Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with: Prof. Eung Jin Chun and Dr. Hyun Min Lee

11th September, 2012

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw
Lagrangian
Scalar Potential
Particle Content

Vacuum Stability ar

WPD Observables

ggs-to-diphoton

esults and

4 D L 4 D L 4 E L 4 E L 5 00 C

PLAN

- Introduction
 - ⇒ Type II Seesaw
 - **⇒ Particle Spectrum**
- Vacuum Stabilty and perturbativity.
 - ⇒ RG evolution of couplings
- Electroweak precision data (EWPD).
- Higgs-to-diphoton enhancement.
- Results and Conclusion.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw Lagrangian Scalar Potential Particle Content Masses

Vacuum Stability and

WPD Observable

iggs-to-diphotor

Results and Conclusions

Introduction

A 125 GeV Higgs has been discovered at the LHC.

However the Higgs sector is still unknown.

Minimal or non-minimal?

We already have various BSM phenomenon.

- Neutrino Oscillations
 - \Rightarrow confirms tiny neutrino mass
 - Dark Matter $\Rightarrow \Omega_{DM} h^2 \sim 0.11$
 - Matter-antimatter asymmetry

To understand these, we need to go beyond the SM.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

Introduction

Lagrangian
Scalar Potential
Particle Content
Masses

Vacuum Stability and perturbativity

EWPD Observables

ggs-to-diphoton

Results and Conclusions

4 D L 4 D L 4 E L 4 E L 5 00 C

From Standard Model to New Physcis

- One major motivations for new physics smallness of neutrino masses
- Origin can be attributed to a new particle coupling to the lepton doublets of the SM.
- The type II seesaw mechanism introduces a Higgs triplet whose VEV generates the neutrino masses and mixing.
- The Higgs sector of the type II seesaw contains four more bosons, H^{++}, H^+ and H^0/A^0 , in addition to the SM Higgs boson, h.
- Higgs triplet couplings can change drastically the stability of the SM electroweak vacuum
 - ⇒ Hence are quite constrained.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

Introduction

Lagrangian
Scalar Potential
Particle Content
Masses

Vacuum Stability and

EWPD Observables

ggs-to-diphoton

Results and Conclusions

Type II seesaw Lagrangian

• One triplet scalar Δ with hypercharge Y=1 is included.

$$\Delta = \left(\begin{array}{cc} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{array} \right).$$

 The leptonic part of the Lagrangian required to generate neutrino masses is

$$\mathcal{L}_Y = f_{\alpha\beta} L_{\alpha}^T Ci\tau_2 \Delta L_{\beta} + \mathsf{H.c.}$$

- When the neutral component acquires vev, the neutrino gets mass.
- \bullet So, we get $M_{\nu}=f_{\alpha\beta}v_{\Delta}$ by leptonic number violating interaction.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

roduction

Type II seesaw Lagrangian

Scalar Poten Particle Con

Masses Constraints

Vacuum Stability and perturbativity

EWPD Observables

ggs-to-diphoton

Results and Conclusions

Scalar Potential of type II seesaw

The scalar potential is

$$\begin{split} V(\Phi, \Delta) &= m^2 \Phi^\dagger \Phi + \lambda_1 (\Phi^\dagger \Phi)^2 + M^2 \mathrm{Tr}(\Delta^\dagger \Delta) \\ &+ \lambda_2 \left[\mathrm{Tr}(\Delta^\dagger \Delta) \right]^2 + \lambda_3 \mathrm{Det}(\Delta^\dagger \Delta) + \lambda_4 (\Phi^\dagger \Phi) \mathrm{Tr}(\Delta^\dagger \Delta) \\ &+ \lambda_5 (\Phi^\dagger \tau_i \Phi) \mathrm{Tr}(\Delta^\dagger \tau_i \Delta) + \left[\frac{1}{\sqrt{2}} \mu (\Phi^T i \tau_2 \Delta \Phi) + \mathrm{H.c.} \right]. \end{split}$$

- Upon EWSB with $\langle \Phi^0 \rangle = v_0/\sqrt{2}$,
- the μ term gives rise to the vev of the triplet $\langle \Delta^0 \rangle = v_\Delta / \sqrt{2}$
- \bullet $\,\mu$ term violates lepton number by two units
- It also protects from the existence of majoron.
- \bullet small μ can be viewed as a soft breaking term for lepton number.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Lagrangian
Scalar Potential

Particle Coi Masses

Constraints

Vacuum Stability and perturbativity

EWPD Observables

ggs-to-diphoton

Results and Conclusions

Particle content in type II seesaw

- Upon EWSB, there are seven physical massive scalar eigenstates denoted by $H^{\pm,\pm},\ H^{\pm},\ H^0,\ A^0,\ h^0.$
- Under the condition that $|\xi| \ll 1$ where $\xi \equiv v_{\Delta}/v_0$, the first five states are mainly from the triplet scalar and the last from the doublet scalar.
- For the neutral pseudoscalar and charged scalar parts,

$$\phi_I^0 = G^0 - 2\xi A^0$$
, $\phi^+ = G^+ + \sqrt{2}\xi H^+$
 $\Delta_I^0 = A^0 + 2\xi G^0$, $\Delta^+ = H^+ - \sqrt{2}\xi G^+$

• for the neutral scalar part,

$$\phi_R^0 = h^0 - a\xi H^0,
\Delta_R^0 = H^0 + a\xi h^0$$

• For $v_{\Delta} << v$, the mixing between doublet and triplet is very small.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Lagrangian
Scalar Potential
Particle Content

Masses

Constraints

acuum Stability an erturbativity

WPD Observables

iggs-to-diphotor

Results and Conclusions

Masses of scalars

The masses of the Higgs bosons are

$$M_{H^{\pm\pm}}^2 = M^2 + 2 \frac{\lambda_4 - \lambda_5}{g^2} M_W^2$$

$$\bullet \ M_{H^\pm}^2 = M_{H^{\pm\pm}}^2 + 2 \tfrac{\lambda_5}{g^2} M_W^2$$

$$\bullet \ M_{H^0,A^0}^2 = M_{H^\pm}^2 + 2 \frac{\lambda_5}{g^2} M_W^2.$$

The sign of the coupling $\lambda_5 \Rightarrow \mathsf{Two}$ mass hierarchies:

- ullet $M_{H^{\pm\pm}} > M_{H^{\pm}} > M_{H^0/A^0} \ \ {
 m for} \ \lambda_5 < 0;$
- $\bullet \ M_{H^{\pm\pm}} < M_{H^{\pm}} < M_{H^0/A^0} \ \text{for} \ \lambda_5 > 0.$

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw
Lagrangian
Scalar Potential
Particle Content

Masses

Constraint

Vacuum Stability and perturbativity

WPD Observable

ggs-to-diphoton

Results and Conclusions

4 D L 4 D L 4 E L 4 E L 5 00 C

Constraints on H^{++} mass

- LEP bound on H^{++} mass is order of 80 GeV.
- \bullet Tevatron excluded $m_{H^{++}}$ upto 150 GeV.
- Recently, CMS also performed with 4.9 fb⁻¹ luminosity a search for doubly charged Higgs decaying to a pair of leptons,

$$H^{++}H^{--} \to \ell^+\ell^+\ell^-\ell^-$$
 and $H^{++}H^- \to \ell^+\ell^+\ell^-\nu$

Benchmark point	Combined 95% CL limit [GeVns]	95% CL limit
		for pair production only [GeVns]
$\mathcal{B}(H^{++} \to e^+e^+) = 100\%$	444	382
$\mathcal{B}(H^{++} \to e^{+}\mu^{+}) = 100\%$	453	391
$\mathcal{B}(H^{++} \to e^+ \tau^+) = 100\%$	373	293
$\mathcal{B}(H^{++} \to \mu^+ \mu^+) = 100\%$	459	395
$\mathcal{B}(H^{++} \to \mu^+ \tau^+) = 100\%$	375	300
$B(H^{++} \rightarrow \tau^{+}\tau^{+}) = 100\%$	204	169
BP1	383	333
BP2	408	359
BP3	403	355
BP4	400	353

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

troduction

Type II seesaw Lagrangian Scalar Potentia

Constraints

Vacuum Stability and

EWPD Observables

iggs-to-diphotor

Results and Conclusions

Constraints on H^{++} mass

When H^{++} is the lightest.

P.S., E.J. Chun, JHEP 1208 (2012) 162

4 D L 4 D L 4 E L 4 E L 5 00 C

Gray region : $H^{++} \rightarrow \ell^+ \ell^+$ Brown region : $H^{++} \rightarrow W^+ W^+$ Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

IIILIOUUCLIOI

Type II seesaw Lagrangian Scalar Potential Particle Content

Constraints

Vacuum Stability and perturbativity

EWPD Observables

iggs-to-diphotor

Results and Conclusions

Constraints on H^{++} mass

When H^{++} is the heaviest.

P.S., E.J. Chun, JHEP 1208 (2012) 162

4 D L 4 D L 4 E L 4 E L 5 00 C

Gray region : $H^{++} \rightarrow \ell^+ \ell^+$ Brown region : $H^{++} \rightarrow W^+ W^+$

Purple region : $H^{++} \rightarrow \text{rest}$

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw Lagrangian Scalar Potentia

Constraints

Vacuum Stability and perturbativity

EWPD Observables

iggs-to-diphotor

Results and

Vacuum stability and perturbativity conditions

The vacuum stability conditions on the scalar couplings λ_i are as follows:

Arhrib, Benbrik et al PRD 84, 095005 (2010)

- $\lambda_1 > 0$,
- $\lambda_2 > 0$,
- $\lambda_2 + \frac{1}{2}\lambda_3 > 0$
- $\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1 \lambda_2} > 0$,
- $\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1(\lambda_2 + \frac{1}{2}\lambda_3)} > 0.$

Apart from these conditions, we will put the perturbativity condition:

$$|\lambda_i| < \sqrt{4\pi}$$

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw Lagrangian Scalar Potential Particle Content Masses

Vacuum Stability and perturbativity

EWPD Observables

liggs-to-diphoton

Results and Conclusions

RG evolution of couplings

The one-loop RG equations relevant for our analysis are as below: Schimidt, PRD 76, 073010 (2007)

$$\begin{array}{rcl} 16\pi^2\frac{d\lambda_1}{dt} & = & 24\lambda_1^2 + \lambda_1(-9g_2^2 - 3{g'}^2 + 12y_t^2) + \frac{3}{4}g_2^4 + \frac{3}{8}({g'}^2 + g_2^2)^2 \\ & - & 6y_t^4 + 3\lambda_4^2 + 2\lambda_5^2 \\ 16\pi^2\frac{d\lambda_2}{dt} & = & \lambda_2(-12{g'}^2 - 24g_2^2) + 6{g'}^4 + 9g_2^4 + 12{g'}^2g_2^2 + 28\lambda_2^2 \\ & + & 8\lambda_2\lambda_3 + 4\lambda_3^2 + 2\lambda_4^2 + 2\lambda_5^2 \\ 16\pi^2\frac{d\lambda_3}{dt} & = & \lambda_3(-12{g'}^2 - 24g_2^2) + 6g_2^4 - 24{g'}^2g_2^2 + 6\lambda_3^2 \\ & + & 24\lambda_2\lambda_3 - 4\lambda_5^2 \\ 16\pi^2\frac{d\lambda_4}{dt} & = & \lambda_4(-\frac{15}{2}{g'}^2 - \frac{33}{2}g_2^2) + \frac{9}{5}{g'}^4 + 6g_2^4 + \lambda_4(12\lambda_1 \\ & + & 16\lambda_2 + 4\lambda_3 + 4\lambda_4 + 6y_t^2) + 8\lambda_5^2 \\ 16\pi^2\frac{d\lambda_5}{dt} & = & \lambda_4(-\frac{15}{2}{g'}^2 - \frac{33}{2}g_2^2) + 6{g'}^2g_2^2 + \lambda_5(4\lambda_1 + 4\lambda_2 \\ & - & 4\lambda_3 + 8\lambda_4 + 6y_t^2), \end{array}$$

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

troduction

Type II seesaw
Lagrangian
Scalar Potential
Particle Content
Masses
Constraints

Vacuum Stability and perturbativity

EWPD Observables

liggs-to-diphoto

Results and Conclusions

4 D L 4 D L 4 E L 4 E L 5 00 C

RG evolution of couplings and vacuum stability conditions

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

IIILIOUUCLIOII

Type II seesa

Lagrangian Scalar Potentia Particle Conter Masses

Constraints

Vacuum Stability and perturbativity

EVVPD Observables

ggs-to-diphoton

Results and Conclusions

Updated EWPD Observables

 \bullet We use the most recent fit results for the allowed regions of the $S,\ T$ and U

Espinosa et al, arXiv:1207.1717 [hep-ph]

$$\begin{split} S_{\text{best fit}} &= 0.00 \,, & \sigma_S &= 0.10 \,, \\ T_{\text{best fit}} &= 0.02 \,, & \sigma_T &= 0.11 \,, \\ U_{\text{best fit}} &= 0.03 \,, & \sigma_U &= 0.09 \,, \end{split}$$

• The correlation coefficients are given by

$$\rho_{ST} = 0.89, \quad \rho_{SU} = -0.55, \quad \rho_{TU} = -0.80$$

ullet The contour allowed by the EWPD at a given confidence level CL is then determined by

$$\begin{pmatrix} \Delta S \\ \Delta T \\ \Delta U \end{pmatrix}^T \begin{pmatrix} \sigma_S \sigma_S & \sigma_S \sigma_T \rho_{ST} & \sigma_S \sigma_U \rho_{SU} \\ \sigma_S \sigma_T \rho_{ST} & \sigma_T \sigma_T & \sigma_T \sigma_U \rho_{TU} \\ \sigma_U \sigma_S \rho_{US} & \sigma_U \sigma_T \rho_{TU} & \sigma_U \sigma_U \end{pmatrix}^{-1} \begin{pmatrix} \Delta S \\ \Delta T \\ \Delta U \end{pmatrix}$$

$$= -2 \ln(1 - CL) .$$

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Lagrangian
Scalar Potential
Particle Content
Masses

Vacuum Stability and

EWPD Observables

ggs-to-diphoton

Results and Conclusions

EWPD Observables

 \bullet EWPD allows mass splittings \lesssim 40 GeV

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

illioddction

Lagrangian
Scalar Poten
Particle Con

lasses Constraints

Vacuum Stability and perturbativity

EWPD Observables

gs-to-diphoton

Results and

Higgs-to-dipoton in type II seesaw

- ullet $H o \gamma \gamma$ decays occurs at 1-loop level through
 - SM gauge bosons
 - the SM fermions
 - the new charged states
- Summing up all the contributions, one gets the following Higgs-to-diphoton rate

$$\Gamma(h \to \gamma \gamma) = \frac{G_F \alpha^2 m_h^3}{128\sqrt{2}\pi^3} \left| \sum_f N_c Q_f^2 g_{ff}^h A_{1/2}^h(x_f) + g_{WW}^h A_1^h(x_W) + g_{H^+H^-}^h A_0^h(x_{H^+}) + 4g_{H^{++H^-}}^h A_0^h(x_{H^+}) \right|^2$$

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop Based on :

arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw
Lagrangian
Scalar Potential
Particle Content
Masses

Vacuum Stability and perturbativity

EWPD Obse

Higgs-to-diphoton

Results and Conclusions

Higgs couplings

• The Higgs triplet couplings are

$$\begin{array}{l} \bullet \ g_{H^+H^+}^h = \frac{\lambda_4}{2} \frac{v_0^2}{M_{H^+}^2}, \\ \bullet \ g_{H^{++}H^{++}}^h = \frac{\lambda_4 - \lambda_5}{2} \frac{v_0^2}{M_{H^+}^2}, \end{array}$$

- SM contribution amounts to about -6.5 in the amplitude, \Rightarrow Thus, negative values of λ_4 and $\lambda_4 \lambda_5$ make a constructive interference to enhance the diphoton rate.
- \bullet Vacuum stability condition strongly disfavors negative λ_4 and $\lambda_4-\lambda_5$
 - ⇒Thus, allows more parameter region leading to a destructive interference to reduce the diphoton rate.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw Lagrangian Scalar Potential Particle Content Masses

Vacuum Stability and

EWPD Observables

Higgs-to-diphoton

Results and Conclusions

Higgs-to-diphoton

We define $R_{\gamma\gamma}=\Gamma(h\to\gamma\gamma)/\Gamma(h\to\gamma\gamma)|_{SM}$

Figure: $R_{\gamma\gamma}$ contours in the λ_4 – λ_5 plane.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

IIILIOUUCLIOII

Type II seesa

Lagrangiar Scalar Pot Particle Co Masses

Constraints

Vacuum Stability a perturbativity

EWPD Obs

Higgs-to-diphoton

Results and Conclusions

Allowed ranges of scalar couplings

	$10^5~{ m GeV}$	$10^{10}~{ m GeV}$	$10^{19}~{\rm GeV}$
λ_2	(0,1)	(0, 0.5)	(0, 0.25)
λ_3	(-2.0, 2.4)	(-1.0, 1.25)	(-0.55, 0.62)
λ_4	(-0.5, 1.7)	(-0.1, 0.9)	(0, 0.5)
λ_5	(-1.5, 1.5)	(-0.7, 0.7)	(-0.4, 0.4)

- ullet EWPD puts stringent constraints on λ_5 couplings.
- ullet The EWPD allow the following ranges of λ_5

$$\lambda_5 = (-0.1, 0.4), \quad (-0.2, 0.6), \quad (-0.35, 0.7)$$

for $M_{H^{++}}=$ 100, 150, and 200 GeV, respectively.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Lagrangian Scalar Potentia Particle Conten Masses

Vacuum Stability and

WPD Observables

ggs-to-diphoton

Results and Conclusions

Results for cut-off scale 10^5 GeV

Figure: Allowed parameter space in the λ_4 - λ_5 plane with different values of λ_2 and λ_3 for the doubly charged Higgs mass, $M_{H^{++}}=100$ GeV (left), 150 GeV (middle) and 200 GeV (right).

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Lagrangian
Scalar Potentia
Particle Conter

acuum Stability a

EWPD Observables

iggs-to-diphoton

Results and Conclusions

Results for cut-off scale 10^5 GeV

Figure: Allowed parameter space in the λ_4 - λ_5 plane with different values of λ_2 and λ_3 for the doubly charged Higgs mass, $M_{H^{++}}=100$ GeV.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

itroduction

Lagrangian
Scalar Potentia
Particle Conte

Vacuum Stah

perturbativity

WPD Observables

iggs-to-diphotor

Results and Conclusions

Results for cut-off scale 10^{10} GeV

Figure: Allowed parameter space in the λ_4 - λ_5 plane with different values of λ_2 and λ_3 for the doubly charged Higgs mass, $M_{H^{++}}=100$ GeV (left), 150 GeV (middle) and 200 GeV (right).

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Type II seesaw Lagrangian Scalar Potentia Particle Contential

/acuum Stabil

perturbativity

LVVI D Observables

ggs-to-diphoton

Results and Conclusions

Results for cut-off scale 10^{10} GeV

Figure: Allowed parameter space in the λ_4 - λ_5 plane with different values of λ_2 and λ_3 for the doubly charged Higgs mass, $M_{H^{++}}=100$ GeV.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

introduction

Lagrangian
Scalar Potentia
Particle Conter

Constraints

Vacuum Stability and perturbativity

WPD Observables

iggs-to-diphotor

Results and Conclusions

Results for cut-off scale 10^{19} GeV

Figure: Allowed parameter space in the λ_4 - λ_5 plane with different values of λ_2 and λ_3 for the doubly charged Higgs mass, $M_{H^{++}}=100$ GeV (left), 150 GeV (middle) and 200 GeV (right).

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

ntroduction

Lagrangian
Scalar Potentia
Particle Conte

Constraints

Vacuum Stability and perturbativity

WPD Observa

iggs-to-diphotor

Results and Conclusions

Results for cut-off scale 10^{19} GeV

Figure: Allowed parameter space in the $\lambda_4-\lambda_5$ plane with different values of λ_2 and λ_3 for the doubly charged Higgs mass, $M_{H^{++}}=100$ GeV.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

IILIOUUCLIOII

Lagrangian
Scalar Potentia
Particle Conte

Constraints

Vacuum Stability and perturbativity

WPD Observables

iggs-to-diphotor

Results and Conclusions

Conclusions

- Neutrino mass genertaion may require a new particle.
- Higgs triplet may be one candidate.
- We study parameter space in the scalar couplings allowed by the vacuum stability, perturbativity and EWPD.
- We then study the possible deviation in Higgs-to-diphoton decay within the allowed parameter space
- We find that about 100%-50% enhancement is possible within a restricted range of parameter space.

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

troduction

ype II seesaw
Lagrangian
Scalar Potential
Particle Content
Masses

Vacuum Stability and perturbativity

WPD Observable

iggs-to-diphotor

Results and Conclusions

4 D L 4 D L 4 E L 4 E L 5 00 C

Conclusions

- Neutrino mass genertaion may require a new particle.
- Higgs triplet may be one candidate.
- We study parameter space in the scalar couplings allowed by the vacuum stability, perturbativity and EWPD.
- We then study the possible deviation in Higgs-to-diphoton decay within the allowed parameter space
- We find that about 100%-50% enhancement is possible within a restricted range of parameter space.

THANKS

Higgs-electroweak precision, vacuum stability and perturbativity

Pankaj Sharma

Korea Institute for Advanced Study

> KIAS Pheno Workshop

Based on : arxiv:1209.1303

In Collaboration with : Prof. Eung Jin Chun and Dr. Hyun Min Lee

troduction

ype II seesaw
Lagrangian
Scalar Potential
Particle Content
Masses

Vacuum Stability and

WPD Observa

iggs-to-diphotor

Results and Conclusions