A Storm in A "T" Cup

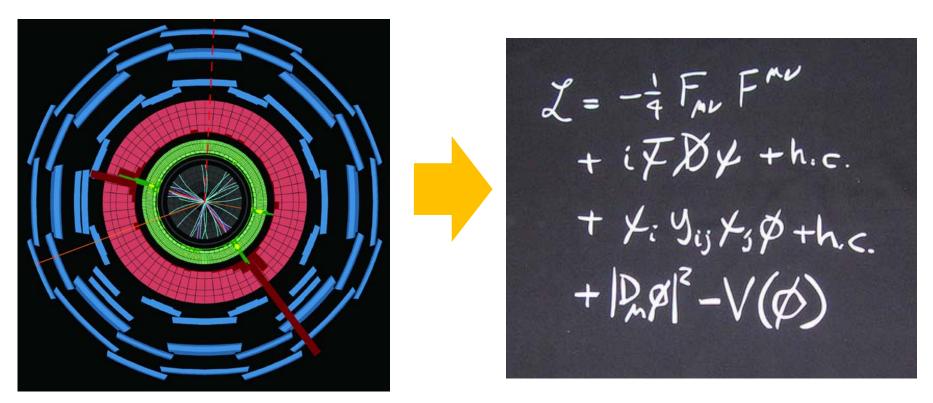
(Guide to transverse projections and mass-constraining variables)

K.C. Kong University of Kansas

In collaboration with: A. Barr, T. Khoo, P. Konar, C. Lester, K. Matchev, M. Park arXiv:1105.2977 [hep-ph], to appear in PRD

KIAS Phenomenology Workshop November 17, 2011

The game



40 M / second over 10 years

+ more terms...?

At some point, 5000 people will shout:

What is that something? How hard is it to identify what was found?

"mass measurement methods"

... short for ...

"parameter estimation and discovery techniques"

Do we care about masses?

- Common Parameters in the Lagrangian
- Interpretation
 - SUSY breaking mechanism, geometry of ED
- Prediction of new things
 - Mass of W,Z -> indirect top quark mass "measurement"
 - Masses of W/Z/t -> indirect measurement of the Higgs mass
- Expedites discovery optimal selection

Mass measurements

Spin

optimism

Missing

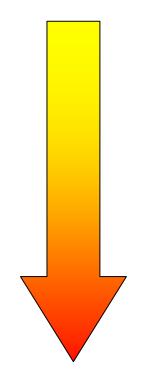
momonto		measurements	
reconstruction?	Inclusive	2 symmetric chains	
None	Inv. mass endpoints and boundary lines		Inv. mass shapes
	$M_{\rm eff,}M_{\rm est}$, $H_{\rm T}$	Wedgebox	
Approximate	S _{min,} M _{Tgen}	$M_{T2},M_{2C},M_{3C,}$ $M_{CT,}M_{T2}(n,p,c)$	As usual (MAOS)
Exact	?	Polynomial method	As usual
	None Approximate	$\begin{tabular}{c c} \textbf{Positive} \\ \hline \textbf{None} & Inv. \ mas \\ and \ bou \\ \hline \hline \textbf{M}_{eff,} \textbf{M}_{est}, \textbf{H}_{T} \\ \hline \textbf{Approximate} & \textbf{S}_{min,} \ \textbf{M}_{Tgen} \\ \hline \end{tabular}$	$\begin{tabular}{c c} \textbf{reconstruction?} & \textbf{Inclusive} & 2 symmetric chains \\ \hline \textbf{None} & \textbf{Inv. mass endpoints} \\ & \textbf{and boundary lines} \\ \hline & \textbf{M}_{eff,}\textbf{M}_{est},\textbf{H}_{T} & \textbf{Wedgebox} \\ \hline & \textbf{Approximate} & \textbf{S}_{min,}\textbf{M}_{Tgen} & \textbf{M}_{T2},\textbf{M}_{2C},\textbf{M}_{3C}, \\ & \textbf{M}_{CT,}\textbf{M}_{T2}(n,p,c) \\ \hline & \textbf{Exact} & ? & \textbf{Polynomial} \\ \hline \end{tabular}$

pessimism

Types of Technique

Few

assumptions



Many

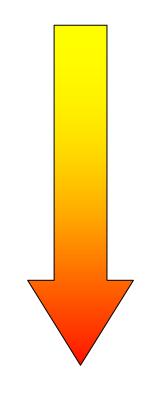
assumptions

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M T
- M TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Types of Technique

Vague

conclusions



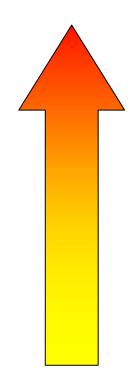
Specific

conclusions

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M T
- M TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Types of Technique

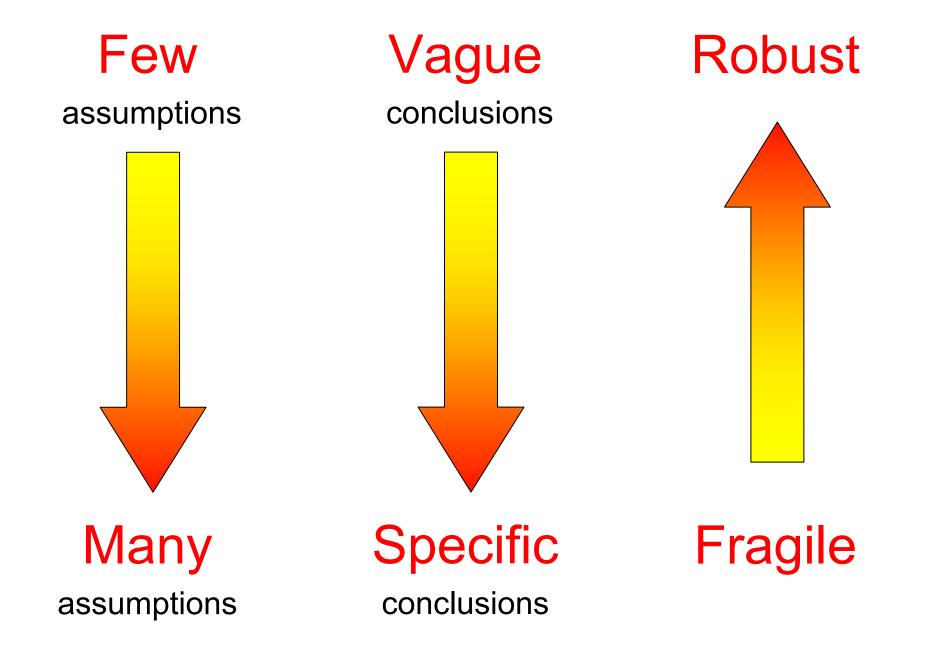
Robust



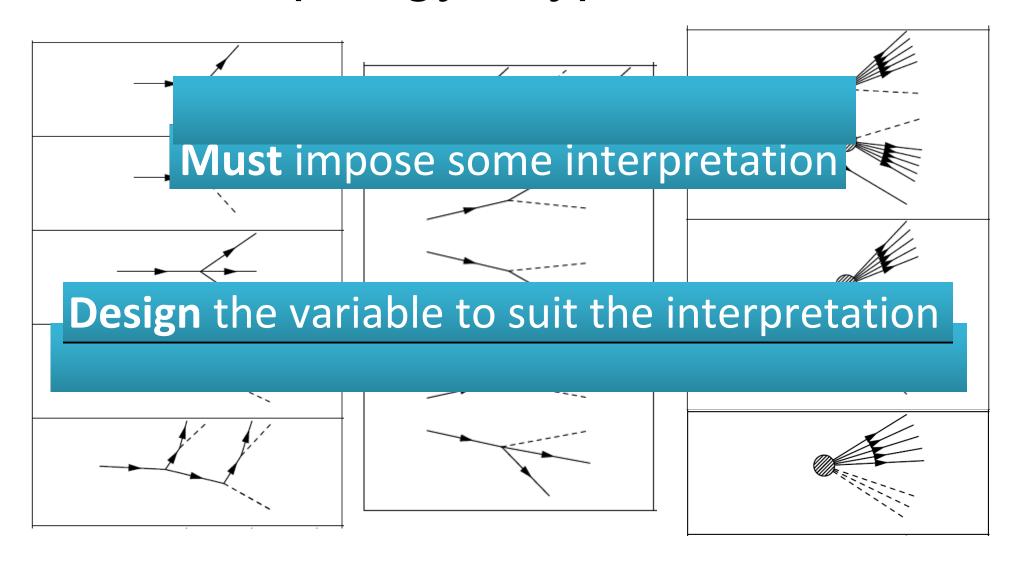
Fragile

- Missing transverse momentum
- M eff, H T
- s Hat Min
- M T
- M TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

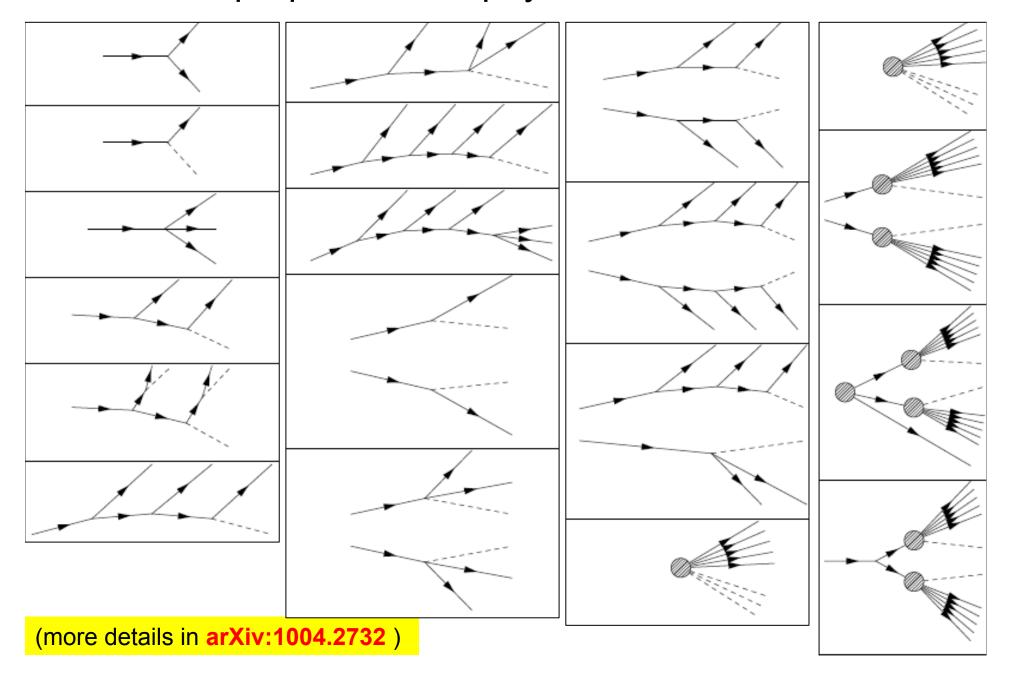
Interpretation: the balance of benefits



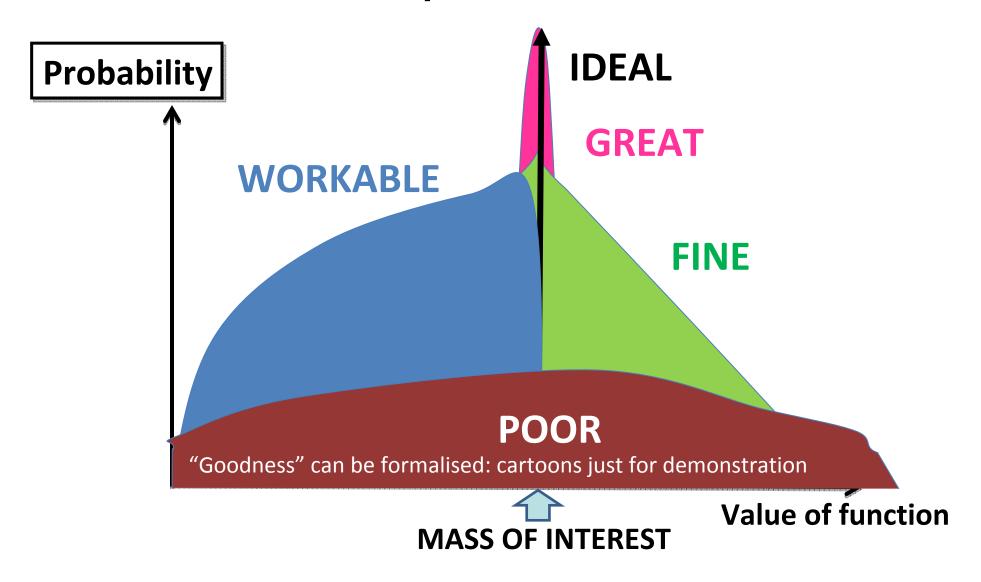
Topology / hypothesis

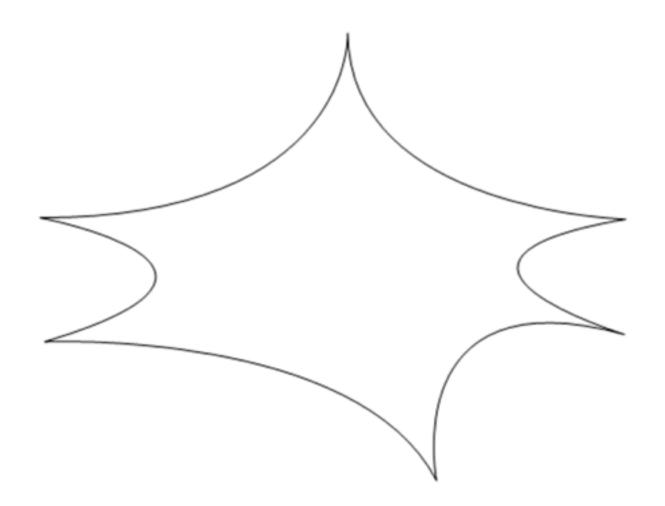


Not all proposed new-physics chains are short!

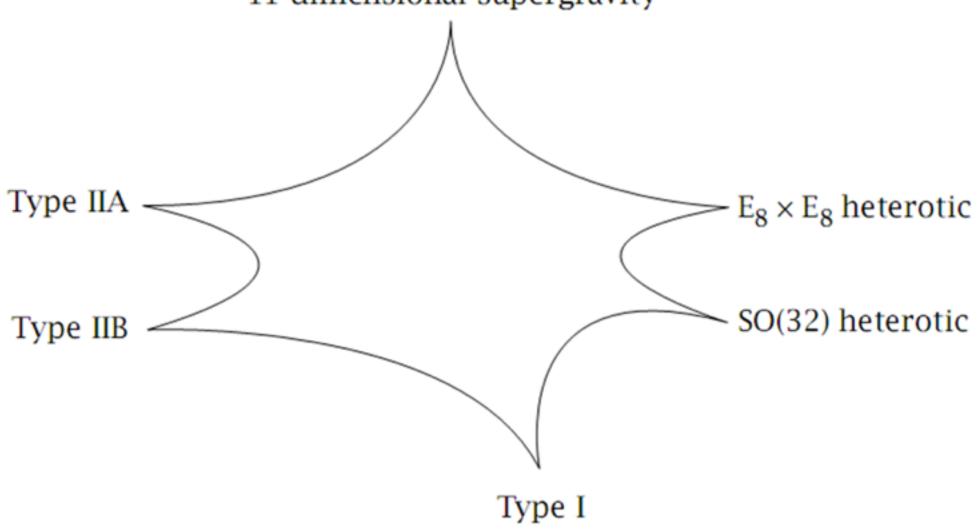


Good vs poor variables

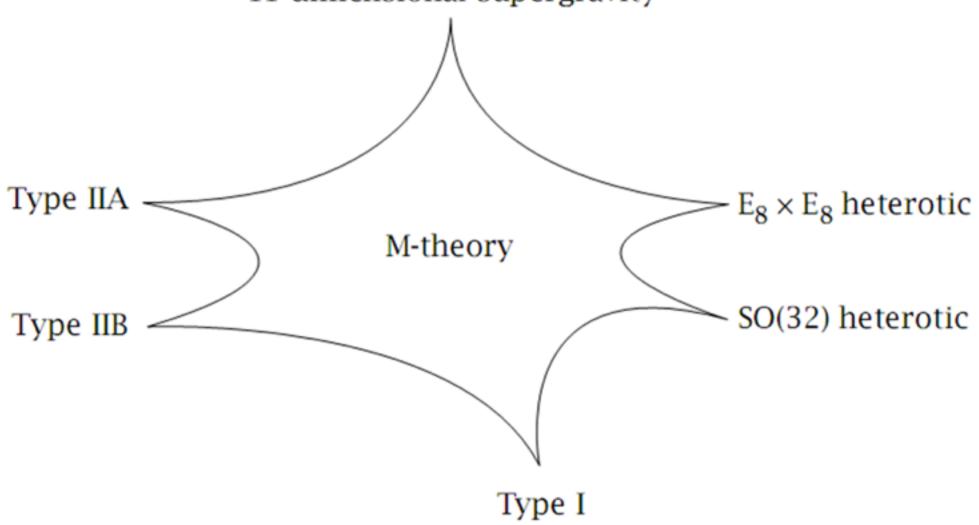


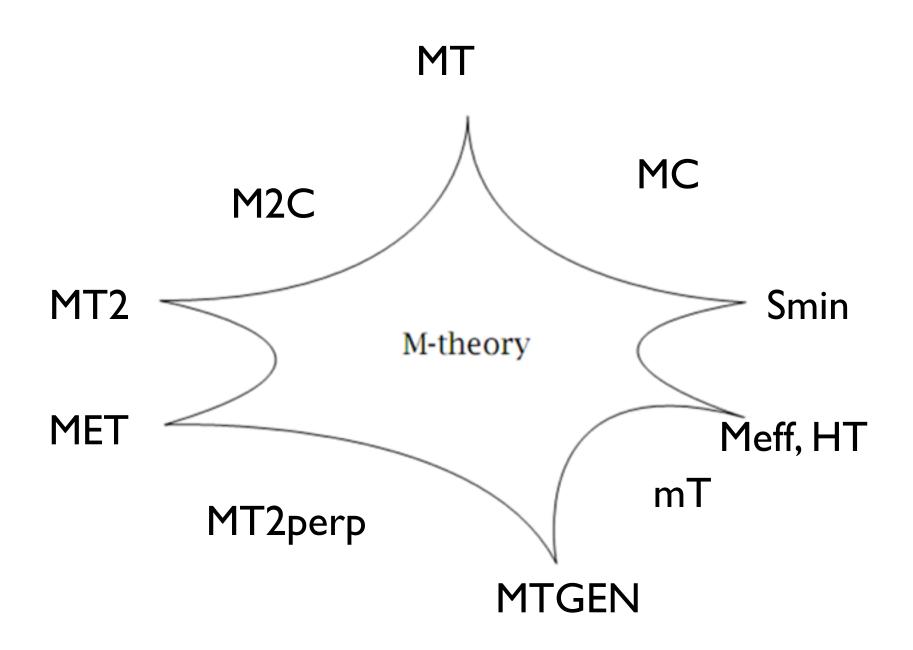


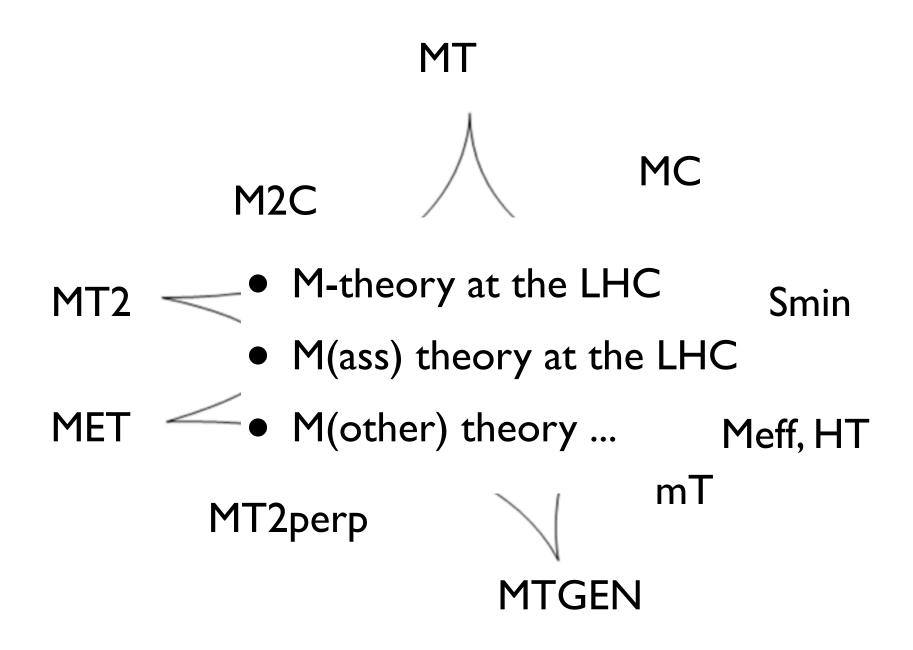
11-dimensional supergravity

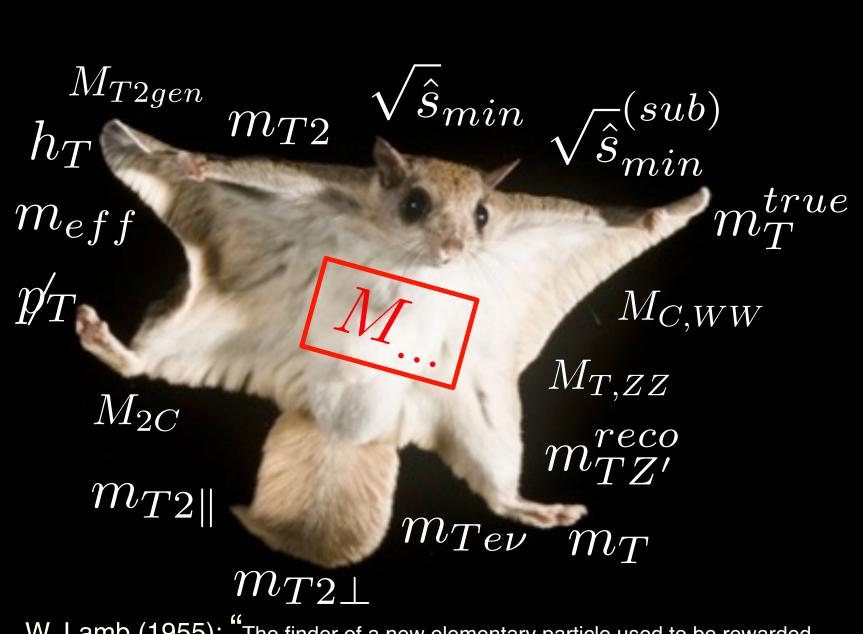


11-dimensional supergravity









W. Lamb (1955): "The finder of a new elementary particle used to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a \$10,000 fine"

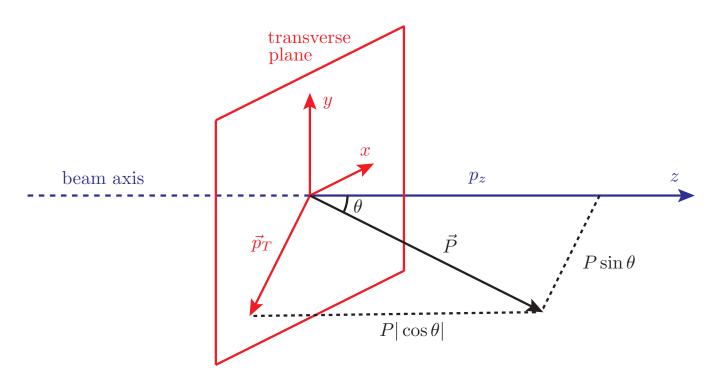
© Joe McDonald

Outline

- Transversification
 - how do we project particle momenta?
- Agglomeration
 - how do we add transverse momenta?
- Interpretation
 - how do we categorize reconstructed objects?
- Generalization
 - how do we define the most general mass-bound variables?
- Specialization
 - how do we recover the existing variables?
 - illustration: dilepton tt-bar and h->WW examples.

Transversification of 3-vectors

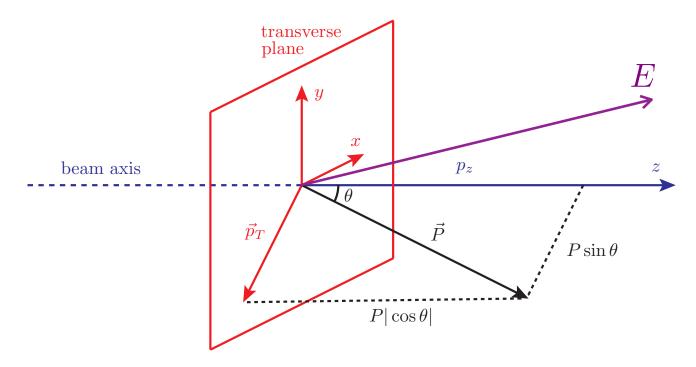
Warm-up exercise: geometrical projection



$$p_T = P \sin \theta$$

Transversification of 1+3-vectors

What to do with the energy (time-like) component?



 Well, isn't it obvious? Not really: there are at least three different options for the "transverse" energy: "T", "V" and "0".

Summary of transverse projections

	Transverse projection method					
Quantity	$\textbf{Mass-preserving `\top'} \qquad \textbf{Speed-preserving `\lor'} \qquad \textbf{Massless}$					
Original (4)-momentum		$P^{\mu} = (E, \vec{p}_T, p_z)$				
(1+3)-mass invariant	$M = \sqrt{E^2 - \vec{p}_T^2 - p_z^2}$					
Transverse momentum	$ec{p}_T \equiv (p_x, p_y)$					
(1+2)-vectors	$p_{ op}^{lpha} \equiv (e_{ op}, ec{p}_{ op})$	$p_{\lor}^{lpha} \equiv (e_{\lor}, ec{p}_{\lor})$	$p_{\circ}^{lpha}\equiv(e_{\circ},ec{p_{\circ}})$			
Transverse momentum under the projection	$ec{p}_{ op} \equiv ec{p}_{T}$	$ec{p}_ee \equiv ec{p}_T$	$ec{p}_{\circ} \equiv ec{p}_{T}$			
Transverse energy under the projection	$e_{ op} \equiv \sqrt{M^2 + \vec{p}_T^{2}}$	$e_{\vee} \equiv E \left \sin \theta \right = \vec{p}_T /V$	$e_{\circ} \equiv \vec{p}_T $			
Transverse mass under the projection	$m_{\perp}^2 = e_{\perp}^2 - \vec{p}_{\perp}^2$	$m_\vee^2 \equiv e_\vee^2 - \vec{p}_\vee^2$	$m_{\circ}^2 \equiv e_{\circ}^2 - \vec{p}_{\circ}^2 = 0$			
Relationship between	$m_{\top} = M$	$m_{\vee} = M \left \sin \theta \right $	$m_{\circ}=0$			
transverse quantity and its (1+3) analogue	$\frac{1}{v_{\top}} = \frac{1}{V} \sqrt{1 + (1 - V^2) \frac{p_z^2}{p_T^2}}$	$v_{\lor} = V$	$v_{\circ}=1$			
Equivalence classes under $(1+3) \xrightarrow{\text{proj}} (1+2)$	All P^{μ} with the same p_x , p_y and M	All P^{μ} with the same p_x , p_y and V	All P^{μ} with the same p_x and p_y			

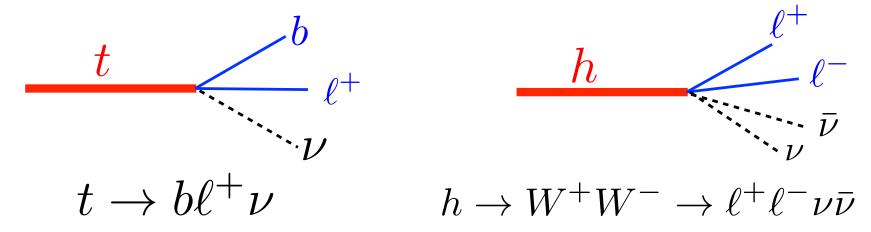
A guide to existing computer codes

 Both "T" and "V" projections appear to be used in the existing computer libraries and codes

Library	Object	Method/function name						
		$e_{ op}$	e_{\top}^2	$m_{ op}$	$m_{ op}^2$	m_{T2}	e_{\lor}	e_{\vee}^2
CLHEP[36]	LorentzVector	mt()	mt2()	-	_	-	et()	et2()
ROOT [37]	TLorentzVector	Mt()	Mt2()	_	_	_	Et()	Et2()
Fastjet [61]	Pseudojet	mperp()	mperp2()	_	_	_	Et()	Et2()
PGS [62]	_	_	_	_	_	_	v4et(p)	_
Oxbridge	LorentzVector	ET()	ET2()	LTV().mass()	LTV().masssq()	_	_	_
M_{T2} [38]	LorentzTransverseVector	Et()	Etsq()	mass()	masssq()	_	_	_
	Mt2_332_Calculator	_	_	_	_	mT2_332()	_	_
UCD M_{T2} [39]	mt2	Ea, Eb	Easq, Ebsq	_	_	get_mt2()	_	_

Agglomeration

 Heavy, promptly, semi-invisibly decaying resonances are reconstructed by agglomerating their daughter particles



- Transverse quantities are constructed by transverse projections
- Which should come first: the projection or the agglomeration? The results are different!

"Early" versus "late" projections

 The order of the operations makes a big difference for the time-like components

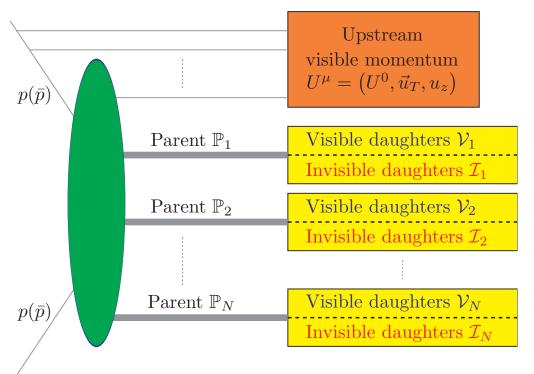
$$\sum_{i} \vec{p}_{i\top} = \left(\sum_{i} \vec{P}_{i}\right)_{\top} \qquad \sum_{i} e_{i\top} \neq \left(\sum_{i} E_{i}\right)_{\top},$$

$$\sum_{i} \vec{p}_{i\lor} = \left(\sum_{i} \vec{P}_{i}\right)_{\lor} \qquad \sum_{i} e_{i\lor} \neq \left(\sum_{i} E_{i}\right)_{\lor},$$

$$\sum_{i} \vec{p}_{i\circ} = \left(\sum_{i} \vec{P}_{i}\right)_{\circ} \qquad \sum_{i} e_{i\circ} \neq \left(\sum_{i} E_{i}\right)_{\circ}.$$

- Our convention: the order of indices (from left to right) denotes the order of operations, e.g.
 - add first, project later: $p_{aT}^{\alpha} \equiv (e_{aT}, \vec{p}_{aT})$
 - project first, add later: $p_{Ta}^{\alpha} \equiv (e_{Ta}, \vec{p}_{Ta})$

Interpretation (of an event)



- N "parents". For each:
 - Visible daughters
 - Invisible daughters
- Upstream momentum
- Missing p_T

$$\vec{p}_T \equiv -\vec{u}_T - \sum_{i=1}^{N_{\mathcal{V}}} \vec{p}_{iT}$$

- Notation for particle momenta:
- "P" ("p") for visible daughters
- "Q" ("q") for invisible daughters

How to form mass-bound variables

- Goal: find a lower bound on the mass of the heaviest (next-heaviest, etc.) parent
- There are various possibilities:

- 1 unprojected
$$\mathcal{M}_a \equiv \sqrt{g_{\mu\nu} \left(\mathbf{P}_a^{\mu} + \mathbf{Q}_a^{\mu}\right) \left(\mathbf{P}_a^{\nu} + \mathbf{Q}_a^{\nu}\right)}$$

- 3 late-projected
$$\mathcal{M}_{aT} \equiv \sqrt{g_{\alpha\beta} \left(\mathbf{p}_{aT}^{\alpha} + \mathbf{q}_{aT}^{\alpha}\right) \left(\mathbf{p}_{aT}^{\beta} + \mathbf{q}_{aT}^{\beta}\right)}$$

- 3 early-projected
$$\mathcal{M}_{Ta} \equiv \sqrt{g_{\alpha\beta} \left(\mathbf{p}_{Ta}^{\alpha} + \mathbf{q}_{Ta}^{\alpha}\right) \left(\mathbf{p}_{Ta}^{\beta} + \mathbf{q}_{Ta}^{\beta}\right)}$$

• Then minimize over the momenta of the invisible particles:

$$M_{N} \equiv \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T}}} \left[\max_{a} \left[\mathcal{M}_{a} \right] \right],$$

$$M_{NT} \equiv \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T}}} \left[\max_{a} \left[\mathcal{M}_{aT} \right] \right],$$

$$M_{TN} \equiv \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T}}} \left[\max_{a} \left[\mathcal{M}_{Ta} \right] \right],$$

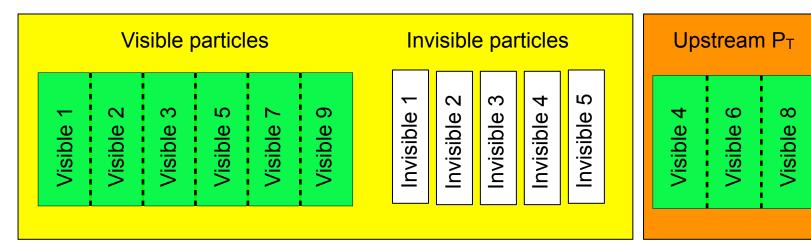
The 7 basic mass bound variables

Type of				
variables	First	Second	Third	Notation
Unprojected	Partitioning	Minimization		$M_N \checkmark$
Early partitioned (late projected) M_{NT}	Partitioning	$T = \top$ projection	Minimization	M_{N} \checkmark
	Partitioning	$T = \vee \text{ projection}$	Minimization	$M_{N\vee}$
	Partitioning	T = 0 projection	Minimization	$M_{N\circ}$
Late partitioned (early projected) M_{TN}	$T = \top$ projection	Partitioning	Minimization	$M_{\top N} \checkmark$
	$T = \vee \text{ projection}$	Partitioning	Minimization	$M_{\vee N}$
	T = 0 projection	Partitioning	Minimization	$M_{\circ N} \sqrt{}$

Can you recognize which one is the Cambridge M_{T2}?

Example: The unprojected M₁

This is the minimum total invariant mass of the single-parent subsystem



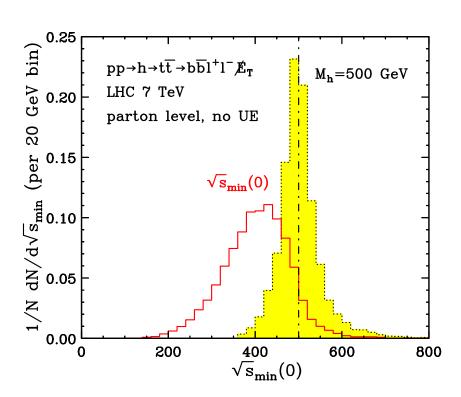
$$M_1^2(\mathbf{M}_1) \equiv \left(\sqrt{\mathbf{M}_1^2 + \mathbf{p}_{1T}^2} + \sqrt{\mathbf{M}_1^2 + \mathbf{p}_T^2}\right)^2 - u_T^2 \equiv \hat{s}_{min}^{(sub)}$$

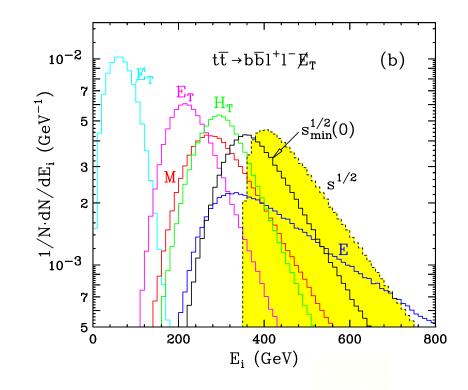
Total visible mass: $\mathbf{M}_1 \equiv \sqrt{\mathbf{E}_1^2 - \vec{\mathbf{p}}_{1T}^2 - \mathbf{p}_{1z}^2}$, Konar, Kong, Matchev, Park 2010

Applications of

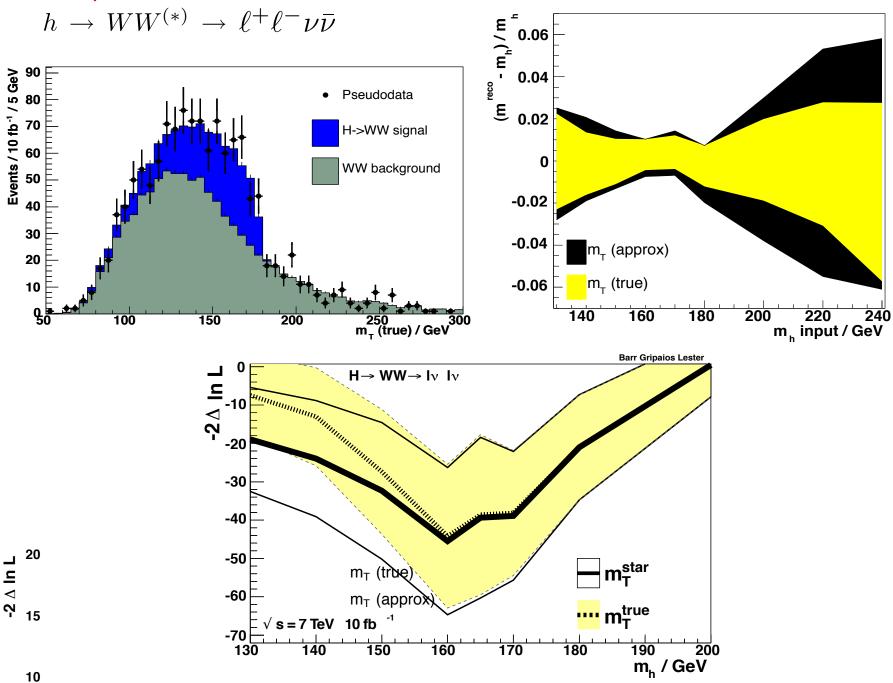
Konar, Kong, Matchev 2008 Konar, Kong, Matchev, Park 2010

- N=1: Single semi-invisibly decaying particle
 - SM Higgs to tt-bar
- N=2: A pair of semiinvisibly decaying particles
- direct tt-bar production
- endpoint at the parent mass
 peak at the total parent mass

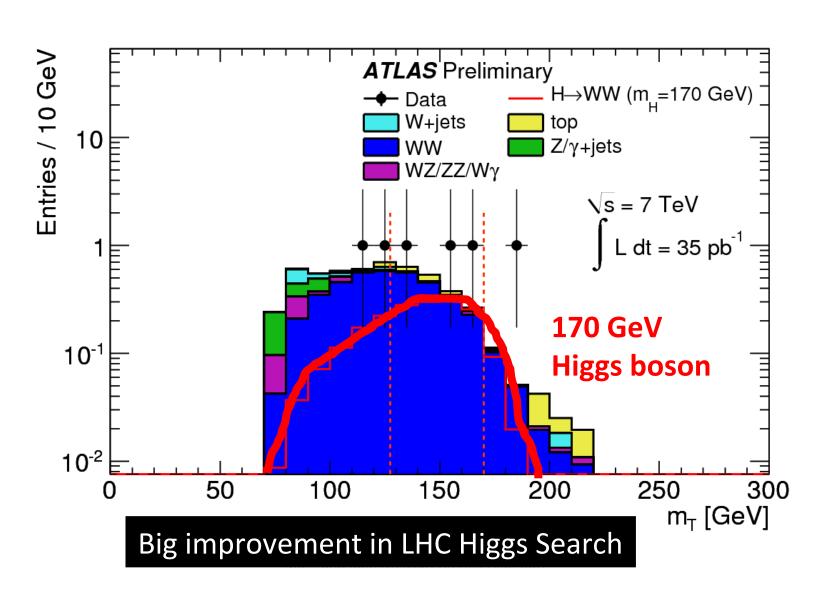




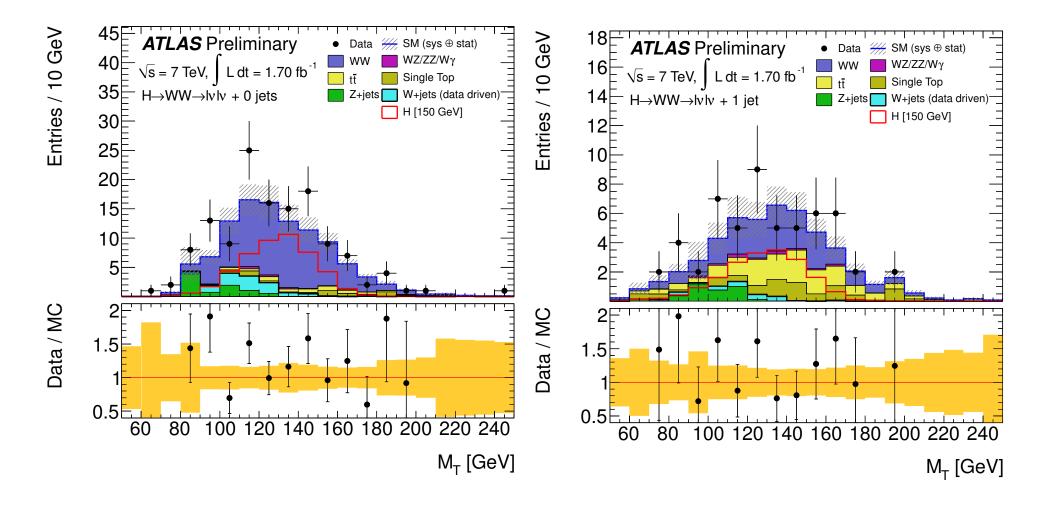
Barr, Gripaios, Lester 2009, 2011



Against the 2010 LHC data...



ATLAS-CONF-2011-134



History repeats but we learn more and understand better

Han, Zhang 1998, 1999

$$M_T = 2\sqrt{p_T^2(ll) + m^2(ll)},$$

$$M_C = \sqrt{p_T^2(ll) + m^2(ll)} + E_T$$

$$\begin{split} \sqrt{s}_{min}^{(sub)}(\mathcal{M}) &= \left\{ \left(\sqrt{E_{(sub)}^2 - P_{z(sub)}^2} + \sqrt{\mathcal{M}^2 + P_T^2} \right)^2 - P_{T(up)}^2 \right\}^{\frac{1}{2}} \qquad p_{T(sub)} \\ &= \left\{ \left(\sqrt{M_{(sub)}^2 + P_{T(sub)}^2} + \sqrt{\mathcal{M}^2 + P_T^2} \right)^2 - P_{T(up)}^2 \right\}^{\frac{1}{2}} \\ &= \left\{ \left(\sqrt{M_{(sub)}^2 + P_{T(sub)}^2} + \sqrt{\mathcal{M}^2 + P_T^2} \right)^2 - (\vec{P}_{T(sub)} + \vec{P}_T)^2 \right\}^{\frac{1}{2}} \\ &= ||p_{T(sub)} + p_T'||, \end{split}$$

$$p_{T(sub)} \equiv \left(\sqrt{M_{(sub)}^2 + P_{T(sub)}^2}, \vec{P}_{T(sub)}\right)$$
 $p_T \equiv \left(\sqrt{M^2 + P_T^2}, \vec{P}_T\right).$

Konar, Kong, Matchev, Park, 2008 2010

$$(m_T^{\text{true}})^2 \equiv m_T^2(m_i = 0) = m_v^2 + 2(e_v|\mathbf{p}_i| - \mathbf{p}_v \cdot \mathbf{p}_i)$$

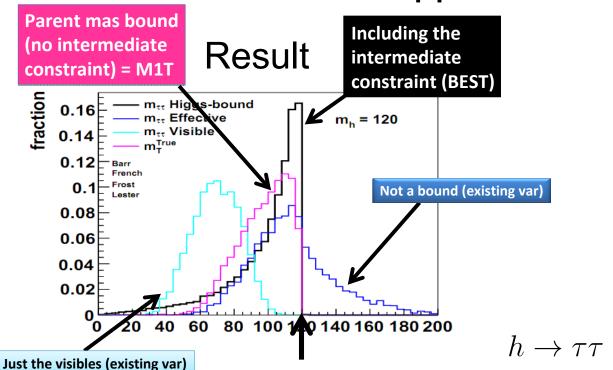
Barr, Gripaios, Lester 2009, 2011

$$M_1^2(\mathbf{N}_1) \equiv \left(\sqrt{\mathbf{M}_1^2 + \mathbf{p}_{1T}^2} + \sqrt{\mathbf{M}_1^2 + \mathbf{p}_T^2}\right)^2 - u_T^2$$

Barr, Khoo, Konar, Kong, Lester, Matchev, Park 2011 Barr, French, Frost, Lester 2011

40 60 80 100 120 140 160 180 20 Application in θ iggs to a tau pair GeV

0.02



Dramatic difference to Higgs observability?

 m_{H}

$$h \to \tau \tau$$
 $m_{\tau \tau}^{\text{Higgs-bound}} = \min_{\{Q_1^{\mu}, Q_2^{\mu} | \aleph\}} \sqrt{H^{\mu} H_{\mu}}$

40 60 80 100 120 140 160 180 20

abscissa / GeV

$$H^{\mu} = P_{1}^{\mu} + Q_{1}^{\mu} + P_{2}^{\mu} + Q_{2}^{\mu}$$

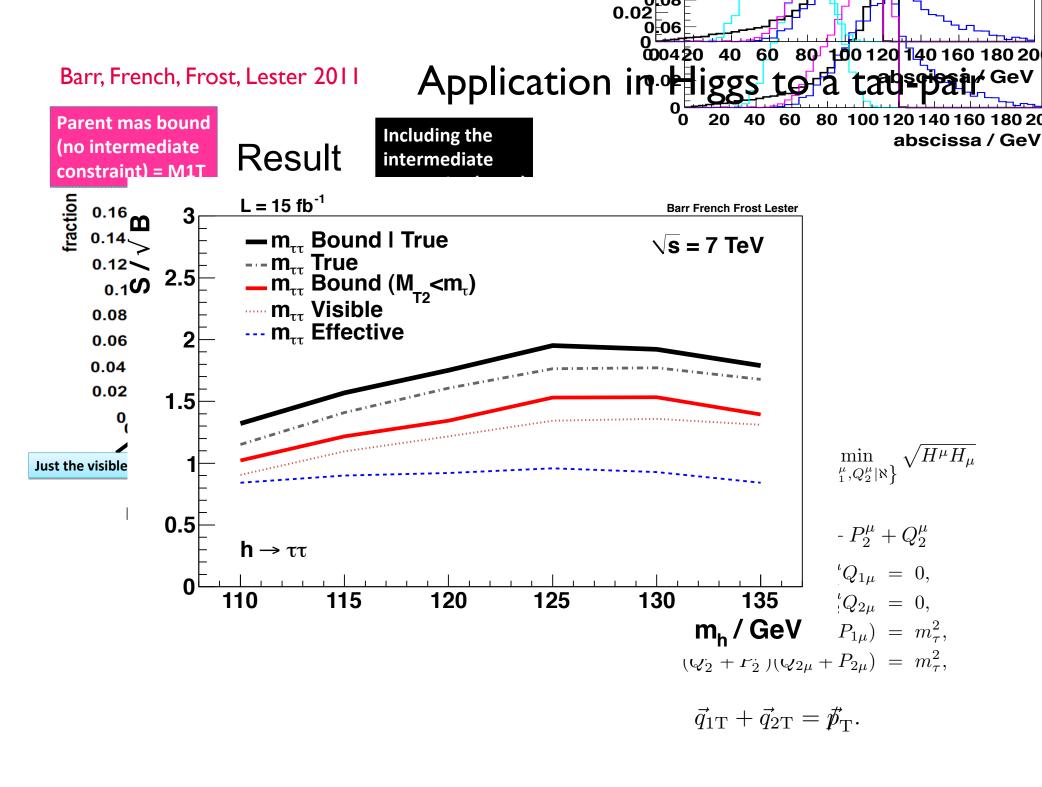
$$Q_{1}^{\mu}Q_{1\mu} = 0,$$

$$Q_{2}^{\mu}Q_{2\mu} = 0,$$

$$(Q_{1}^{\mu} + P_{1}^{\mu})(Q_{1\mu} + P_{1\mu}) = m_{\tau}^{2},$$

$$(Q_{2}^{\mu} + P_{2}^{\mu})(Q_{2\mu} + P_{2\mu}) = m_{\tau}^{2},$$

$$\vec{q}_{1T} + \vec{q}_{2T} = \vec{p}_{T}.$$



The late "T"-projected variable M_{NT}

• The order is: agglomerate, "T"-project, then minimize over q_{iT} and q_{iz}. First form each parent mass

$$\mathcal{M}_{a\top}^{2}(\mathbf{p}_{a\top}^{\alpha}, \mathbf{q}_{a\top}^{\alpha}, \tilde{\mu}_{a}) \equiv (\mathbf{p}_{a\top} + \mathbf{q}_{a\top})^{2} \equiv (\mathbf{e}_{a\top} + \tilde{\mathbf{e}}_{a\top})^{2} - (\vec{\mathbf{p}}_{aT} + \vec{\mathbf{q}}_{aT})^{2}$$

Then minimize the largest one:

$$M_{N\top}(\mathbf{M}) \equiv \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\max_{a} \left[\mathcal{M}_{a\top}(\mathbf{p}_{a\top}^{\alpha}, \mathbf{q}_{a\top}^{\alpha}, \tilde{\mu}_{a}) \right] \right]$$

• For N=1 the result is

$$M_{1T}^{2}(\mathbf{M}_{1}) \equiv \left(\sqrt{\mathbf{M}_{1}^{2} + \mathbf{p}_{1T}^{2}} + \sqrt{\mathbf{M}_{1}^{2} + p_{T}^{2}}\right)^{2} - u_{T}^{2} \equiv \hat{s}_{min}^{(sub)}$$

In general one finds the identity

$$M_{N\top} = M_N$$

The early "T"-projected variable M_{TN}

 The order is: "T"-project, agglomerate, then minimize over q_{iT} (there is no q_{iz} dependence).

$$\mathcal{M}_{\top a}^2(\mathbf{p}_{\top a}^{\alpha}, \mathbf{q}_{\top a}^{\alpha}, \tilde{\mu}_a) \equiv (\mathbf{p}_{\top a} + \mathbf{q}_{\top a})^2 \equiv (\mathbf{e}_{\top a} + \tilde{\mathbf{e}}_{\top a})^2 - (\vec{\mathbf{p}}_{aT} + \vec{\mathbf{q}}_{aT})^2$$

Then minimize the largest one:

$$M_{\top N}(\mathbf{N}_{\mathbf{I}}) \equiv \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\max_{a} \left[\mathcal{M}_{\top a}(\mathbf{p}_{\top a}^{\alpha}, \mathbf{q}_{\top a}^{\alpha}, \tilde{\mu}_{a}) \right] \right]$$

For N=1 the result is

$$M_{\top 1}^2(\mathbf{M}_1) = \left(\sum_{i=1}^{N_{\mathcal{V}}} \sqrt{M_i^2 + \vec{p}_{iT}^2} + \sqrt{\mathbf{M}_1^2 + \mathbf{p}_T^2}\right)^2 - u_T^2$$
• For massless visible particles (leptons or jets)

$$\lim_{M_i \to 0} M_{\perp 1}^2(\mathbf{N}_1) = \left(h_T + \sqrt{\mathbf{N}_1^2 + p_T^2}\right)^2 - u_T^2$$

The early "0"-projected variable Mon

$$M_{\circ N} \equiv \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\max_{a} \left[\mathcal{M}_{\circ a}(\mathbf{p}_{\circ a}^{\alpha}, \mathbf{q}_{\circ a}^{\alpha}) \right] \right]$$

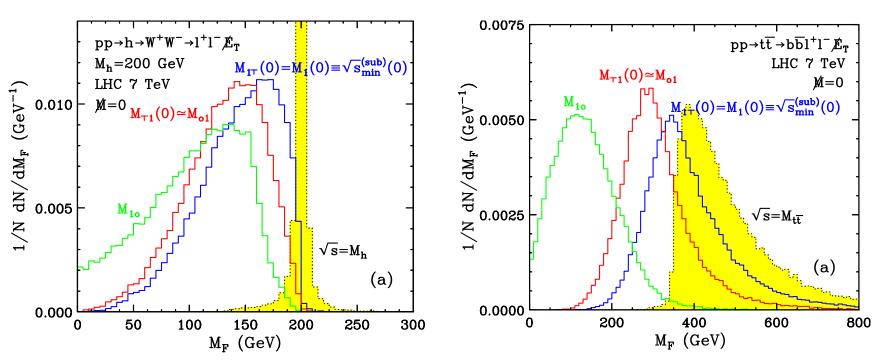
The late "0"-projected variable M_{N0}

$$M_{N\circ} \equiv \min_{\sum \vec{q}_{iT} = \vec{p}_T} \left[\max_{a} \left[\mathcal{M}_{a\circ}(\mathbf{p}_{a\circ}^{\alpha}, \mathbf{q}_{a\circ}^{\alpha}) \right] \right]$$

$$\begin{split} M_{1\circ}^2 &= \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[(\mathbf{e}_{1\circ} + \tilde{\mathbf{e}}_{1\circ})^2 - u_{T}^2 \right] \\ &= \left(\mathbf{e}_{1\circ} + \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\tilde{\mathbf{e}}_{1\circ} \right] \right)^2 - u_{T}^2 \\ &= \left(\mathbf{e}_{1\circ} + \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\tilde{\mathbf{e}}_{1\circ} \right] \right)^2 - u_{T}^2 \\ &= \left(\left| \sum_{i=1}^{N_{\mathcal{V}}} \vec{p}_{iT} \right| + p_{T} \right)^2 - u_{T}^2 \\ &= \left(\left| \sum_{i=1}^{N_{\mathcal{V}}} \vec{p}_{iT} \right| + p_{T} \right)^2 - u_{T}^2 \\ &= 2 \left(\vec{p}_{T} \cdot (\vec{p}_{T} + \vec{u}_{T}) + p_{T} | \vec{p}_{T} + \vec{u}_{T} | \right) \end{split}$$

Which variable is best?

$$M_N = M_{N \top} \ge M_{\top N} \ge M_{\circ N} \ge M_{N \circ}$$

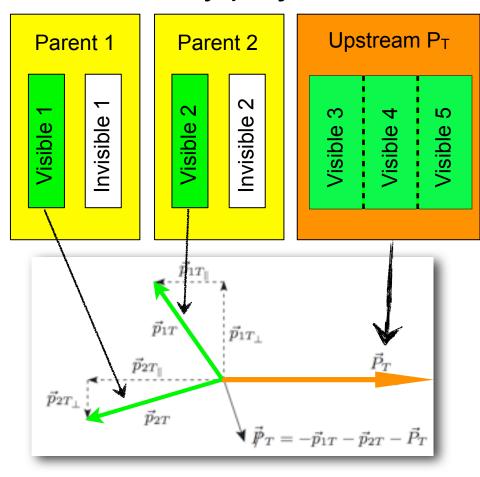


- Late (or no) projection gives a better endpoint structure
- Early projection less sensitive to forward hadronic activity

Transversification (twice)

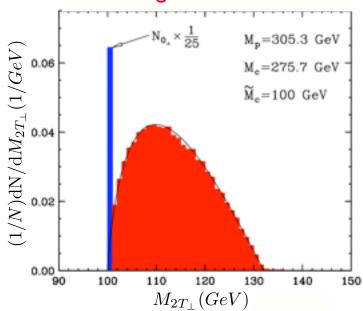
Matchev, Park 2009

 Having projected on the transverse plane, one can additionally project on the direction of Upstream P_T:

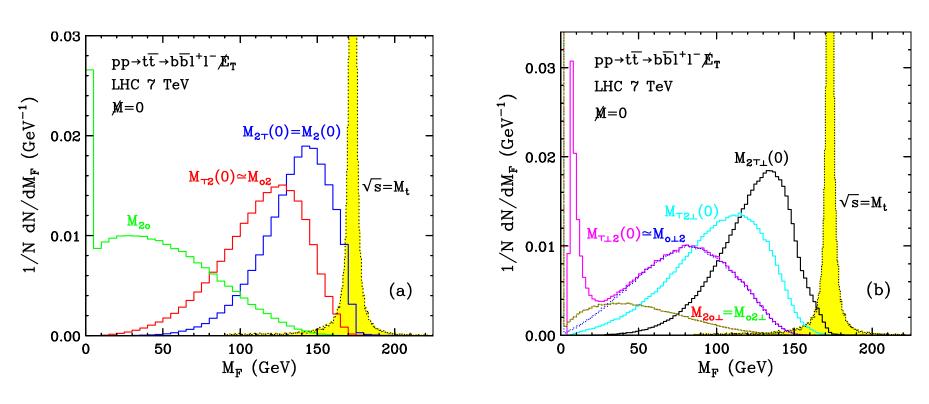


 The endpoints of "perp" distributions are stable against P_T variations

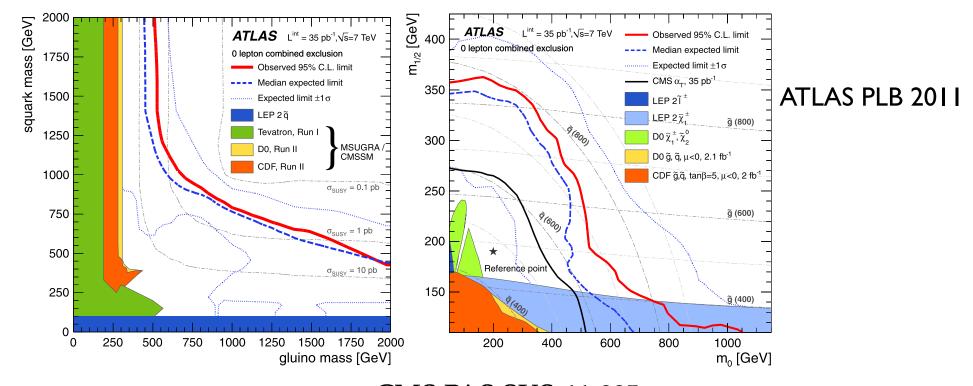
Konar, Kong, Matchev, Park 2009



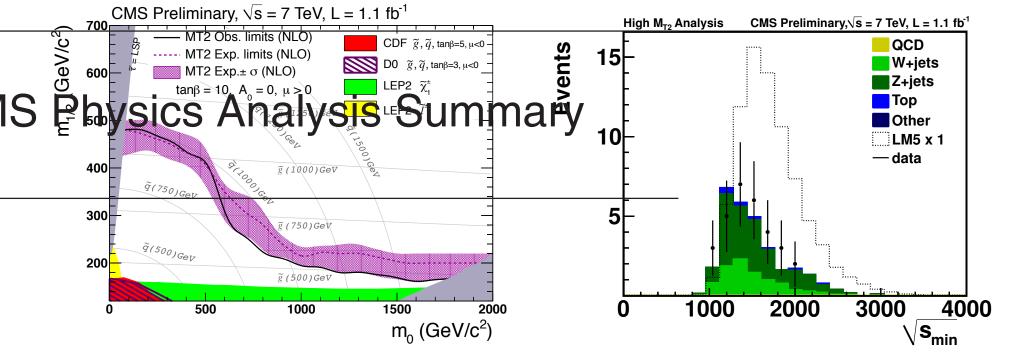
Cambridge M_{T2}-type variables



- The "2" in M_{T2} referred to the number of invisibles
- The "2" here refers to the number of parents



CMS PAS SUS-11-005



A common framework

	Mass-bound variable					
Existing	N = 1			N=2		
variable	$M_1(\mathbf{N}_1) = M_{1\top}(\mathbf{N}_1)$	$M_{ op 1}(\mathbf{M}_1)$	$M_{\circ 1}$	$M_{1\circ}$	$M_2(\mathbf{M}) = M_{2\top}(\mathbf{M})$	$M_{2 op\perp}(\mathbf{M})$
$2p\!\!\!/_T=2E\!\!\!\!/_T$				$u_T \to 0$		
$m_{ m eff}$		$\mathbf{M}_1 \to 0, u_T \to 0$	$u_T \to 0$			
$\sqrt{\hat{s}_{\min}^{(\mathrm{sub})}}(\mathbf{M}_1)$	✓					
$\sqrt{\hat{s}}_{\min}(\mathbf{N}_1)$	$u_T \to 0$					
$m_{Te u}(M_e,M_ u)$	✓	√	$M_e, M_{\nu} \to 0$	$M_e, M_{\nu} \to 0$		
$M_{T,ZZ}(M_Z)$	✓	√				
$M_{C,WW}$	$N_1 \rightarrow 0$					
$m_T^{ m true}$	$N_1 \rightarrow 0$					
$m_{TZ'}^{reco}(M_Z)$	$u_T \to 0$	$u_T \to 0$				
$m_{T2}(\mathbf{M})$					✓	
$m_{T2\perp}(\mathbf{M})$						√

All previous variables are just specializations to a specific event topology, massless invisibles or uT=0

Take home lessons

- There are different ways to project on the transverse plane
- Be mindful of the way in which composite particles are agglomerated (before or after T)
- Always think which of the 61 variables is most suited for the particular case at hand
- The early-agglomerated (late-projected) "transverse" variables are "secretly" 1+3 dimensional

$$M_{N\top}(\mathbf{N}\mathbf{I}) = M_{N}(\mathbf{N}\mathbf{I})$$

 The dependence on the unknown masses is only through the N summed-mass parameters

$$\mathbf{M}_a \equiv \sum_{i \in \mathcal{I}_a} \tilde{M}_i$$