Lattice Calculation of Kaon Mixing Matrix Elements from BSM Operators

Boram Yoon

SWME collaboration

Seoul National University

The 2nd KIAS Phenomenology Workshop, Sep. 10 - 14, 2012, KIAS

Outline

(1) Motivation \& Background

(2) Lattice QCD
(3) Data Analysis
(4) Results
(5) Summary

Motivation \& Background

Neutral Kaon System

- Flavor eigenstates

$$
K^{0}=(\bar{s} d), \quad \bar{K}^{0}=(s \bar{d})
$$

- CP eigenstates

$$
K_{ \pm}=\left(K^{0} \pm \bar{K}^{0}\right) / \sqrt{2}, \quad C P\left|K_{ \pm}\right\rangle= \pm\left|K_{ \pm}\right\rangle
$$

- Hamiltonian eigenstates

$$
K_{S}=\frac{K_{+}+\bar{\epsilon} K_{-}}{\sqrt{1+|\bar{\epsilon}|^{2}}}, \quad K_{L}=\frac{K_{-}+\bar{\epsilon} K_{+}}{\sqrt{1+|\bar{\epsilon}|^{2}}}, \quad|\bar{\epsilon}| \simeq O\left(10^{-3}\right)
$$

- Preferable decays to pion states

$$
\begin{aligned}
& K_{S} \rightarrow 2 \pi\left(\text { via } K_{+}, C P \text { even }\right) \\
& K_{L} \rightarrow 3 \pi\left(\text { via } K_{-}, C P \text { odd }\right)
\end{aligned}
$$

Direct / Indirect CP Violation

$$
K_{L} \sim K_{-}+\bar{\epsilon} K_{+}
$$

Indirect CPV : ϵ

Direct CPV : ϵ^{\prime}

$\pi \pi$

- CP violating $K_{L} \rightarrow \pi \pi$ can occur in two ways
* $\boldsymbol{K}_{-}(C P$ odd $) \rightarrow \boldsymbol{\pi}$ (CP even) : Direct CPV

$$
\epsilon^{\prime}=\frac{1}{\sqrt{2}}\left(\frac{A\left[K_{L} \rightarrow(\pi \pi)_{2}\right]}{A\left[K_{S} \rightarrow(\pi \pi)_{2}\right]}-\epsilon \frac{A\left[K_{S} \rightarrow(\pi \pi)_{2}\right]}{A\left[K_{S} \rightarrow(\pi \pi)_{0}\right]}\right)
$$

$\boldsymbol{*} \overline{\boldsymbol{\epsilon}} \boldsymbol{K}_{+}$(CP even) $\rightarrow \boldsymbol{\pi} \boldsymbol{\pi}$ (CP even) : Indirect CPV

$$
\epsilon=\frac{A\left[K_{L} \rightarrow(\pi \pi)_{0}\right]}{A\left[K_{S} \rightarrow(\pi \pi)_{0}\right]}
$$

K_{L} can have small CP even component via $K^{0}-\bar{K}^{0}$ mixing

$K^{0}-\bar{K}^{0}$ Mixing in the SM

- Arises from the $\Delta S=2, s \bar{d} \rightarrow \bar{s} d$ FCNC
- Responsible for indirect CPV \& $\Delta \mathrm{M}_{\mathrm{K}} \equiv M_{K_{L}}-M_{K_{S}}$
- Dominated by the following box diagrams

$K^{0}-\bar{K}^{0}$ Mixing in the SM

- Integrating out W, the box diagram can be replaced by the local, four-quark operator

$$
\begin{gathered}
H_{\mathrm{eff}}^{\Delta \mathrm{S}=2}=\frac{G_{F}^{2} M_{W}^{2}}{16 \pi^{2}} F^{0} Q_{1}+\text { h.c. } \\
Q_{1}=\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]
\end{gathered}
$$

Kaon Bag Parameter - $\boldsymbol{B}_{\boldsymbol{K}}$

- In the SM, indirect CPV can be predicted as follows

$$
\epsilon_{K} \sim \text { known factors } \times V_{C K M} \times \hat{B}_{K}
$$

- \hat{B}_{K} is the RG invariant form of B_{K}

$$
\begin{aligned}
& B_{K}=\frac{\left\langle\bar{K}^{0}\right|\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left|K^{0}\right\rangle}{\frac{8}{3}\left\langle\bar{K}^{0}\right| \bar{s} \gamma_{\mu} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{\mu} \gamma_{5} d\left|K^{0}\right\rangle} \\
& \hat{B}_{K}=C(\mu) B_{K}(\mu)
\end{aligned}
$$

- \hat{B}_{K} contains all the non-perturbative QCD contributions for ϵ_{K},
can be calculated from lattice simulations

Experiment vs SM Prediction on $\boldsymbol{\epsilon}_{\boldsymbol{K}}$

(Y. Jang \& W. Lee, 2012)

- There are two methods(exclusive, inclusive) to determine $V_{c b}$, whose results do not agree each other
- SM prediction of ϵ_{K} deviates from the experimental value about 3σ for exclusive $V_{c b}$

BSM Contribution to $K^{0}-\bar{K}^{\mathbf{0}}$ Mixing

- In the Standard Model, only the "left-left" form contribute to the $\boldsymbol{K}^{\mathbf{0}}-\overline{\boldsymbol{K}}^{\mathbf{0}}$ mixing box diagram

$$
\left\langle\bar{K}^{0}\right|\left[\overline{\mathbf{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left[\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) d\right]\left|K^{0}\right\rangle
$$

- Considering BSM physics, integrating out heavy particles (e.g. squarks \& gnuinos in supersymmetric models) leads to new operators w/ Dirac structures other than "left-left"

BSM Operators

- Considering BSM, generic effective Hamiltonian is

$$
\begin{aligned}
& Q_{2}=\left[\bar{s}^{a}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b}\left(1-\gamma_{5}\right) d^{b}\right] \\
& H_{\mathrm{eff}}^{\Delta S=2}=\sum_{i=1}^{5} C_{i} Q_{i} \\
& Q_{3}=\left[\bar{s}^{a} \sigma_{\mu v}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) d^{b}\right] \\
& Q_{4}=\left[\bar{s}^{a}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b}\left(1+\gamma_{5}\right) d^{b}\right] \\
& Q_{5}=\left[\bar{s}^{a} \gamma_{\mu}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b} \gamma_{\mu}\left(1+\gamma_{5}\right) d^{b}\right]
\end{aligned}
$$

- New $\Delta S=2$ four-fermion operators give additional contributions to Kaon mixing elements
- Since they are constrained by experimental results, calculating corresponding hadronic matrix elements

$$
\left\langle\bar{K}^{0}\right| \bar{Q}_{i}\left|K^{0}\right\rangle
$$

can impose strong constraints on BSM physics

BSM B-parameters

- B-parameters

$$
\begin{aligned}
& Q_{2}=\left[\bar{s}^{a}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b}\left(1-\gamma_{5}\right) d^{b}\right] \\
& Q_{3}=\left[\bar{s}^{a} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) d^{b}\right] \\
& Q_{4}=\left[\bar{s}^{a}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b}\left(1+\gamma_{5}\right) d^{b}\right] \\
& Q_{5}=\left[\bar{s}^{a} \gamma_{\mu}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b} \gamma_{\mu}\left(1+\gamma_{5}\right) d^{b}\right] \\
& \left(N_{2}, N_{3}, N_{4}, N_{5}\right)=(5 / 3,4,-2,4 / 3)
\end{aligned}
$$

- In lattice calculation, forming dimensionless ratio reduces statistical and systematic error
- Chiral perturbation expression is simpler
- Denominator dose not vanish in chiral limit (unlike B_{K})

$$
\left\langle\bar{K}^{0}\right| \bar{s} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{5} d\left|K^{0}\right\rangle=-\left(\frac{f_{K} M_{K}^{2}}{m_{d}+m_{s}}\right)^{2}
$$

Lattice QCD

Lattice QCD

- Non-perturbative approach to solving QCD
- Formulation of QCD on discretized Euclidean space-time
- Hypercubic lattice
- Lattice spacing "a"
- Quark fields placed on sites
- Gauge fields on the links
 between sites: U_{μ}

Lattice QCD

- Use numerical method (Montecarlo simulation) to calculate integral

$$
\langle\mathcal{O}\rangle=\int \mathcal{D} U_{\mu} \mathcal{D} \Psi \mathcal{D} \bar{\Psi} \mathcal{O} e^{-S}
$$

- "Lattice action" is needed to simulate in discretized space-time

$$
S[U, \bar{\Psi}, \Psi]=S_{G}[U]+S_{F}[U, \bar{\Psi}, \Psi]
$$

- We use "Staggered fermion" for the lattice fermion
- The fastest lattice fermion action
- Suffered from "taste symmetry breaking" but manageable

Lattice QCD

- Expectation value

$$
\begin{aligned}
&\langle\mathcal{O}(U, q, \bar{q})\rangle=\int \mathcal{D} U \mathcal{D} q \mathcal{D} \bar{q} \mathcal{O}(U, q, \bar{q}) \\
& \times e^{-S_{G}-\sum_{f} \bar{q}_{f}\left(D[U]+m_{f}\right) q_{f}} \\
&=\int \mathcal{D} U \mathcal{O}(U,\left.\left(D[U]+m_{f}\right)^{-1}\right) \\
& \times e^{-S_{G}[U]} \prod_{f} \operatorname{det}\left(D[U]+m_{f}\right)
\end{aligned}
$$

- Integrating over the q and \bar{q} gives determinant of Dirac operator and quark propagators, $\left(D[U]+m_{f}\right)^{-1}$
- Generate random samples (gauge links) according to the probability distribution allows us to integrate using Montecarlo method

Lattice QCD

- Expectation value

$$
\begin{aligned}
\langle\mathcal{O}(U, q, \bar{q})\rangle=\int \mathcal{D} U \mathcal{D} q \mathcal{D} \bar{q} \mathcal{O}(U, q, \bar{q}) \\
\times e^{-S_{G}-\sum_{f} \bar{q}_{f}\left(D[U]+m_{f}\right) q_{f}} \\
=\int \mathcal{D} U \mathcal{O}\left(U,\left(D[U]+m_{f}\right)^{-1}\right) \\
\times \cdots-\cdots-\cdots-\cdots-\cdots \\
e^{-S_{G}[U]} \prod_{f} \operatorname{det}\left(D[U]+m_{f}\right)
\end{aligned}
$$

$$
\langle f(X)\rangle=\int d x f(x) p_{X}(x)
$$

- Integrating over the q and \bar{q} gives determinant of Dirac operator and quark propagators, $\left(D[U]+m_{f}\right)^{-1}$
- Generate random samples (gauge links) according to the probability distribution allows us to integrate using Montecarlo method

Data Analysis

Physical Results from Unphysical Simulations

- Chiral extrapolation
- In the lattice simulation, the smaller quark mass requires the exponentially larger computational cost
$>$ Use light quark masses larger than physical d-quark mass and extrapolate to the physical down quark mass using (staggered) chiral perturbation theory
- Tuning the strange quark mass to precise physical quark mass is not practical
>Extrapolate to physical strange quark mass
- Continuum extrapolation
- We use finite lattice spacing ($a \geq 0.45 \mathrm{fm}$)
\Rightarrow Extrapolate to $a=0$ to obtain continuum results

Data Analysis Strategy

1. Calculate raw data

Calculate BSM B-parameters for different quark mass combinations, $\left(m_{u}=m_{d}, m_{s}\right)$

2. Chiral fitting

X-fit : Fix strange quark mass and extrapolate to the light quark mass m_{l} to give physical down quark mass
Y-fit : Extrapolate m_{s} to give physical strange quark mass
3. RG evolution

Obtain results at 2 GeV and 3 GeV from 1/a
4. Continuum extrapolation

Perform [1-3] for different lattices and extrapolate to $a=0$

Analysis Data

$a(\mathrm{fm})$	$1 / \mathrm{a}(\mathrm{GeV})$	$a m_{l} / a m_{s}$	geometry	ens \times meas
0.12	1.662	$0.01 / 0.05$	$20^{3} \times 64$	671×9
0.09	2.348	$0.0062 / 0.031$	$28^{3} \times 96$	995×9
0.06	3.362	$0.0036 / 0.018$	$48^{3} \times 144$	749×9
0.045	4.517	$0.0028 / 0.014$	$64^{3} \times 192$	747×1

- MILC 2+1 AsqTad lattice
- Use u, d, s dynamical quarks
$-m_{u}=m_{d} \neq m_{s}$
- Four different lattices

Operator Matching

$$
\begin{gathered}
\mathcal{O}_{i}^{\mathrm{Cont}^{\prime}}=\sum_{j \in(A)} z_{i j} \mathcal{O}_{j}^{\mathrm{Lat}}-\frac{g^{2}}{(4 \pi)^{2}} \sum_{k \in(B)} d_{i k}^{\mathrm{Lat}} \mathcal{O}_{k}^{\mathrm{Lat}} \\
z_{i j}=b_{i j}+\frac{g^{2}}{(4 \pi)^{2}}\left(-\gamma_{i j} \log (\mu a)+d_{i j}^{\mathrm{Cont}}-d_{i j}^{\mathrm{Lat}}-C_{F} I_{M F} T_{i j}\right)
\end{gathered}
$$

- To find continuum (NDR with $\overline{\mathrm{MS}}$) results from those regularized on the lattice, "operator matching" is needed
- $z_{i j}$ are the one-loop matching factors (J. Kim, W. Lee and S. Sharpe, PhysRevD.83.094503)
- We use matching scale $\mu=1 / a$

Calculation of $\boldsymbol{B}_{\boldsymbol{j}}$

$$
B_{2}=\frac{\left\langle\bar{K}^{0}\right|\left[\bar{s}^{a}\left(1-\gamma_{5}\right) d^{a}\right]\left[\bar{s}^{b}\left(1-\gamma_{5}\right) d^{b}\right]\left|K^{0}\right\rangle}{(5 / 3)\left\langle\bar{K}^{0}\right| \bar{s} \gamma_{5} d|0\rangle\langle 0| \bar{s} \gamma_{5} d\left|K^{0}\right\rangle}
$$

Chiral Fitting

- Fitting functions for X-fit (J. Bailey, et al., Phys. Rev. D85, (2012), 074507)

$$
B_{j}\left(X_{P}\right)=c_{1} F_{0}(j)+c_{2} \frac{X_{P}}{\Lambda^{2}}+c_{3} \frac{X_{P}^{2}}{\Lambda^{4}} \quad(\mathrm{~S} \chi \mathrm{PT}, \mathrm{NNLO})
$$

where X_{P} is the squared mass of pion, $\Lambda=1 \mathrm{GeV}$,

$$
\begin{aligned}
& F_{0}(j)=1 \pm \frac{1}{32 \pi^{2} f^{2}}\left\{l\left(X_{I}\right)+\left(L_{I}-X_{I}\right) \tilde{l}\left(X_{I}\right)-2\left\langle l\left(X_{B}\right)\right\rangle\right\} \\
& \quad(+ \text { for } j=2,3, K, \quad-\text { for } j=4,5)
\end{aligned}
$$

- Golden combinations
- Combinations that cancel the leading chiral logarithms

$$
\begin{gathered}
\left(\frac{B_{2}}{B_{3}}, \quad \frac{B_{4}}{B_{5}}, \quad B_{2} \cdot B_{4},\right. \\
\left.R\left(X_{P}\right)=c_{1}+c_{2} \frac{X_{P}}{B_{K}}\right) \\
\Lambda^{2}
\end{gathered} c_{3} \frac{X_{P}^{2}}{\Lambda^{4}} \quad(\mathrm{NNLO}), ~ \$
$$

Chiral Fitting : X-fit

Chiral Fitting : Y-fit

RG Evolution

- Now we have B-parameter values at $\mu=1 / \mathrm{a}$
- To perform continuum extrapolation with different lattices, we need B-param. values at a common scale
- RG running from $\mu_{a}(1 / \mathrm{a})$ to $\mu_{b}(2 \mathrm{GeV}, 3 \mathrm{GeV})$

$$
B_{j}\left(\mu_{b}\right)=\sum_{k} \frac{1}{N_{j}} W^{R}\left(\mu_{b}, \mu_{a}\right)_{j k} N_{k} B_{k}\left(\mu_{a}\right)
$$

- Evolution kernels satisfy the RG equation

$$
\begin{aligned}
& \frac{d W\left(\mu_{b}, \mu_{a}\right)}{d \ln \mu_{b}}=-\gamma\left(\mu_{b}\right) W\left(\mu_{b}, \mu_{a}\right), \quad W\left(\mu_{a}, \mu_{b}\right)=1 \\
& \gamma(\mu)=\frac{\alpha(\mu)}{4 \pi} \gamma^{(0)}+\left(\frac{\alpha(\mu)}{4 \pi}\right)^{2} \gamma^{(1)}+\cdots
\end{aligned}
$$

Continuum Extrapolation

- Formula
- Bayesian fit

$$
\begin{aligned}
& B_{j}\left(a^{2}\right)=c_{1}+c_{2}^{b}(a \Lambda)^{2}+c_{3}^{b}(a \Lambda)^{2} \alpha_{S}+c_{4}^{b} \alpha_{S}^{2}+c_{5}^{b}(a \Lambda)^{4} \\
& \Lambda=300 \mathrm{GeV}, c_{i}^{b} \text { are constrained by } c_{i}^{b} \approx 0 \pm 2
\end{aligned}
$$

- Linear fit

$$
B_{j}\left(a^{2}\right)=c_{1}+c_{2} a^{2}
$$

- Results
- Final results are obtained using linear fit without coarse lattice ($a \approx 0.12 \mathrm{fm}$)

Continuum Extrapolation : Bayesian fit

Continuum Extrapolation : Linear fit

Results

BSM B-parameters at 2 GeV and 3 GeV

2 GeV	Coarse	Fine	Superfine	Ultrafine	Continuum
B_{K}	$0.5651(46)$	$0.5296(39)$	$0.5351(35)$	$0.5320(77)$	$0.5379(65)$
B_{2}	$0.5415(08)$	$0.5654(13)$	$0.5955(16)$	$0.6046(28)$	$0.6219(26)$
B_{3}	$0.3699(06)$	$0.4158(09)$	$0.4590(13)$	$0.4801(21)$	$0.5019(20)$
B_{4}	$1.0944(20)$	$1.1228(25)$	$1.0927(33)$	$1.0949(53)$	$1.0736(51)$
B_{5}	$0.9260(17)$	$0.9356(22)$	$0.8890(27)$	$0.8725(44)$	$0.8467(43)$

3 GeV	Coarse	Fine	Superfine	Ultrafine	Continuum
B_{K}	$0.5459(44)$	$0.5115(38)$	$0.5169(34)$	$0.5139(75)$	$0.5195(63)$
B_{2}	$0.4798(07)$	$0.5009(11)$	$0.5275(15)$	$0.5355(25)$	$0.5509(23)$
B_{3}	$0.3169(05)$	$0.3511(08)$	$0.3843(10)$	$0.3998(17)$	$0.4167(16)$
B_{4}	$1.0456(19)$	$1.0726(24)$	$1.0438(32)$	$1.0457(51)$	$1.0255(49)$
B_{5}	$0.9124(17)$	$0.9250(21)$	$0.8834(27)$	$0.8711(43)$	$0.8473(42)$

Preliminary!

Summary

Summary

- BSM physics leads to new $\Delta S=2$ four-fermion operators that contribute to $K^{0}-\bar{K}^{0}$ mixing
- Calculating corresponding hadronic matrix elements, $\left\langle\bar{K}^{0}\right| Q_{i}\left|K^{0}\right\rangle_{\text {, can }}$ impose strong constraints on BSM physics
- We calculate BSM B-parameters on the lattice and present preliminary results
- We are working on estimating systematic errors

