TeV (2011) + 5 fb/1 at 8 TeV (2012)

$H \rightarrow WW$

- Dileptonic channel:
 - 2011 analysis unchanged.
 - 2012 analysis with improvements in objects and methods to deal with the increase in pile-up. Cut-based analysis for ICHEP.
 - Shape analysis in $e\mu$
- Semi-leptonic channel, new after Moriond'12, for Higgs boson masses above 170 GeV.

m_{lvii} (GeV)

$H \rightarrow WW \rightarrow 2I \ 2\nu$

- Excess of events with two leptons of opposite sign, and missing transverse energy.
 - Irreducible background:
 - $qq \rightarrow WW + gg \rightarrow WW$
 - Data driven estimates
 - W+jets: Fake rate measured in QCD enriched data sample
 - Z/γ*: Normalized in Z mass
 - Top: b-tagging efficiency from top control region in data
- Split in categories with different S/B and B composition:
 - 0/1 jet and VBF
 - Final state lepton flavors (ee, μμ, eμ)

Spin correlation, scalar boson decay to Vector bosons, and V-A structure of the W interaction

Expect small di-lepton $\Delta \phi$ and mass if SM Higgs

$H \rightarrow WW \rightarrow$ 2l $_{2v}$: kinematics at final selection

Trigger 1 or 2 leptons > 97 % p_T¹ > 20,10 GeV, iso, ID, from PV Projected mET > 20 GeV

- Anti-top + $p_T^{II} > 45 \text{ GeV}$
- 3rd lepton veto
- Z veto and mE_T cuts
- Mass dependant: $p_T^{\ I}$, m_{II} , $\Delta \phi_{II}$, m_T

Final selection (8 TeV dataset): Observed

number of events in data, estimates of the background and signal predictions for mH=125 GeV

Category:	0-jet eµ	0-jet ℓℓ	1-jet e µ	1-jet ℓℓ	2-jet eµ	2-jetℓℓ
WW	87.6 ± 9.5	60.4 ± 6.7	19.5 ± 3.7	9.7 ± 1.9	0.4 ± 0.1	0.3 ± 0.1
$WZ + ZZ + Z\gamma$	2.2 ± 0.2	37.7 ± 12.5	2.4 ± 0.3	8.7 ± 4.9	0.1 ± 0.0	3.1 ± 1.8
Тор	9.3 ± 2.7	1.9 ± 0.5	22.3 ± 2.0	9.5 ± 1.1	3.4 ± 1.9	2.0 ± 1.2
W + jets	19.1 ± 7.2	10.8 ± 4.3	11.7 ± 4.6	3.9 ± 1.7	0.3 ± 0.3	0.0 ± 0.0
$W\gamma^{(*)}$	6.0 ± 2.3	4.6 ± 2.5	5.9 ± 3.2	1.3 ± 1.2	0.0 ± 0.0	0.0 ± 0.0
All backgrounds	124.2 ± 12.4	115.5 ± 15.0	61.7 ± 7.0	33.1 ± 5.7	4.1 ± 1.9	5.4 ± 2.2
Signal $(m_H = 125 \text{ GeV})$	23.9 ± 5.2	14.9 ± 3.3	10.3 ± 3.0	4.4 ± 1.3	1.5 ± 0.2	0.8 ± 0.1
Data	158	123	54	43	6	7

$H \rightarrow WW \rightarrow 2l 2v$: ICHEP results

• Broad excess of about 1.6 σ observed (2.4 σ expected) in the low mass range. Compatible with the expectations from a SM Higgs signal at 125 GeV, given the low mass resolution.

CMS

entries

$H \rightarrow WW \rightarrow 2l 2v$: post-ICHEP results

Javier Cuevas, University of Oviedo

H→WW→lvqq, Analysis

- Most sensitive for Higgs boson mass around 350 GeV
- Selection differences to lvlv channel
 - One electron (muon) with pT > 35 (25)
 GeV and MET > 25 (30) GeV (leptonic W decay)
 - Two jets with 65 < Mjj < 95 (hadronic W decay)
- Main background: W+jets
 - Suppressed using angular likelihood discriminant for each mass hypothesis
- Signal extraction
 - Kinematic fit allows full reconstruction of Higgs boson mass
 - Search for mass peak against continuum background from W+jets events

• The 8 TeV data analysis excludes [260, 390] GeV at 95% CL

 In combination with the 7 TeV data [240, 450] GeV is excluded at 95% CL

- The largest BR for $m_H < 130$ GeV, but $\sigma_{bb}(QCD) \sim 10^7 \times \sigma_H \times BR(H \rightarrow bb)$
- Search in assiciated production with W or Z, leading to final states with leptons, MET and bjets.
- General strategy:
 - High boosted vector boson and dijet
 - 2 b-tagged jets
 - Back to back V and H
 - Reconstruct mbb
- Main backgrounds, V+jets and top anti top, estimated from data in control regions.

5 channels: Z(II)H(bb), $Z(\nu\nu)H(bb)$, $W(I\nu)H(bb)$

Reducible Backgrounds: QCD, top, W/Z+ light jets Less reducible: V+bb, ZZ(bb), WZ(bb)

Key piece of the observation puzzle Tests specific production & decay couplings

Many improvements:

 Jet energy reconstruction using BDT regression (15-20% improvement)

Many improvements:

- Jet energy reconstruction using BDT regression (15-20% improvement)
- Categorize events in medium and high boost

Many improvements:

- Jet energy reconstruction using BDT regression (15-20% improvement)
- Categorize events in medium and high boost
- Use full shape of final MVA discriminator
 Gain in sensitivity ~50%
 already on 2011 dataset!

W/Z + H, H \rightarrow bb: results

- Some excess compared to background predictions (significance ~1σ)
- Compatible both with a 1 $\times \sigma_{\text{SMH}}$ signal and with just background.

ttH, $H \rightarrow bb$

Important to probe the coupling:

same couplings as the dominant part of $\sigma(gg \rightarrow H)$ production cross section but at tree level (no loopholes for BSM particles to contribute...)

CMS

ttH, $H \rightarrow bb$

Strategy:

- Separate events by top decay mode (di-lep., lep+jets), and by number of jets and b-tags
- MVA shape analysis in each event category
- Categories with low S/B used to constrain the background in higher S/B ones.

lep+jets with 6 jets, 3 b-tags

di-leptonic with 3 b-tags

ttH, $H \rightarrow bb$: results

- Only 2011 data analyzed at the moment. No evidence of excess, but not yet sensitive to a $1 \times \sigma_{\text{SMH}}$ signal anyway.
- ttH cross section grows very quickly with vs.
 (x1.5 from 7 to 8 TeV, x5 from 8 to 14 TeV!)
- If scaling as √(σ×L) could have Δσ/σ_{SMH} ~1 already with L ~20 fb⁻¹ at 8 TeV.

$H\to\tau\tau$

- Combination of three production mechanisms
- Search is performed in $e\tau_h$, $\mu\tau_h$, $e\mu$, $\mu\mu$ decay modes

$H\to\tau\tau$

Analysis re-optimized:

- Improved lepton and τ_{had} identification criteria

MVA-based tau isolation algorithm

$H \rightarrow \tau \tau$

Analysis re-optimized:

- Improved lepton and τ_{had} identification criteria
- New mass reconstruction (20% better resolution)

$H \rightarrow \tau \tau$

Analysis re-optimized:

- Improved lepton and τ_{had} identification criteria
- New mass reconstruction (20% better resolution)
- New event categorization:
 lower jet p_T thresholds, rely also on p_T of the tau.

$H \rightarrow \tau \tau$

Analysis re-optimized:

- Improved lepton and τ_{had} identification criteria
- New mass reconstruction (20% better resolution)
- New event categorization: lower jet p_T thresholds, rely also on p_T of the tau.
- MVA selection for VBF tag

$H \rightarrow \tau \tau$: results

- Sensitivity of new analysis very close to 1 $\times \sigma_{SMH}$
- No excess seen. Just bad luck or non-SM Higgs?

Vector boson fusion

W.Z

WW, ZZ fusion

н0

Higgs decay products

VBF signature

- γγ, ττ, WW channels deploy VBF signature
- ZZ(4I) has very low signal yield
- bb is challenging and work in progress

three analysis deploy quite different strategies

diversity result of independent development and optimization, but needs investigation!

forward tagging jets

¢.

Combined Results

Combined results

Decay	Prod. Topology	Luminosity		
H→bb	WH, ZH	5+5 fb ⁻¹ at 7+8 TeV		
H→bb	ttH	5 at fb ⁻¹ at 7 TeV		
Η→ττ	Inclusive + VBF	5+5 fb ⁻¹ at 7+8 TeV		
$H \rightarrow \tau \tau$	WH, ZH	5 at fb ⁻¹ at 7 TeV		
$H \to \gamma \gamma$	Inclusive + VBF	5+5 fb ⁻¹ at 7+8 TeV		
$H \rightarrow WW$	o/1 jet + VBF	5+5 fb ⁻¹ at 7+8 TeV		
$H \rightarrow WW$	WH, ZH	5 at fb ⁻¹ at 7 TeV		
$H \rightarrow ZZ$	Inclusive	5+5 fb ⁻¹ at 7+8 TeV		

- Most analyses using 5+5 fb⁻¹, many improved w.r.t. 2011
- Biggest combination done so far at CMS: 95 individual final states contributing at 125 GeV mass hypothesis!

Combined results

- Most analyses using 5+5 fb⁻¹, many improved w.r.t. 2011
- Biggest combination done so far at CMS: 95 individual final states contributing at 125 GeV mass hypothesis!

Combined results: ZZ+ yy

In high mass resolution channels, observe an excess with local significance of 5.0σ (expected from SM H: 4.7σ)

CMS

Combined results: all channels

Decay mode/combination	Expected (σ)	Observed (σ)
$\gamma\gamma$	2.8	4.1
ZZ	3.6	3.1
$\tau \tau + bb$	2.4	0.4
$\gamma\gamma + ZZ$	4.7	5.0
$\gamma\gamma + ZZ + WW$	5.2	5.1
$\gamma\gamma + ZZ + WW + \tau\tau + bb$	5.8	5.0

Local significance of excess: **4.9 σ** Expected for SM Higgs signal: **5.8 σ**

Global significance > 4σ

We interpret this excess as the observation of a new boson with mass around 125 GeV.

Combined results: all channels

Mass of the observed particle

- Likelihood scan for mass and signal strength in three high mass resolution channels:
 - ZZ 4l
 - γγ untagged
 - γγ with di-jet tag
- Results are compatible within the uncertainties

Mass measurement

 Perform a fit of the mass with freely floating signal strength for the three final states, to minimize model dependence.

$M = 125.3 \pm 0.6$

• Ultimate precision: $\sigma_m < 100 \text{ MeV}$

Mass measurement

 Systematical uncertainty on the mass driven by energy scale uncertainty in γγ: now conservative estimate ~0.5%, will improve in the future.

- Observed signal stength in the analzyed decay modes and production topologies compatible with a SM Higgs
- However, with the present data sample only few modes have sensitivity to a signal of SM strength.

- Slightly better sensitivity when combining channels by decay mode or production topology.
- Compatible with SM Higgs within uncertainties

Javier Cuevas, University of Oviedo

- Test of custodial symmetry: compare the signal strength observed in WW and ZZ modes.
- Fit the the ZZ and WW (0/1 jet) data assuming:

$$\sigma \times BR_{H \to ZZ} = \mu_{ZZ} \times [\sigma \times BR_{H \to ZZ}]_{SM \text{ Higgs}}$$

$$\sigma \times BR_{H \to WW} = R_{W/Z} \times \mu_{ZZ} \times [\sigma \times BR_{H \to WW}]_{SM}$$

Higgs

• Result compatible with SM within the large uncertainties

```
R_{W/Z} = 0.9^{\pm 1.1}_{-0.6}
```


 Test compatibility w.r.t SM predictions by introducing two parameters (c_v, c_F) modifying the expected signal yields in each mode through simple LO expressions

Production	Decay	LO SM	
VH	$H \rightarrow bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$
${ m tt}{ m H}$	$H \to bb$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
VBF	$H \to \tau \tau$	$\sim rac{C_V^2 imes C_F^2}{C_F^2}$	$\sim C_V^2$
$\rm ggH$	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$
$\rm ggH$	$H \rightarrow ZZ$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$
ggH	$H \rightarrow WW$	$\sim rac{C_F^2 imes C_V^2}{C_F^2}$	$\sim C_V^2$
VBF	$H \to WW$	$\sim rac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$
ggH	$H \to \gamma \gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_{\!F}^2$

 Test compatibility w.r.t SM predictions by introducing two parameters (c_v, c_F) modifying the expected signal yields in each mode through simple LO expressions, modifying only coupling strength, not the tensor structure.

Production	Decay	LO SM			
VH	$H \rightarrow bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$		
$\mathrm{tt}\mathrm{H}$	$H \to bb$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$		N
VBF	$H\to\tau\tau$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$	C _F	
$\rm ggH$	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$		
ggH	$H \to Z Z$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$		
ggH	$H \rightarrow WW$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$		Cv
VBF	$H \to WW$	$\sim \frac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$		υv
ggH	$H \to \gamma \gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$		
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_F^2$		

Javier Cuevas, University of Oviedo

 Test compatibility w.r.t SM predictions by introducing two parameters (c_v, c_F) modifying the expected signal yields in each mode through simple LO expressions

Production	Decay	LO SM				
VH	$H \to bb$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$			
$\mathrm{tt}\mathrm{H}$	$H \to bb$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$			
VBF	$H \to \tau \tau$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$	C _F		
$\rm ggH$	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$			
ggH	$H \rightarrow ZZ$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$			
ggH	$H \rightarrow WW$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$		C,,	\rightarrow
VBF	$H \to WW$	$\sim \frac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$		-0	
ggH	$H\to\gamma\gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$			
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V^2 - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_F^2$			

 Test compatibility w.r.t SM predictions by introducing two parameters (c_v, c_F) modifying the expected signal yields in each mode through

Production	Decay	LO SM			
VH	$H \to bb$	$\sim rac{C_V^2 imes C_F^2}{C_F^2}$	$\sim C_V^2$		
$\mathrm{tt}\mathrm{H}$	$H \to bb$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$	_ 1	_
VBF	$H \to \tau \tau$	$\sim \frac{C_V^2 \times C_F^2}{C_F^2}$	$\sim C_V^2$	C _F	
ggH	$H \to \tau \tau$	$\sim \frac{C_F^2 \times C_F^2}{C_F^2}$	$\sim C_F^2$		
m ggH	$H \to ZZ$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$		
ggH	$H \rightarrow WW$	$\sim \frac{C_F^2 \times C_V^2}{C_F^2}$	$\sim C_V^2$	L	<u> </u>
VBF	$H \to WW$	$\sim \frac{C_V^2 \times C_V^2}{C_F^2}$	$\sim C_V^4/C_F^2$		-v
ggH	$H\to\gamma\gamma$	$\sim \frac{C_F^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^2$		
VBF	$H\to\gamma\gamma$	$\sim \frac{C_V^2 \times (8.6C_V - 1.8C_F)^2}{C_F^2}$	$\sim C_V^4/C_F^2$		

- CMS data compatible with SM prediction at 95% C.L.
- Best fit c_F driven to low values by VBF γγ excess and ττ deficit.
- More data needed to draw any definite conclusion.
- LHC Cross Section WG also converging on an improved models for these kinds of fits.

Anything elsewhere?

- Stringent exclusion limits for any heavy Higgs-like boson decaying into WW and ZZ bosons:
- e.g. σ ~ 0.3 × σ_{SMH} is excluded in most of the 140-500 GeV range.

What next?

- Reassert the observation with the full 2011+2012 dataset, using 12 fb⁻¹ already collected, and then the final Run 1 dataset, 5 fb-1 at 7 TeV and O(20 fb-1) at 8 TeV.
- **Measurement of spin and parity** using angular distributions in ZZ, WW, γγ.
- Search for deviations from the SM in the couplings by progressively introducing new degrees of freedom in the fit to the data, in collaboration with LHC Higgs XS WG.
- Improve the mass measurement.

Projections for J^{PC} measurements

 $H \rightarrow ZZ \rightarrow 4I$

$H \rightarrow WW \rightarrow 2I_2\nu$

JHU Generator level L = 10 fb⁻¹, $\sqrt{s} = 8$ TeV

Conclusion

- LHC, ATLAS, CMS performing extremely well in their 3rd year of first run, with a major battle with pile-up.
- In the searches for a SM Higgs boson at CMS, a new state with mass 125.3 \pm 0.6 GeV has been observed, dominantly in the $\gamma\gamma$ and 4l modes.
- Within the limited precision of the current data, the observation is compatible with the predictions for a SM Higgs boson signal, despite the larger excess in γγ and the deficit in ττ, bb modes.
- More data is needed to draw any firm conclusions on this second point.
 - Moriond will have almost 3x the statistics of July 4th

For further information:

- CMS Higgs results twikipage
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
- 4th July seminar at CERN: https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?docid=6125
- CMS talks on Higgs searches at ICHEP 2012: https://indico.cern.ch/conferenceProgram.py?confId=181298 (too many to list them all individually)
- CMS long paper in preparation, and new results using 12 fb⁻¹ at 8 TeV.