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What is no-boundary??
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What is no-boundary?
• The nature of the initial singularity of our 

universe??

• To canonically quantize the universe and 
study the wave fct of the universe as a soln 
of Wheeler-DeWitt equation.

• The ground state can be an appealing choice.

• Hartle and Hawking suggested the Euclidean 
path integral as the BC of our universe, a 
soln of the WDW eq.

4

B.S. DeWitt, Phys. Rev. 160, 1113 (1967).

J.B. Hartle and S. W. Hawking, PRD 28, 2960 (1983).

depends on boundary condition (BC).
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From Dong-Han Yeom’s talk
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Find geometry over the complex time,
until the geometry to be regular.

Then believe the action!



Motivation I
• The no-boundary measure disfavors the 

histories which have a large number of e-
foldings. 

• If more than 60 e-foldings from inflation, 
the no-boundary measure is not compatible 
with this.

• Alternatives of inflation

• Eternal inflation and multiverse
11

lnP Ne

J.B. Hartle, S.W. Hawking and T. Hertog, PRD77, 123537 (2008), 
arXiv:0803.1663 [hep-th].

Although the no-boundary measure diverges at ϕ = 0, one can ignore this point because it has lower

field value than the cutoff, and hence measure zero compared to the solution space (Equation (16)).

2.2 Purpose of this paper

In the slow-roll approximation [18], the total e-folding number obtained from ϕ is approximated by

Ne ! −8π

∫

ϕ
dφ

V (φ)

V (φ),φ
, (17)

where we have ignored a small correction from the location of the end of inflation. This can be

further reduced for the quadratic potential Equation (14):

Ne ! 2πϕ2. (18)

Then, the no-boundary measure, Equation (15), can be expressed as a function of e-folding number1

P [Ne] ∝ exp

(
3π

2

1

m2Ne

)
. (19)

Here, the Jacobian factor is ignored because the exponential part is dominant. The classical histories

exist for

Ne > N c
e ≡ 2π(ϕc)2 ∼ 2.4. (20)

Therefore, the no-boundary measure exponentially prefers a small e-folding number (∼ 2.4).

As discussed in Section 1, there are several possible interpretations about this disagreement

between the prediction of the no-boundary measure and the inflationary universe. One of the idea

was that the volume factor should be weighted to measure the probability to observe our past light

cone. It enhances the likelihood of larger e-foldings by multiplying the volume [5],

P [Ne] ∝ exp

(
3π

2

1

m2Ne
+ 3Ne

)
. (21)

This volume weighting sufficiently lifts up the probability of larger e-foldings, if

Ne " m−2. (22)

However, as discussed in Section 1, this factor does not come from the first principle and it is

controversial whether the volume weighting is the best way to lift up the inflationary histories.

In this controversial contexts, we suggest one possible resolution for the no-boundary measure

to prefer larger e-foldings. In this paper, we study the no-boundary measure with multiple fields.

As an example, we take all fields, having same quadratic potential type for simplicity as in the

1Since the expansion during the Euclidean time is negligible, Equation (18) is still a good approximation.
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Motivation II
• Lifting up the inflationary probabilities by ..

• e.g. the volume weighting

• the large number of fields (eg. N-flation)??
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Although the no-boundary measure diverges at ϕ = 0, one can ignore this point because it has lower
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NeS.W. Hawking and T. Hertog, PRD 66, 123509 (2002) [hep-th/024212],
PRD 73, 123527 (2006) [hep-th/0602091].
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N-flation models

 One motivation for this idea is that sufficient 
inflation can be obtained with all fields maintaining 
sub-Planckian values (cutoff).
 Another is that it may be possible to relate 

assisted inflation to proper fundamental physics 
models.

 Random initial conditions for fields.

 Quadratic potentials, same masses.

Dimopoulos, Kachru, McGreevy and Wacker, JCAP 0808, 003(2008),
Easther and McAllister, JACP 0605, 018 (2006).

SAK and Liddle PRD74, 023513, 063522 (2006), PRD76, 063515(2007),
 SAK, Liddle and Seery PRL105, 181302(2010), PRD85, 023532(2012).



Probability of 
the number of e-foldings
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the Euclidean 
probability measure

Figure 2: Schematic diagram of the no-boundary measure in Equation (48). For initial fields below

the Planck scale, the degeneracy factor of the e-folding number has expectation value of the order

of Nf while its standard deviation is order
�
Nf . When Nf � m−2, the peak at N c

e which comes

from the Euclidean probability measure becomes comparable to the peak at µ̃ which comes from

the degeneracy of the field space. Therefore, the degeneracy factor enhances the likelihood of the

larger e-folding number. Note that the probability in vertical axis is not normalized and intended

to represent the relative probability.

can be denoted by the e-folding number:

P [Ne] ∝ exp

�
3π

2

1

m2Ne
− (Ne − µ̃)2

2σ̃2

�

P [Ne] ∝ exp

�
3π

2

1

m2Ne
− 5

8
Nf

�
1− Ne

µ̃

�2
�

= exp

�
3π

2

1

m2Ne
− 5

8
Nf

�
1− Ne

µ̃

�2
�
.

(48)

The degeneracy factor enhances the probability at Ne = µ̃ and reduces the probability at

Ne = N c
e . Therefore, it increases the likelihood of the larger e-folding number. This effect becomes

stronger as Nf increases and overcomes the probability peak at N c
e when

Nf � m−2, (49)
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since the parenthesis in the exponential of Equation (48) is less than one for Ne < µ̃. Note that

this condition is comparable to that of the volume factor in Equation (22), because when the cutoff
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N-flation phenomenology I
• The N-flation phenomenology in this approximation 

is remarkably simple:

The power spectrum 
PR1/2=5 x10-5  (WMAP7)

normalize the scale of 
mass, 

The multi-field factor 
works for Nf > 10 12.

m/!Pl ~ 1.3x10-6

Figure 2: Schematic diagram of the no-boundary measure in Equation (48). For initial fields below

the Planck scale, the degeneracy factor of the e-folding number has expectation value of the order

of Nf while its standard deviation is order
�
Nf . When Nf � m−2, the peak at N c

e which comes

from the Euclidean probability measure becomes comparable to the peak at µ̃ which comes from

the degeneracy of the field space. Therefore, the degeneracy factor enhances the likelihood of the

larger e-folding number. Note that the probability in vertical axis is not normalized and intended

to represent the relative probability.
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• The N-flation phenomenology in this approximation 
is remarkably simple:
The tensor-to-scalar ratio always equals to the single-
field values: r = 8/N* where N* is the number of e-
foldings at horizon crossing.

The scalar spectral index is equal to the one in the 
single-field value:

                   n = 1-2/N*.
The non-gaussianity fNL 
always equals its single-field 
value: fNL = 1/2N* and hence is 
unobservably small, O(0.01).

N-flation phenomenology II
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Conclusions
No-boundary measure

Planckian cutoff (N-flation)

The large number of fields can enhance the 
inflationary histories without adding artificial 
factors when Nf > m -2 ~O(10 12).

• This solves the problems that the no-boundary 
measure does not prefer inflationary histories 


