

Boram Yoon

SWME collaboration
Seoul National University

The 2nd KIAS Phenomenology Workshop, Sep. 10 – 14, 2012, KIAS

Outline

- 1 Motivation & Background
- ② Lattice QCD
- ③ Data Analysis
- **4** Results
- **5** Summary

Motivation & Background

Neutral Kaon System

Flavor eigenstates

$$K^0 = (\bar{s}d), \qquad \bar{K}^0 = (s\bar{d})$$

CP eigenstates

$$K_{\pm} = (K^0 \pm \overline{K}^0)/\sqrt{2}, \qquad CP |K_{\pm}\rangle = \pm |K_{\pm}\rangle$$

Hamiltonian eigenstates

$$K_S = \frac{K_+ + \bar{\epsilon} K_-}{\sqrt{1 + |\bar{\epsilon}|^2}}, \qquad K_L = \frac{K_- + \bar{\epsilon} K_+}{\sqrt{1 + |\bar{\epsilon}|^2}}, \qquad |\bar{\epsilon}| \simeq O(10^{-3})$$

Preferable decays to pion states

$$K_S \rightarrow 2\pi \text{ (via } K_+, CP \text{ even)}$$

$$K_L \rightarrow 3\pi \text{ (via } K_-, CP \text{ odd)}$$

Direct / Indirect CP Violation

- **CP violating** $K_L \to \pi\pi$ can occur in two ways

 - ❖ $\bar{\epsilon}K_+$ (CP even) → $\pi\pi$ (CP even) : Indirect CPV $\epsilon = \frac{A[K_L \to (\pi\pi)_0]}{A[K_S \to (\pi\pi)_0]}$

 K_L can have small CP even component via $K^0 - \overline{K}^0$ mixing

$K^0 - \overline{K}^0$ Mixing in the SM

- Arises from the $\Delta S=2$, $s\bar{d}\to\bar{s}d$ FCNC
- Responsible for indirect CPV & $\Delta M_K \equiv M_{K_L} M_{K_S}$
- Dominated by the following box diagrams

$K^0 - \overline{K}^0$ Mixing in the SM

 Integrating out W, the box diagram can be replaced by the local, four-quark operator

$$H_{\text{eff}}^{\Delta S=2} = \frac{G_F^2 M_W^2}{16\pi^2} F^0 Q_1 + h.c.,$$

$$Q_1 = \left[\overline{s}\gamma_{\mu}(1-\gamma_5)d\right]\left[\overline{s}\gamma_{\mu}(1-\gamma_5)d\right]$$

Kaon Bag Parameter - B_K

- In the SM, **indirect CPV** can be predicted as follows $\epsilon_K \sim \text{known factors} \times V_{CKM} \times \hat{B}_K$
- \hat{B}_K is the RG invariant form of B_K

$$B_K = \frac{\langle \overline{K}^0 | [\overline{s}\gamma_{\mu}(1 - \gamma_5)d] [\overline{s}\gamma_{\mu}(1 - \gamma_5)d] | K^0 \rangle}{\frac{8}{3} \langle \overline{K}^0 | \overline{s}\gamma_{\mu}\gamma_5d | 0 \rangle \langle 0 | \overline{s}\gamma_{\mu}\gamma_5d | K^0 \rangle}$$

$$\widehat{B}_K = C(\mu)B_K(\mu)$$

• \hat{B}_K contains all the non-perturbative QCD contributions for ϵ_K , can be calculated from lattice simulations

Experiment vs SM Prediction on ϵ_K

(Y. Jang & W. Lee, 2012)

- There are two methods(exclusive, inclusive) to determine V_{cb} , whose results do not agree each other
- SM prediction of ϵ_K deviates from the experimental value about 3σ for exclusive V_{ch}

BSM Contribution to $K^0 - \overline{K}^0$ Mixing

• In the Standard Model, only the "left-left" form contribute to the $K^0-\overline{K}^0$ mixing box diagram

$$\langle \overline{K}^0 | [\overline{s}\gamma_{\mu}(1-\gamma_5)d] [\overline{s}\gamma_{\mu}(1-\gamma_5)d] | K^0 \rangle$$

 Considering BSM physics, integrating out heavy particles (e.g. squarks & gnuinos in supersymmetric models) leads to new operators w/ Dirac structures other than

10/34

BSM Operators

Considering BSM, generic effective Hamiltonian is

$$Q_{2} = [\bar{s}^{a}(1 - \gamma_{5})d^{a}][\bar{s}^{b}(1 - \gamma_{5})d^{b}]$$

$$H_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^{5} C_{i} Q_{i}$$

$$Q_{3} = [\bar{s}^{a}\sigma_{\mu\nu}(1 - \gamma_{5})d^{a}][\bar{s}^{b}\sigma_{\mu\nu}(1 - \gamma_{5})d^{b}]$$

$$Q_{4} = [\bar{s}^{a}(1 - \gamma_{5})d^{a}][\bar{s}^{b}(1 + \gamma_{5})d^{b}]$$

$$Q_{5} = [\bar{s}^{a}\gamma_{\mu}(1 - \gamma_{5})d^{a}][\bar{s}^{b}\gamma_{\mu}(1 + \gamma_{5})d^{b}]$$

- New $\Delta S = 2$ four-fermion operators give **additional contributions to Kaon mixing** elements
- Since they are constrained by experimental results, calculating corresponding hadronic matrix elements $\langle \overline{K}^0 | Q_i | K^0 \rangle$

can impose strong constraints on BSM physics

BSM B-parameters

B-parameters

$$B_{i} = \frac{\langle \overline{K}^{0} | Q_{i} | K^{0} \rangle}{N_{i} \langle \overline{K}^{0} | \overline{s} \gamma_{5} d | 0 \rangle \langle 0 | \overline{s} \gamma_{5} d | K^{0} \rangle}$$

$$Q_{3} = [s^{a} \sigma_{\mu\nu} (1 - \gamma_{5}) d^{a}] [s^{b} \sigma_{\mu\nu} (1 - \gamma_{5}) d^{b}]$$

$$Q_{4} = [\overline{s}^{a} (1 - \gamma_{5}) d^{a}] [\overline{s}^{b} (1 + \gamma_{5}) d^{b}]$$

$$Q_{5} = [\overline{s}^{a} \gamma_{5} (1 - \gamma_{5}) d^{a}] [\overline{s}^{b} \gamma_{5} (1 + \gamma_{5}) d^{b}]$$

$$Q_{7} = [\overline{s}^{a} \gamma_{5} (1 - \gamma_{5}) d^{a}] [\overline{s}^{b} \gamma_{5} (1 + \gamma_{5}) d^{b}]$$

$$Q_{2} = [\bar{s}^{a}(1 - \gamma_{5})d^{a}][\bar{s}^{b}(1 - \gamma_{5})d^{b}]$$

$$Q_{3} = [\bar{s}^{a}\sigma_{\mu\nu}(1 - \gamma_{5})d^{a}][\bar{s}^{b}\sigma_{\mu\nu}(1 - \gamma_{5})d^{b}]$$

$$Q_{4} = [\bar{s}^{a}(1 - \gamma_{5})d^{a}][\bar{s}^{b}(1 + \gamma_{5})d^{b}]$$

$$Q_{5} = [\bar{s}^{a}\gamma_{\mu}(1 - \gamma_{5})d^{a}][\bar{s}^{b}\gamma_{\mu}(1 + \gamma_{5})d^{b}]$$

$$(N_{2}, N_{3}, N_{4}, N_{5}) = (5/3, 4, -2, 4/3)$$

- In lattice calculation, forming dimensionless ratio
 reduces statistical and systematic error
- Chiral perturbation expression is simpler
- Denominator dose not vanish in chiral limit (unlike B_K)

$$\langle \overline{K}^0 | \overline{s} \gamma_5 d | 0 \rangle \langle 0 | \overline{s} \gamma_5 d | K^0 \rangle = -\left(\frac{f_K M_K^2}{m_d + m_s}\right)^2$$

- Non-perturbative approach to solving QCD
- Formulation of QCD on discretized Euclidean space-time
 - Hypercubic lattice
 - Lattice spacing "a"
 - Quark fields placed on sites
 - Gauge fields on the links between sites : U_{μ}

 Use numerical method (Montecarlo simulation) to calculate integral

$$\langle \mathcal{O} \rangle = \int \mathcal{D} U_{\mu} \mathcal{D} \Psi \mathcal{D} \bar{\Psi} \ \mathcal{O} e^{-S}$$

"Lattice action" is needed to simulate in discretized space-time

$$S[U, \bar{\Psi}, \Psi] = S_G[U] + S_F[U, \bar{\Psi}, \Psi]$$

- We use "Staggered fermion" for the lattice fermion
 - The fastest lattice fermion action
 - Suffered from "taste symmetry breaking" but manageable

Expectation value

$$\langle \mathcal{O}(U, q, \bar{q}) \rangle = \int \mathcal{D}U \mathcal{D}q \mathcal{D}\bar{q} \,\, \mathcal{O}(U, q, \bar{q})$$

$$\times e^{-S_G - \sum_f \bar{q}_f(D[U] + m_f)q_f}$$

$$= \int \mathcal{D}U \,\, \mathcal{O}\Big(U, (D[U] + m_f)^{-1}\Big)$$

$$\times e^{-S_G[U]} \prod_f \det(D[U] + m_f)$$

- Integrating over the q and \bar{q} gives determinant of Dirac operator and quark propagators, $\left(D[U] + m_f\right)^{-1}$
- Generate random samples (gauge links) according to the probability distribution allows us to integrate using Montecarlo method

Expectation value

$$\langle \mathcal{O}(U, q, \bar{q}) \rangle = \int \mathcal{D}U \mathcal{D}q \mathcal{D}\bar{q} \ \mathcal{O}(U, q, \bar{q})$$

$$\langle f(X) \rangle = \int dx \, f(x) \, p_X(x)$$

$$\times e^{-S_G - \sum_f \bar{q}_f(D[U] + m_f)q_f}$$

$$= \int \mathcal{D}U \,\mathcal{O}\left(U, (D[U] + m_f)^{-1}\right) \times e^{-S_G[U]} \prod_f \det\left(D[U] + m_f\right)$$

- Integrating over the q and \bar{q} gives determinant of Dirac operator and quark propagators, $\left(D[U] + m_f\right)^{-1}$
- Generate random samples (gauge links) according to the probability distribution allows us to integrate using Montecarlo method

Data Analysis

Physical Results from Unphysical Simulations

Chiral extrapolation

- In the lattice simulation, the <u>smaller quark mass</u> requires the exponentially <u>larger computational cost</u>
 - ➤ Use light quark masses larger than physical d-quark mass and extrapolate to the physical down quark mass using (staggered) chiral perturbation theory
- Tuning the strange quark mass to precise physical quark mass is not practical
 - Extrapolate to physical strange quark mass

Continuum extrapolation

- We use finite lattice spacing ($a \ge 0.45 \text{fm}$)
 - \triangleright Extrapolate to a=0 to obtain continuum results

Data Analysis Strategy

1. Calculate raw data

<u>Calculate BSM B-parameters</u> for different quark mass combinations, $(m_u = m_d, m_s)$

2. Chiral fitting

X-fit: Fix strange quark mass and extrapolate to the light quark mass m_l to give physical down quark mass

Y-fit: Extrapolate m_s to give physical strange quark mass

3. RG evolution

Obtain results at 2GeV and 3GeV from 1/a

4. Continuum extrapolation

Perform [1-3] for different lattices and extrapolate to a = 0

Analysis Data

a (fm)	1/a (GeV)	am_l/am_s	geometry	ens×meas
0.12	1.662	0.01/0.05	$20^3 \times 64$	671×9
0.09	2.348	0.0062/0.031	$28^3 \times 96$	995×9
0.06	3.362	0.0036/0.018	$48^3 \times 144$	749×9
0.045	4.517	0.0028/0.014	$64^3 \times 192$	747×1

- MILC 2+1 AsqTad lattice
 - Use u, d, s dynamical quarks
 - $-m_u=m_d\neq m_s$
- Four different lattices

Operator Matching

$$\mathcal{O}_i^{\text{Cont'}} = \sum_{j \in (A)} z_{ij} \mathcal{O}_j^{\text{Lat}} - \frac{g^2}{(4\pi)^2} \sum_{k \in (B)} d_{ik}^{\text{Lat}} \mathcal{O}_k^{\text{Lat}}$$

$$z_{ij} = b_{ij} + \frac{g^2}{(4\pi)^2} \left(-\gamma_{ij} \log(\mu a) + d_{ij}^{\text{Cont}} - d_{ij}^{\text{Lat}} - C_F I_{MF} T_{ij} \right)$$

- To find <u>continuum</u> (NDR with <u>MS</u>) results from those regularized on the lattice,
 "operator matching" is needed
- z_{ij} are the **one-loop** matching factors (J. Kim, W. Lee and S. Sharpe, PhysRevD.83.094503)
- We use matching scale $\mu = 1/a$

Calculation of B_i

$$B_2 = \frac{\left\langle \overline{K}^0 \middle| [\bar{s}^a (1 - \gamma_5) d^a] [\bar{s}^b (1 - \gamma_5) d^b] \middle| K^0 \right\rangle}{(5/3) \left\langle \overline{K}^0 \middle| \bar{s} \gamma_5 d \middle| 0 \right\rangle \left\langle 0 \middle| \bar{s} \gamma_5 d \middle| K^0 \right\rangle}$$

Chiral Fitting

• Fitting functions for X-fit (J. Bailey, et al., Phys. Rev. D85, (2012), 074507)

$$B_j(X_P) = c_1 F_0(j) + c_2 \frac{X_P}{\Lambda^2} + c_3 \frac{X_P^2}{\Lambda^4}$$
 (S\chiPT, NNLO)

where X_P is the squared mass of pion, $\Lambda = 1 \text{GeV}$,

$$F_0(j) = 1 \pm \frac{1}{32\pi^2 f^2} \{ l(X_I) + (L_I - X_I)\tilde{l}(X_I) - 2\langle l(X_B) \rangle \}$$
(+ for $j = 2, 3, K, - \text{for } j = 4, 5$)

- Golden combinations
 - Combinations that cancel the leading chiral logarithms

$$\left(\frac{B_2}{B_3}, \frac{B_4}{B_5}, B_2 \cdot B_4, \frac{B_2}{B_K}\right)$$

$$R(X_P) = c_1 + c_2 \frac{X_P}{\Lambda^2} + c_3 \frac{X_P^2}{\Lambda^4} \quad (NNLO)$$

Chiral Fitting: X-fit

Chiral Fitting: Y-fit

RG Evolution

- Now we have B-parameter values at $\mu = 1/a$
- To perform continuum extrapolation with different lattices, we need B-param. values at a common scale
- RG running from $\mu_a(1/a)$ to $\mu_b(2\text{GeV}, 3\text{GeV})$

$$B_j(\mu_b) = \sum_{k} \frac{1}{N_j} W^R(\mu_b, \mu_a)_{jk} N_k B_k(\mu_a)$$

Evolution kernels satisfy the RG equation

$$\frac{dW(\mu_b, \mu_a)}{d \ln \mu_b} = -\gamma(\mu_b)W(\mu_b, \mu_a), \qquad W(\mu_a, \mu_b) = 1$$

$$\gamma(\mu) = \frac{\alpha(\mu)}{4\pi} \gamma^{(0)} + \left(\frac{\alpha(\mu)}{4\pi}\right)^2 \gamma^{(1)} + \cdots$$

Continuum Extrapolation

Formula

Bayesian fit

$$B_j(a^2) = c_1 + c_2^b(a\Lambda)^2 + c_3^b(a\Lambda)^2\alpha_s + c_4^b\alpha_s^2 + c_5^b(a\Lambda)^4$$

 $\Lambda = 300$ GeV, c_i^b are constrained by $c_i^b \approx 0 \pm 2$

Linear fit

$$B_i(a^2) = c_1 + c_2 a^2$$

Results

- Final results are obtained using linear fit without coarse lattice ($a \approx 0.12 \text{fm}$)

Continuum Extrapolation: Bayesian fit

Continuum Extrapolation: Linear fit

Results

BSM B-parameters at 2GeV and 3GeV

2 GeV	Coarse	Fine	Superfine	Ultrafine	Continuum
B_K	0.5651(46)	0.5296(39)	0.5351(35)	0.5320(77)	0.5379(65)
B_2	0.5415(08)	0.5654(13)	0.5955(16)	0.6046(28)	0.6219(26)
B_3	0.3699(06)	0.4158(09)	0.4590(13)	0.4801(21)	0.5019(20)
B_4	1.0944(20)	1.1228(25)	1.0927(33)	1.0949(53)	1.0736(51)
B_5	0.9260(17)	0.9356(22)	0.8890(27)	0.8725(44)	0.8467(43)

3 GeV	Coarse	Fine	Superfine	Ultrafine	Continuum
B_K	0.5459(44)	0.5115(38)	0.5169(34)	0.5139(75)	0.5195(63)
B_2	0.4798(07)	0.5009(11)	0.5275(15)	0.5355(25)	0.5509(23)
B_3	0.3169(05)	0.3511(08)	0.3843(10)	0.3998(17)	0.4167(16)
B_4	1.0456(19)	1.0726(24)	1.0438(32)	1.0457(51)	1.0255(49)
B_5	0.9124(17)	0.9250(21)	0.8834(27)	0.8711(43)	0.8473(42)

Preliminary!

Summary

Summary

- BSM physics leads to new $\Delta S = 2$ four-fermion operators that contribute to $K^0 \overline{K}^0$ mixing
- Calculating corresponding hadronic matrix elements, $\langle \overline{K}^0 | Q_i | K^0 \rangle$, can impose strong constraints on BSM physics
- We calculate BSM B-parameters on the lattice and present preliminary results
- We are working on estimating systematic errors