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Models generating primordial fluctuations

Inflation (fluctuations of the inflaton)
[various potentials, various models]



Models generating primordial fluctuations

Inflation (fluctuations of the inflaton)

Curvaton model [Enqvist & Sloth; Lyth & Wands;  Moroi & TT, 2001]

Inhomogeneous (modulated) reheating

Inhomogeneous phase transition (e.g., end of thermal inflation)

[Dvali, Gruzinov, Zaldarriaga 
2003; Kofman 2003]

[Matsuda,2009; Kawasaki, TT,  Yokoyama, 2009]

Multi-brid inflation [Sasaki 2008; Naruko, Sasaki 2009 ] 

Inhomogeneous end of hybrid inflation [Bernardeau, Uzan 2003, 
Bernardeau et al, 2004, Lyth 2005]

[various potentials, various models]



Primordial fluctuations 
as a probe of the early Universe

Primordial density fluctuations (the origin of cosmic structure) 
are considered to be generated in the very early Universe.

CMB

Large scale structure

They should give the information of the early Universe.

Primordial 
fluctuations



Models generating primordial fluctuations

Inflation (fluctuations of the inflaton)

Curvaton model [Enqvist & Sloth; Lyth & Wands;  Moroi & TT, 2001]

Inhomogeneous (modulated) reheating

Inhomogeneous phase transition (e.g., end of thermal inflation)

[Dvali, Gruzinov, Zaldarriaga 
2003; Kofman 2003]

[Matsuda,2009; Kawasaki, TT,  Yokoyama, 2009]

Inhomogeneous end of hybrid inflation [Bernardeau, Uzan 2003, 
Bernardeau et al, 2004, Lyth 2005]

consistent with power spectrum measurements 
(at least, at some parameter space)

[various potentials, various models]

Multi-brid inflation [Sasaki 2008; Naruko, Sasaki 2009 ] 



3 point function: a measure of non-Gaussianity
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3 point function: a measure of non-Gaussianity

k1

k2

k3

Amplitude of the bispectrum (3-point function)

If fluctuations are Gaussian, fNL = 0

Non-Gaussianity is usually characterized by  fNL 

A critical test of inflation: For (most) inflation models, fNL � O(1)

�⇥⇤k1
⇥⇤k2

⇥⇤k3
⇥ = (2⇤)3B�(k1, k2, k3)�(�k1 + �k2 + �k3).

B�(k1, k2, k3) =
6
5
f local
NL (P�(k1)P�(k2) + P�(k2)P�(k3) + P�(k3)P�(k1))



Bispectrum: Observables

Non-linearity parameter fNL

�⇥⇥k1
⇥⇥k2

⇥⇥k3
⇥ = (2⇤)3B�(k1, k2, k3)�(⌅k1 + ⌅k2 + ⌅k3)

Bispectrum

local type:

equilateral type:

Depending on momentum distribution (“shape”), 
there are some types

[WMAP7 (Komatsu et al 2010) ]�10 < f local
NL < 74

25 < f local
NL < 117 [NRAO VLA SKY SURVEY (Xia et al 2010) ]

�214 < f equil
NL < 266 [WMAP7 (Komatsu et al 2010) ]



Example: Curvaton model
[Enqvist & Sloth; Lyth & Wands;  Moroi & TT, 2001]



�

time (scale factor)

Inflation

Thermal history with curvaton 

U(�)

�

� : Inflaton

� : Curvaton

Inflation is driven by the inflaton (�� � ��)

σ field can also acquire fluctuations



�

time (scale factor)

Inflation

�

�
�r � a�4

Inflaton decays into radiation σ begins to oscillate

Thermal history with curvaton 

H � m�

H � a�2

Curvaton behaves 
like matter �� � a�3



�

time (scale factor)

Inflation

�

�
�r � a�4

σ decays (into radiation)

Fluctuations of σ gives adiabatic perturbations

Thermal history with curvaton 

Fraction of the energy 
density of σ at the decay 
is important for non-G.

fNL �
⇥

��

�total

���
decay

⇤�1



Curvaton model [Enqvist & Sloth; Lyth & Wands;  Moroi & TT, 2001]

Inhomogeneous (modulated) reheating

Inhomogeneous phase transition (e.g., end of thermal inflation)

[Dvali, Gruzinov, Zaldarriaga 
2003; Kofman 2003]

[Matsuda,2009; Kawasaki, TT,  Yokoyama, 2009]

Inhomogeneous end of hybrid inflation [Bernardeau, Uzan 2003, 
Bernardeau et al, 2004, Lyth 2005]

 fNL can be large...

Models generating primordial fluctuations

Inflation (fluctuations of the inflaton)

(even just for local type)
We need to something beyond fNL....

Multi-brid inflation [Sasaki 2008; Naruko, Sasaki 2009 ] 



Information of trispectrum (4-pt. function)

Scale-dependence of fNL

 [For a comprehensive discussion for local type, see e.g., Suyama, TT, Yamaguchi, Yokoyama, 1009.1979]

“beyond” fNL

Isocurvature fluctuations
 [for nonG, Kawasaki et al 2008; Langlois et al 2008; Hikage, Koyama, Matusbara, 
TT, Yamaguchi 2008; Kawakami et al 2009; Langlois, Lepidi 2010; Langlois, TT 2010; 
Hikage, Kawasaki, Sekiguchi, TT 2012.].

[Byrnes et al, 2009, 2010;  for the curvaton model, Byrnes, Enqvist,  TT 2010; 
Byrnes, Enqvist, Nurmi, TT 2011; Kobayashi, TT 2012]



“Consistency relations” among  fNL, τNL and gNL

(we consider the local type model.)



Bispectrum and Trispectrum for local type 

�⇥⇥k1
⇥⇥k2

⇥⇥k3
⇥ = (2⇤)3B�(k1, k2, k3)�(⌅k1 + ⌅k2 + ⌅k3)

3-point function: Bispectrum

B�(k1, k2, k3) =
6
5
fNL (P�(k1)P�(k2) + P�(k2)P�(k3) + P�(k3)P�(k1))

4-point function:

�⇥⇥k1
⇥⇥k2

⇥⇥k3
⇥⇥k4

⇥ = (2⇤)3T�(k1, k2, k3, k4)�(⌅k1 + ⌅k2 + ⌅k3 + ⌅k4)

Trispectrum

T�(k1, k2, k3, k4) = �NL (P�(k13)P�(k3)P�(k4) + 11 perms.)

+
54
25

gNL (P�(k2)P�(k3)P�(k4) + 3 perms.)

k13 = k1 + k3



Consistency relation between fNL, τNL and gNL

We can find some relation between the non-linearity 
parameters which depend on the model:

fNL

�NL gNL

By using “consistency relation” between these parameters, 
we can divide the models into some categories.

:Bispectrum

:Tripectrum(              )



Relation between fNL and τNL

k1

k2

k3

k4

 fNL

τNL

 fNL

~ (fNL)
2

Case with one source (field)

�NL =
36
25

f2
NL



Relation between fNL and τNL

Case with multi-source (fields)

No definite relation between fNL and τNL ,
(a general situation)

�NL >

�
6
5
fNL

�2

But, they should satisfy Suyama-Yamaguchi inequality

[Suyama, Yamaguchi 2008]

�NL �=
�

6
5
fNL

�2



There are still some (many) possibilities for each categories....

fNL - τNL relation

Single-source Multi-source

Can we differentiate the model?



Can we differentiate the model?
fNL - τNL relation

Single-source Multi-source

(pure) curvaton model

(pure) modulated reheating 

Inhomogeneous end of hybrid 
inflation

Modulated trapping

Mixed inflaton+curvaton

Mixed inflaton+modulated reh.

Multi-brid 

Multi-curvaton

Ungaussiton



Can we differentiate the model?
fNL - τNL relation

Single-source Multi-source

(pure) curvaton model

(pure) modulated reheating 

Inhomogeneous end of hybrid 
inflation

Modulated trapping

Mixed inflaton+curvaton

Mixed inflaton+modulated reh.

Multi-brid (multi-field hybrid)

Multi-curvaton

Ungaussiton

... but, we can further divide models by using  fNL-gNL 

“Linear” gNL Type

“Suppressed” gNL Type

“Enhanced” gNL Type
{



Three categories

“Linear” gNL Type

“Suppressed” gNL Type

“Enhanced” gNL Type

gNL � (suppression factor)� fNL

gNL � fNL

gNL � fn
NL (n > 1, in many models n=2)

(e.g., suppressed by the slow-roll params. ε, η)

(with O(1) coefficient)
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 [Suyama, TT, Yamaguchi, Yokoyama, 2010].
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fNL - gNL diagram

 [Suyama, TT, Yamaguchi, Yokoyama, 2010].
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A strategy to pin down the model 

“Linear” gNL Type

“Suppressed” gNL Type

“Enhanced” gNL Type

fNL - τNL relation
Single-source

Multi-source

Once fNL is confirmed to be large, by looking at τNL, gNL,  
we can pick up (some) promising model(s).

fNL - gNL relation

However, details of the model may not be probed well...



Even just for the Curvaton model.....

Mixed inflaton + curvaton scenario [Langlois, Vernizzi, 2004; Moroi, TT, Toyoda, 2005; 
Ichikawa, Suyama, TT,  Yamaguchi, 2008 ]

Curvaton with self-interaction [Enqvist, Nurmi 2005; Enqvist, TT,  2008; 
Enqvist, Nurmi, Taanila, TT, 2009]

Multi-Curvaton model (two curvatons)

(simple) Curvaton model with V =
1
2
m2�2

pseudo-Nambu-Goldstone curvaton

[Assadullahi,Valiviita, Wands, 2007]

[Dimopoulos et al 2003; Kawasaki et al 2008]



 Scale-dependence of fNL 



 nfNL :Scale-dependence of fNL 

fNL(k) = fNL(kref)
�

k

kref

�nfNL

Definition: nfNL �
d ln |fNL|

d ln k

In the following, we consider “local type”: � = �G +
3
5
fNL�2

G



Current limit on nfNL

[Becker, Huterer 1207.5788]

(From WMAP7)

(k� � 0.064 hMpc�1)
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nfNL  probes some aspects of models of large fNL

fNL can be (strongly) scale-dependent when:

the potential deviates from the quadratic form.

multi-fields are responsible for the perturbations.

[Byrnes et al, 2009, 2010]



nfNL from non-quadratic potential

When the potential is quadratic,  no scale-dependence 

Non-zero nfNL  can give important information on the potential.

When the potential for a light field deviates from a 
quadratic form,  fNL can be scale dependent.

fNLnfNL �
V

���

3H2 �
ns � 1 = �2� +

2V
��

3H2

�cf. for power spectrum

[Byrnes et al, 2009, 2010]



Self-interacting curvaton

nfNL  in curvaton with non-quadratic potential

pseudo-Nambu-Goldstone (NG) curvaton

local-type f
NL

can be probed if it is large enough to satisfy

|nf
NL

| > A⇥ 50

f
NL

, (2.36)

where the right hand side takes A ' 0.68, 0.10, and 0.05 for WMAP [4], Planck [50], and
CMBPol [51], respectively, assuming as fiducial values f

NL

= 50, nf
NL

= 0, and a full-sky
coverage.

Before ending this section, we should mention about errors in the analytic formulae.
Firstly, the approximation (2.24) contains error of order Ḣ⇤/H

2

⇤ , and (2.25) of order V 00(�⇤)/H2

⇤ .
By taking into account such errors, one can check that they do not modify the above results
on ns, ↵, and nf

NL

at the leading order.
However further approximations and simplifications have been carried out upon obtain-

ing the analytic expressions of Subsection 2.1, e.g., the approximation (2.1) on the curvaton
dynamics, which is correct up to order V 00/H2. This can source errors in the results of order
V 00/H2, and also of derivatives of V 00/H2 in terms of �⇤ and/or time t. It should be noted
that such error with various orders of derivatives can accumulate and lead to breakdown of
the analytic expressions especially for higher-order correlation functions and running. Nev-
ertheless, for the explicit examples we study in the following sections, we will see that the
analytic results match well with results from numerical computations.

3 Pseudo-Nambu-Goldstone Curvatons

Since the parameters ñs and ↵̃ in the expression for nf
NL

(2.33) are not necessarily the actual
spectral index and its running under a non-vanishing Ḣ during inflation, one may expect that
the condition (2.34) for a large nf

NL

is easily satisfied without contradicting with observa-
tional constraints on the flatness of the power spectrum. One may imagine cases where the
amplitudes of ↵̃ and ñs�1 are much smaller than unity, though possessing a hierarchy among
them as |↵̃| � |ñs � 1|.

In this section we study the case where the curvaton is realized as a pseudo-Nambu-
Goldstone (NG) boson of a broken U(1) symmetry, possessing a cosine-type potential [25,
26, 27, 28]. Given that the curvaton at the CMB scale horizon exit is located close to the
inflection point of the potential, ñs � 1 vanishes while ↵̃ remains finite. However, we will see
that the resulting nf

NL

is actually set by the absolute value of ↵̃, thus bounded by observational
constraints on the running of the spectral index (unless ↵̃ is cancelled out by the Ḣ terms in
(2.27)).

We consider the potential of the form

V (�) = ⇤4


1� cos

✓
�

f

◆�
, (3.1)

10

limit, nf
NL

approaches a certain value, which can be seen as the end points of the contour
lines. (The end points of the blue lines in both figures are outside the displayed region.)

Focusing on a contour line with a fixed value for �⇤/⇡f , then taking a larger value for
|ñs � 1| is equivalent to increasing ↵̃, hence the contour would shift towards larger |nf

NL

|. In
summary, for NG curvatons, large |nf

NL

f
NL

| is produced together with a large ↵̃, therefore
it is already strictly constrained by current observational bounds on running spectral index,
unless ↵̃ is cancelled out from the expression for ↵ due to a varying Hubble parameter during
inflation.
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Figure 8: Varying r̂ under ñs = 0.96. �⇤/⇡f

is fixed to 0.55 (blue), 0.60 (green), and 0.90
(red), corresponding to ↵̃ ⇡ 0.03, 0.008, and
8 ⇥ 10�5, respectively. The expected obser-
vational sensitivity of Planck is also shown
(black dashed).
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Figure 9: Varying r̂ under ñs = 1.04. �⇤/⇡f

is fixed to 0.45 (blue), 0.40 (green), and 0.10
(red), corresponding to ↵̃ ⇡ 0.03, 0.008, and
8⇥ 10�5, respectively.

4 Self-Interacting Curvatons

As a simple example of curvaton potentials that steepen more rapidly than a quadratic,
in this section we explore curvatons possessing a mass term and an additional higher-order
polynomial term [18,19,20,21,22,23,24]:

V (�) = ⇤4

"✓
�

f

◆
2

+

✓
�

f

◆m
#

, (4.1)

15

[Byrnes, Enqvist,  TT 2010; Byrnes, Enqvist, 
Nurmi, TT 2011; Kobayashi, TT 2012]

[Huang 2010, 
Kobayashi, TT 2012]



nfNL in the self-interacting curvaton
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[Kobayashi,  TT 2012]

Expected Planck 
sensitivity 
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mass parameter

limit, nf
NL

approaches a certain value, which can be seen as the end points of the contour
lines. (The end points of the blue lines in both figures are outside the displayed region.)

Focusing on a contour line with a fixed value for �⇤/⇡f , then taking a larger value for
|ñs � 1| is equivalent to increasing ↵̃, hence the contour would shift towards larger |nf

NL

|. In
summary, for NG curvatons, large |nf

NL

f
NL

| is produced together with a large ↵̃, therefore
it is already strictly constrained by current observational bounds on running spectral index,
unless ↵̃ is cancelled out from the expression for ↵ due to a varying Hubble parameter during
inflation.
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is fixed to 0.55 (blue), 0.60 (green), and 0.90
(red), corresponding to ↵̃ ⇡ 0.03, 0.008, and
8 ⇥ 10�5, respectively. The expected obser-
vational sensitivity of Planck is also shown
(black dashed).
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is fixed to 0.45 (blue), 0.40 (green), and 0.10
(red), corresponding to ↵̃ ⇡ 0.03, 0.008, and
8⇥ 10�5, respectively.

4 Self-Interacting Curvatons

As a simple example of curvaton potentials that steepen more rapidly than a quadratic,
in this section we explore curvatons possessing a mass term and an additional higher-order
polynomial term [18,19,20,21,22,23,24]:

V (�) = ⇤4
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(Case of m=8)
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nfNL in the psuedo-Nambu-Goldstone curvaton

��/�f = 0.55
��/�f = 0.6
��/�f = 0.9

[Kobayashi,  TT 2012]

Expected Planck 
sensitivity 



nfNL  probes some aspects of models of large fNL

Scale-dependence of fNL may be able to give detailed information 
about the model, such as the mass, potential form, .... 
(if detected).

Even if it is not detected, it can put some constraints on the 
model (parameters).



Non-Gaussianty in isocurvature fluctuations



CDM isocurvature fluctuations: S ⇥ �⇥c

⇥c
� 3�⇥�

4⇥�

Pure isocurvature fluctuations are excluded by the data.
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Small contribution from isocurvature is possible, although severely 
constrained.
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Although iso. fluc. are severely constrained, some contaminations 
are still allowed. 

Constraints on isocurvature fluctuations

(for uncorrelated CDM isocurvature)

Constraints for the fraction parameter:

[WMAP7+BAO+SN, Komatsu et al., 2010]

(for anti-correlated CDM isocurvature)

� � PS(k0)
P�(k0) + PS(k0)

�0 < 0.077 (95 % CL)

��1 < 0.0047 (95 % CL)

PS �< S2 > P� �< �2 >

=
PS(k0)

Ptotal(k0)

( )



Models with isocurvature fluctuations

Curvaton model

Axion model

Affleck-Dine baryogenesis

Depending on when and how CDM/baryon are generated, 
isocurvature fluctuations can be easily produced in a light field 
model (such as the curvaton)



Non-Gaussianity in isocurvature fluctuations

Non-linearity parameter for isocurvature fluctuations:

�SSS� = (2�)3�(3)(�k1 + �k2 + �k3)BSSS(k1, k2, k3)

BSSS(k1, k2, k3) = 2f (iso)
NL (PS(k1)Ps(k2) + 2 perm.)

Bispectrum for S

BSSS(k1, k2, k3) � 2f (iso)
NL �2P 2

tot



Constraint on  fNL
(iso)

New constraint [Hikage, Kawasaki, Sekiguchi, TT 2012]

(from WMAP7, bispectrum)

�2f (iso)
NL = �15± 60 [1σ]

[1σ]

c.f. constraint using Minkowski functional 
[Hikage, Koyama, Matsubara, TT,  Yamaguchi, 2008]

�2f (iso)
NL = 40± 66



Joint constraint on fNL and  fNL
(iso)

[1σ]

[1σ]
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Application to the Axion model
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Summary

Information on fNL  is NOT enough to differentiate 
models of primordial fluctuations.

Scale-dependence of non-Gaussianity (nfNL) can be 
useful to discriminate models of large non-G.

Relation among  fNL, τNL and gNL can pick up some 
category of models.

Isocruvature fluctuations can be a consistency check 
with some other aspects of cosmology.


