Techni-dilaton signatures at LHC

Shinya Matsuzaki

Maskawa Institute for Science and Culture, Kyoto Sangyo Univ.

11/19/2011

The 1st KIAS Phenomenology workshop

November 17 (Thu), 2011 ~ November 19 (Sat), 2011

Lepton-Photon 2011

LHC starts setting severe bounds on SM Higgs mass
 --- implies the mass is unlikely to be as low as O(EW)
 --- suggests composite dynamics for origin of mass
 like "Technicolor"

★ Technicolor

Weinberg ('76), Susskind ('79)

Dynamical EW(chiral) SB

technifermion condensation: $\langle \bar{F}_L F_R \rangle \neq 0$ $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

like $\langle \bar{q}_L q_R \rangle \neq 0$ in QCD

Dynamical W,Z mass generation

 $\pi_{W,Z} \qquad M_W = \frac{g_W}{2} F_{\pi} \text{ with } F_{\pi} \simeq 246 \text{ GeV set}$ $W,Z \qquad W,Z \qquad W,Z \qquad F_{\pi}$

Dynamical explanation of origin of mass

Technicolor should not be QCD-like at all

Extended TC: SM fermion mass generation

RGE effect for $\bar{F}F$ operator w/ anomalous dim. γ_m

Other pheno. issues in TC scenarios

<u>S parameter</u>

Top quark mass generation

<u>T parameter</u> (Strong) ETC generates large isospin breaking → highly model-dependent issue

Yamawaki et al (1986); Bando et al (1986)

Yamawaki et al (1986); Bando et al (1986)

* Explicit dynamics

QCD w/ large # fermions --- under investigation by lattice cals

WTC and techni-dilaton

Yamawaki et al (1986); Bando et al (1986)

WTC and techni-dilaton

 $\beta(\alpha_{\rm TC}) \simeq 0$ (Approximate) scale-invariance in WTC \rightarrow presence of (p)NGB for scale symm = "dilaton". α_{TC} walking regime $\phi \sim \bar{F}F$ SSB by TF mass generation @ mu_cr. $m_F \simeq \Lambda_{\rm TC} e^{-\pi/\sqrt{\alpha_m/\alpha_{\rm cr}-1}}$ $\Lambda_{
m TC}$ starts "running" m_F (walking) up to mF $\mu_{\rm cr}$: $\alpha = \alpha_{\rm cr}$ $\beta(\alpha) = \Lambda_{\rm TC} \frac{\partial \alpha}{\partial \Lambda_{\rm TC}} = -\frac{2\alpha_{\rm cr}}{\pi} \left(\frac{\alpha}{\alpha_{\rm cr}} - 1\right)^{3/2}$ nonperturbative "no exact NGB limit" scale anomaly $\partial_{\mu}D^{\mu}_{\mathsf{TC}} = \frac{\beta(\alpha)}{4\alpha^{2}} \langle \alpha G^{2}_{\mu\nu} \rangle \neq 0 : \text{ explicitly broken by } m_{F}$ makes dilaton massive: "techni-dilaton" (pNGB) potentially light!

★Cf: naive scale-up version of TC

Light composite scalar Higgs in naive scale-up version of QCD?

$$\phi \sim \bar{F}F$$
 $\frac{\Lambda_{\rm TC}}{\Lambda_{\rm QCD}} \approx \frac{F_{\pi}}{f_{\pi}^{\rm QCD}} \approx 2600$

scale symmetry is **badly broken** at perturbative level (cf. QCD)

$$\partial_{\mu}D^{\mu}_{\mathrm{TC}} = \frac{\beta(\alpha_{\mathrm{TC}})}{4\alpha_{\mathrm{TC}}} \langle G^{2}_{\mu\nu} \rangle \sim \mathcal{O}(\Lambda^{4}_{\mathrm{TC}})$$

No reason to be ligher than other TC hadrons

$$m_{\phi} \sim m_{\rho} \sim \mathcal{O}(\Lambda_{\rm TC})$$

typical TC hadron mass scale

*Techni-dilaton mass and coupling

<u>TD mass</u>

$$m_F \sim \Lambda_{\rm TC} e^{-\frac{\pi}{\sqrt{\alpha_*/\alpha_{\rm cr}-1}}}$$

*Techni-dilaton mass and coupling

<u>TD mass</u>

ii) Holographic TD

Haba-Matsuzaki-Yamawaki (2010)

In "criticality" limit $(m_F/\Lambda_{\rm TC} \rightarrow 0)$

 $F_{\pi} = \mathcal{O}(m_F)$

 $M_{\rm TD}/F_{\pi} \to 0$ while $M_{\rho,a_1}/F_{\pi} \to {\rm constant}$

TD could be extremely light!

note

ii) Holographic TD

Haba-Matsuzaki-Yamawaki (2010)

In "criticality" limit $(m_F/\Lambda_{\rm TC} \rightarrow 0)$

$$F_{\pi} = \mathcal{O}(m_F)$$

 $M_{\rm TD}/F_{\pi} \to 0$ while $M_{\rho,a_1}/F_{\pi} \to {\rm constant}$

TD could be extremely light!

note

<u>TD coupling (decay constant) FTD</u>

PCDC (Partially conserved dilatation current)

 $F_{\rm TD}^2 M_{\rm TD}^2 = -4d_\theta \langle \theta_0^0 \rangle$ w/ $d_\theta = 4$ and $\theta_\mu^\mu = \partial_\mu D^\mu$

vacuum energy density $\langle \theta_0^0 \rangle$ (in ladder approx.) *Miransky et al* (1989); *Hashimoto et al*(2011) associated w/TF mass generation

$$PCDC \qquad \begin{cases} F_{TD}^{2}M_{TD}^{2} = -4d_{\theta}\langle\theta_{0}^{0}\rangle & w/d_{\theta} = 4 \text{ and } \theta_{\mu}^{\mu} = \partial_{\mu}D^{\mu} \\ \langle\theta_{0}^{0}\rangle \sim \frac{N_{TTF}N_{TC}}{\pi^{2}}m_{F}^{4} \end{cases}$$

implies
$$\underbrace{\frac{M_{TD}}{m_{F}}\frac{F_{TD}}{m_{F}}}_{m_{F}} \sim \text{constant}$$

two possibilities:
$$\begin{pmatrix} (1) \text{ Non hierarchical} & extremely hierarchical} \\ M_{TD} \sim F_{TD} \sim m_{F} & extremely hierarchical} \\ (2) \text{ Extremely hierarchical} \\ M_{TD} \ll m_{F} \ll F_{TD} & \text{light decoupled TD} \\ (dark matter?) & \text{next talk by DK Hong} \end{cases}$$

Techni-dilaton signatures at LHC

Based on arXiv:1109.5448 [hep-ph]

In collaboration with Koichi Yamawaki (KMI, Nagoya Univ.) To discuss TD LHC phenomenologies:

needs to know TD couplings to SM particles

Yukawa coupling: TD - f - f bar

Gauge coupling: TD – W-W, ZZ, gluons, photons

generated from techni-fermion (F) loops
 via TD-F-F vertex

Ward-Takahashi identity for dilatation current

Bando et al (1986)

$$g_{\mathrm{TD}FF} = \frac{(3 - \gamma_m)m_F}{F_{\mathrm{TD}}}$$

★TD couplings generated from TF loops

TD Lagrangian

 $\begin{array}{cc} m_F & \text{breaks explicitly} \\ \swarrow & \text{as well as spontaneously} \end{array}$

Nonlinear realization of chiral and scale symmetries

Nonlinear base: $\Phi \approx \frac{\bar{F}F}{\langle \bar{F}F \rangle}$ $\Phi = e^{(3-\gamma_m)\phi/F_{\rm TD}}$ reflecting scaling r $\delta \Phi = (3 - \gamma_m + x^{\nu}\partial_{\nu}) \Phi$ property of $\bar{F}F$

TD field ϕ $\delta \phi = F_{\rm TD} + x^{\nu} \partial_{\nu} \phi$

TD decay constant:

$$\langle 0|D_{\mu}(0)|\phi(p)\rangle = -ip_{\mu}F_{\mathrm{TD}}$$

TC sector-dilatation current

Explicit breaking: "spurion" S

$$\delta S = (1 + x^{\nu} \partial_{\nu}) S \qquad \langle S \rangle = 1$$

Chiral and scale-inv. nonlinear Lagrangian
Including suprion S

$$\mathcal{L} = \frac{v_{\rm EW}^2}{4} (\Phi S^{\gamma_m - 2})^2 \operatorname{tr}[D_\mu U^\dagger D^\mu U] - (\Phi S^{\gamma_m - 2}) \sum_f \left(\bar{f}_L U \begin{pmatrix} m_f^u & 0 \\ 0 & m_f^d \end{pmatrix} f_R + \text{h.c.} \right)$$

$$- (\Phi S^{\gamma_m - 3}) \left(\frac{\beta_F(\alpha_s)}{2\alpha_s} \operatorname{tr}[G_{\mu\nu}^2] + \frac{\beta_F(\alpha_{\rm EM})}{4\alpha_{\rm EM}} F_{\mu\nu}^2 \right), \quad \text{(w/chiral field (only eaten NGBs)}$$

$$U = e^{2i\pi/v_{\rm EW}}$$
TD couplings
$$\beta_F : \text{only includes}$$

$$\operatorname{techni-fermion (F) loops}$$

$$g_{\text{TD}WW/ZZ} - \frac{F_{\text{TD}}}{F_{\text{TD}}}$$
$$g_{\text{TD}ff} = \frac{(3 - \gamma_m)m_f}{F_{\text{TD}}}$$
$$g_{\text{TD}gg} = \frac{(3 - \gamma_m)}{F_{\text{TD}}}\frac{\beta_F(\alpha_s)}{2\alpha_s}$$
$$g_{\text{TD}\gamma\gamma} = \frac{(3 - \gamma_m)}{F_{\text{TD}}}\frac{\beta_F(\alpha_{\text{EM}})}{4\alpha_{\text{EM}}}$$

Comparison w/ SM Higgs couplings

$$1/v_{\rm EW} \to (3-\gamma_m)/F_{\rm TD}$$

up to β_F highly model-dep.

The LHC signatures at $\sqrt{s} = 7 \text{ TeV}$

Via gluon and vector bosn fusion productions

 \star TD production cross section X branching ratio to SM Higgs one

$$R_{X} = \frac{[\sigma_{\rm GF}(pp \to {\rm TD}) + \sigma_{\rm VBF}(pp \to {\rm TD})]}{[\sigma_{\rm GF}(pp \to h_{\rm SM}) + \sigma_{\rm VBF}(pp \to h_{\rm SM})]} \frac{BR({\rm TD} \to X)}{BR(h_{\rm SM} \to X)}$$

$$X = WW, ZZ, gg, \gamma\gamma \text{ and } t\bar{t}$$

$$\frac{\sigma_{\rm VBF}(pp \to {\rm TD})}{\sigma_{\rm VBF}(pp \to h_{\rm SM})} = \frac{\Gamma({\rm TD} \to WW)}{\Gamma(h_{\rm SM} \to WW)} = \frac{\Gamma({\rm TD} \to ZZ)}{\Gamma(h_{\rm SM} \to ZZ)} \equiv r_{WW/ZZ}$$

$$\frac{\sigma_{\rm GF}(pp \to {\rm TD})}{\sigma_{\rm GF}(pp \to h_{\rm SM})} = \frac{\Gamma({\rm TD} \to gg)}{\Gamma(h_{\rm SM} \to gg)} \equiv r_{gg}$$

$$R_{X} = \left(\frac{\sigma_{\rm GF}(pp \to h_{\rm SM}) \cdot r_{gg} + \sigma_{\rm VBF}(pp \to h_{\rm SM}) \cdot r_{WW/ZZ}}{\sigma_{\rm GF}(pp \to h_{\rm SM}) + \sigma_{\rm VBF}(pp \to h_{\rm SM})}\right) r_{\rm BR}^{X}$$
known
$$r_{\rm BR}^{X} = \frac{BR({\rm TD} \to X)}{BR(h_{\rm SM} \to X)}$$

\star Evaluate $r_{WW/ZZ}$ r_{gg} and r_{BR}^X for typical TC models Farhi et al (1981)

One-doublet model (1DM)

$TF_{\rm EW}$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
$\left(\begin{array}{c} U\\ D\end{array}\right)_{L}$	1	2	0
U_R	1	1	1/2
D_R	1	1	-1/2

One-family model (1FM)

Total # of techni-fermions

 $N_{\rm TF} = (N_{\rm TF})_{\rm EW-singlet} + 2N_{\rm D}$

w/ critical # for mass generation in WTC $$N_{\rm TF}\simeq 4N_{
m TC}$$

Appelequist et al (1996)

$TF_{ m EW}$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
$egin{array}{c} Q_L = \left(egin{array}{c} U \ D \end{array} ight)_L \end{array}$	3	2	1/6
$igsquar L_L = \left(egin{array}{c} N \ E \end{array} ight)_L$	1	2	-1/2
U_R	3	1	2/3
D_R	3	1	-1/3
N_R	1	1	0
E_R	1	1	-1

ightarrow Use PCDC and PS formula in ladder approx : Fix $\,F_{
m TD}$ and $\,m_F$

Hashimoto et al (2010)

PCDC (Partially Conserved Dilatation Current)

$$F_{\rm TD}^2 M_{\rm TD}^2 \simeq 3.0 \left(\frac{N_{\rm TF} N_{\rm TC}}{2\pi^2}\right) m_F^4$$

Pagels-Storkar (PS) formula

$$v_{\rm EW} = \sqrt{N_{\rm D}} F_{\pi}$$

 $\simeq \begin{cases} 735\,(600)\,{\rm GeV} & \text{for the 1DM } (N_{\rm D}=1) \text{ with } N_{\rm TC}=2(3) \\ 367\,(300)\,{\rm GeV} & \text{for the 1FM } (N_{\rm D}=4) \text{ with } N_{\rm TC}=2(3) \end{cases}$

\bigstar TD decay constant (*larger than* F_{π})

$$\begin{split} \frac{F_{\text{TD}}}{F_{\pi}} &\simeq 7.0 \times \left(\frac{F_{\pi}}{M_{\text{TD}}}\right) \sqrt{\frac{N_{\text{TF}}}{N_{\text{TC}}}} \\ &\simeq \begin{cases} 5.7 \left(\frac{600 \,\text{GeV}}{M_{\text{TD}}}\right) & \text{for the 1DMs with } N_{\text{TF}} \simeq 4N_{\text{TC}} \text{ and } F_{\pi} = 246 \,\text{GeV} \\ 2.8 \left(\frac{600 \,\text{GeV}}{M_{\text{TD}}}\right) & \text{for the 1FMs with } N_{\text{TF}} \simeq 4N_{\text{TC}} \text{ and } F_{\pi} = 123 \,\text{GeV} \end{cases} \\ \hline F_{\text{TD}} > F_{\pi} : \text{essentially due to smallness of } M_{\text{TD}} \\ \checkmark \text{TDYukawa coupling} \quad (\textbf{1DM: suppressed; 1FM : comparable}) \\ \frac{g_{\text{TD}ff}}{g_{h_{\text{SM}}ff}} &= \left.\frac{(3 - \gamma_m)v_{\text{EW}}}{F_{\text{TD}}}\right|_{\gamma_m \simeq 1} \\ &\simeq (3 - \gamma_m)|_{\gamma_m \simeq 1} \times \begin{cases} 0.18 \left(\frac{M_{\text{TD}}}{600 \,\text{GeV}}\right) & \text{for the 1DM with } N_{\text{TF}} \simeq 4N_{\text{TC}} \end{cases} \end{split}$$

TD branching fraction relative to SM Higgs one

Model	N_{TC}	$r_{ m BR}^{WW}$	$r_{\rm BR}^{ZZ}$	$r_{\rm BR}^{gg}$	$r_{ m BR}^{\gamma\gamma}$	$r_{\rm BR}^{t\bar{t}}$
1DM	2	1.0	1.0	1.0	1.0	0.92
	3	1.0	1.0	1.0	0.80	1.0
1FM	2	1.0	0.99	16	3.2	1.0
	3	0.99	0.99	44	11	0.99
for $M_{\rm TD} = 600 {\rm GeV}$						

WW,ZZ,ttbar modes: almost identical to SM Higgs

gg, gamma gamma modes: (1DM) identical to SM Higgs (1FM) *enhanced* due to extra QCD/EM-charged techni-fermions

TD production cross section relative to SM Higgs one

Model	N_{TC}	$\frac{g_{\mathrm{TD}ff}}{g_{h_{\mathrm{SM}}ff}} = \frac{2v_{\mathrm{EW}}}{F_{\mathrm{TD}}}$	$r_{gg} = \frac{\sigma_{\rm GF}^{\rm TD}}{\sigma_{\rm GF}^{h_{\rm SM}}}$	$r_{WW/ZZ} = \frac{\sigma_{\text{VBF}}^{\text{TD}}}{\sigma_{\text{VBF}}^{h_{\text{SM}}}}$
1DM	2	0.35	0.12	0.12
	3	0.35	0.12	0.12
$1\mathrm{FM}$	2	1.4	31	1.9
	3	1.4	87	1.9
	-	000 O V		

for $M_{\rm TD} = 600 \,\,{\rm GeV}$

- IDM: Both GF & VBF are suppressed due to suppression of TD Yukawa coupling
- IFM: VBF is comparable to SM Higgs one; GF is *enhanced* due to extra techni-quark contributions

$\bigstar pp->TD -> X signatures relative to SM Higgs one$ $X = WW, ZZ, gg, \gamma\gamma \text{ and } t\bar{t}$

Model	N_{TC}	R_{WW}	R_{ZZ}	R_{gg}	$R_{\gamma\gamma}$	$R_{t\bar{t}}$
1DM	2	0.12	0.12	0.12	0.095	0.12
	3	0.12	0.12	0.12	0.097	0.12
$1 \mathrm{FM}$	2	26	26	414	85	26
	3	73	73	3300	840	73

for $M_{\rm TD} = 600 \,\, {\rm GeV}$

- 1DM: all TD signals are suppressed due to suppression of production cross section
- 1FM: all TD signals are *enhanced* due to enhancement of production cross section

pp->TD -> WW/ZZ for 1DM

<u>√s = 7 TeV</u>

consistent thanks to large suppression of TDYukawa coupling
 too small to be seen, though.

★ pp->TD -> WW/ZZ for 1FM

<u>√s = 7 TeV</u>

1FM with $N_{\rm TC}$ =2(solid),3(dashed)

excludes TD up to M_TD < 600 GeV</p>

On the other side of the same coin:
 TD will be seen at M_TD > 600 GeV!

pp->TD -> gamma gamma for 1FM

 LHC will soon reveal what the key particle for origin of mass is. Current data implies composite dynamics.
 Walking TC predicts a light composite scalar, TD -- which arises as pNGB for SSB of scale symm.

TD signatures at LHC: The characteristic difference from the SM Higgs will be seen through WW/ZZ, gamma gamma modes at around the TD mass > 600 GeV (for 1FM).

Back up slides

1FM with $N_{\rm TC}$ =2(solid),3(dashed)

