# Mass and Rapidity dependent Top Forward-Backward Asymmetry

#### Dong-Won JUNG

KIAS, Korea

Based on Phys.Lett.B691 (2010) 238-242, Phys.Lett.B708 (2012) 157-161, and more works in progress

with P. Ko (KIAS), J. S. Lee (JNU) and S. Nam (KISTI)

September 14, 2012 @ 2nd PHENO., KIAS



Introduction

Outline

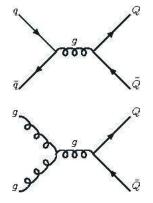
Effective Field Theory (EFT) approach

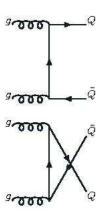
Mass and Rapidity dependent  $A_{FB}$ 

Summary and Prospect

# Tevatron with $\sqrt{S} = 1.96 \text{ TeV}$ ,

- $\sigma_{t\bar{t}} = 7.50 \pm 0.48 \text{ pb}$
- $q\bar{q} \rightarrow t\bar{t} \sim 85\%$
- $gg \rightarrow t\bar{t} \sim 15\%$





#### CDF, I+jets:

$$A_{\rm FB}^{t\bar{t}} = 0.158 \pm 0.074 \, [0.058 \pm 0.009]$$

- CDF, dileptons:

$$A_{\rm FB}^{t\bar{t}} = 0.42 \pm 0.16$$

– Combinded:

$$A_{\rm FB}^{t\bar{t}} = 0.201 \pm 0.067$$
 cf.  $A_{\rm FB}^{t\bar{t}} = 0.196 \pm 0.065$  **@ D0**

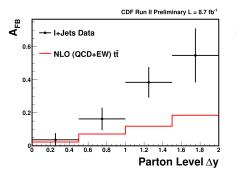
– CDF, I+jets:

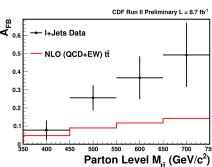
$$A_{\rm FB}^{t\bar{t}}(|\Delta y| < 1.0) = 0.088 \pm 0.042 \pm 0.022$$
 [0.043]  $A_{\rm FB}^{t\bar{t}}(|\Delta y| \ge 1.0) = 0.433 \pm 0.097 \pm 0.050$  [0.139]

– CDF, I+jets:

$$A_{\text{FB}}^{t\bar{t}}(M_{t\bar{t}} < 450 \text{ GeV}) = -0.078 \pm 0.048 \pm 0.024 \text{ [0.047]}$$
  
 $A_{\text{FB}}^{t}(M_{t\bar{t}} \ge 450 \text{ GeV}) = 0.296 \pm 0.059 \pm 0.031 \text{ [0.100]}$ 

¹The values in the squared bracket are SM predictions. ← B → ← B → ← B → ← B → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C → ← C





## Effective Field Theory (EFT) approach

- If the NP particles are heavy enough, we can adopt the veiwpoint of effective Lagragian.
- Assuming  $SU(2)_L \times U(1)_Y$  and the custodial symmetry  $SU(2)_R$  for the light quark sector,

$$\mathcal{L}_{6} = \frac{g_{s}^{2}}{\Lambda^{2}} \sum_{A,B} \left[ C_{1q}^{AB} (\bar{q}_{A} \gamma_{\mu} q_{A}) (\bar{t}_{B} \gamma^{\mu} t_{B}) + C_{8q}^{AB} (\bar{q}_{A} T^{a} \gamma_{\mu} q_{A}) (\bar{t}_{B} T^{a} \gamma^{\mu} t_{B}) \right]$$

where  $T^a = \lambda^a/2$ ,  $\{A, B\} = \{L, R\}$ , and  $L, R \equiv (1 \mp \gamma_5)/2$  with  $q = (u, d)^T, (s, c)^T$ .

• Cross section up to  $O(1/\Lambda^2)$  is calculated, keeping only the INTERFERENCE between the SM and NP.

## Amplitude

• The amplitude for  $q(p_1) + \bar{q}(p_2) \rightarrow t(p_3) + \bar{t}(p_4)$ 

$$\begin{split} \overline{|\mathcal{M}|^2} &\simeq \frac{4\,g_s^4}{9\,\hat{\mathrm{s}}^2} \left\{ 2m_t^2\hat{\mathrm{s}} \left[ 1 + \frac{\hat{\mathrm{s}}}{2\Lambda^2} \left( C_1 + C_2 \right) \right] s_{\hat{\theta}}^2 \right. \\ &+ \frac{\hat{\mathrm{s}}^2}{2} \left[ \left( 1 + \frac{\hat{\mathrm{s}}}{2\Lambda^2} \left( C_1 + C_2 \right) \right) \left( 1 + c_{\hat{\theta}}^2 \right) + \hat{\beta}_t \left( \frac{\hat{\mathrm{s}}}{\Lambda^2} \left( C_1 - C_2 \right) \right) c_{\hat{\theta}} \right] \right\} \\ &\text{where } C_1 \equiv C_{8g}^{LL} + C_{8g}^{RR} \text{ and } C_2 \equiv C_{8g}^{LR} + C_{8g}^{RL} \end{split}$$

•  $\hat{s} = (p_1 + p_2)^2$ ,  $\hat{\beta}_t^2 = 1 - 4m_t^2/\hat{s}$ , and  $s_{\hat{\theta}} \equiv \sin \hat{\theta}$  and  $c_{\hat{\theta}} \equiv \cos \hat{\theta}$ , with  $\hat{\theta}$  being the polar angle between the incoming quark and the outgoing top quark in the  $t\bar{t}$  rest frame.

## Result for Integrated $A_{FB}$

- Convoluted with CTEQ6L and K factor 1.3.
- $A_{FB}$  must be expanded with  $\sigma_{NIO}^{int}, \sigma_{NP}^{int},$

$$A_{FB} \simeq A_{FB}^{SM} + \Delta \sigma_{NP}^{int} / \sigma_0^{SM}$$
.

For validity check, we impose three criteria,

$$|\sigma_{NP}^{int}| < r \times \sigma_{SM}$$
 (straight)

$$\sigma_{NP}$$
 <  $r \times |\sigma_{NP}^{int}|$  (two ellipses adjacent at the origin)  $\sigma_{NP}$  <  $r^2 \times \sigma_{SM}$  (ellipses centered at the origin)

 $\sigma = \sigma_{SM} + \sigma_{ND}^{int} + \sigma_{ND}$ 

$$\sigma_{NP} < r^2 \times \sigma_{SM}$$
 (ellipses centered at the origin)

with r = 0.3, 0.5 1.0.

• 
$$\Delta \sigma_{t\bar{t}} \equiv \sigma_{t\bar{t}} - \sigma_{t\bar{t}}^{\mathrm{SM}} \propto (C_1 + C_2)$$
,  $\Delta A_{\mathrm{FB}} \equiv A_{\mathrm{FB}} - A_{\mathrm{FB}}^{\mathrm{SM}} \propto (C_1 - C_2)$ .

#### General Lagrangian

$$\begin{split} &\mathcal{L}_{\mathrm{int}} = g_{s}V_{8}^{a\mu}\sum_{A}\left[g_{8q}^{A}(\bar{q}_{A}\gamma_{\mu}T^{a}q_{A}) + g_{8t}^{A}(\bar{t}_{A}\gamma_{\mu}T^{a}t_{A})\right] \\ &+g_{s}\big[\tilde{V}_{1}^{\mu}\sum_{A}\tilde{g}_{1q}^{A}(\bar{t}_{A}\gamma_{\mu}q_{A}) + \tilde{V}_{8}^{a\mu}\sum_{A}\tilde{g}_{8q}^{A}(\bar{t}_{A}\gamma_{\mu}T^{a}q_{A}) + \mathbf{h.c.}\big] \\ &+g_{s}\big[\tilde{S}_{1}\sum_{A}\tilde{\eta}_{1q}^{A}(\bar{t}_{A}q) + \tilde{S}_{8}^{a}\sum_{A}\tilde{\eta}_{8q}^{A}(\bar{t}_{A}T^{a}q) + \mathbf{h.c.}\big], \end{split}$$

Integrating out heavy fields, the Wilson coefficients are,

$$\begin{array}{ll} \frac{C_{8q}^{RR}}{\Lambda^2} & = & -\frac{g_{8q}^R g_{8t}^R}{m_{V_{8R}}^2} - \frac{2|\tilde{g}_{1q}^R|^2}{m_{\tilde{V}_{1R}}^2} + \frac{1}{N_C} \frac{|\tilde{g}_{8q}^R|^2}{m_{\tilde{V}_{8R}}^2} \,, \\ \frac{C_{8q}^{LL}}{\Lambda^2} & = & -\frac{g_{8q}^L g_{8t}^L}{m_{V_{8L}}^2} - \frac{2|\tilde{g}_{1q}^L|^2}{m_{\tilde{V}_{1L}}^2} + \frac{1}{N_C} \frac{|\tilde{g}_{8q}^L|^2}{m_{\tilde{V}_{8L}}^2} \,, \\ \frac{C_{8q}^{LR}}{\Lambda^2} & = & -\frac{g_{8q}^L g_{8t}^R}{m_{V_8}^2} - \frac{|\tilde{\eta}_{1q}^L|^2}{m_{\tilde{S}_{1L}}^2} + \frac{1}{2N_C} \frac{|\tilde{\eta}_{8q}^L|^2}{m_{\tilde{S}_{8L}}^2} \,, \\ \frac{C_{8q}^{RL}}{\Lambda^2} & = & -\frac{g_{8q}^R g_{8t}^L}{m_{V_{4}}^2} - \frac{|\tilde{\eta}_{1q}^R|^2}{m_{\tilde{s}_{4L}}^2} + \frac{1}{2N_C} \frac{|\tilde{\eta}_{8q}^R|^2}{m_{\tilde{s}_{4L}}^2} \,, \end{array}$$

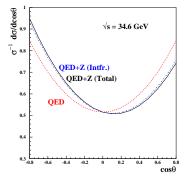
## Summary Table

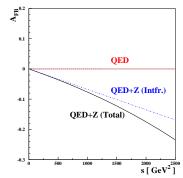
| New particles                            | couplings                              | <i>C</i> <sub>1</sub> | C <sub>2</sub> | $1 \sigma$ favor |
|------------------------------------------|----------------------------------------|-----------------------|----------------|------------------|
| V <sub>8</sub> (spin-1 FC octet)         | g <sup>L,R</sup><br>g <sub>8q,8t</sub> | indef.                | indef.         |                  |
| $	ilde{V}_1$ (spin- $f 1$ FV singlet)    | $	ilde{g}_{1q}^{L,R}$                  | _                     | 0              | ×                |
| $	ilde{V}_8$ (spin-1 FV octet)           | $	ilde{g}_{8q}^{L,R}$                  | +                     | 0              |                  |
| $\tilde{S}_1$ (spin-0 FV singlet)        | $	ilde{\eta}_{1q}^{L,R}$               | 0                     | _              | $\sqrt{}$        |
| $	ilde{\mathcal{S}}_8$ (spin-0 FV octet) | $	ilde{\eta}_{8q}^{L,R}$               | 0                     | +              | ×                |
| $S_2^{lpha}$ (spin-0 FV triplet)         | $\eta_3$                               | _                     | 0              | ×                |
| $S_{13}^{lphaeta}$ (spin-0 FV sextet)    | $\eta_6$                               | +                     | 0              | $\sqrt{}$        |

## Mass and Rapidity dependent $A_{FB}$

Old Wisdom from Weak Interaction, RETRA:
 Far below the Z pole mass,

$$A_{FB}(s) \simeq -rac{3G_F}{\sqrt{2}} \; rac{s}{4\pilpha} \; (g_L-g_R)^2 \equiv kG_F s \simeq -7.18G_F s.$$





# The case for $q \bar q o t \bar t$

$$\widehat{A}_{FB}(M_{t\bar{t}}) = \frac{\widehat{\beta}_{t}\frac{\hat{s}}{\Lambda^{2}}(C_{1} - C_{2})}{\frac{8}{3}\left[1 + \frac{\hat{s}}{2\Lambda^{2}}(C_{1} + C_{2})\right] + \frac{16\hat{s}}{3m_{t}^{2}}\left[1 + \frac{\hat{s}}{2\Lambda^{2}}(C_{1} + C_{2})\right]} \\
\simeq \frac{3\widehat{\beta}_{t}\frac{\hat{s}}{\Lambda^{2}}(C_{1} - C_{2})}{8 + 16\frac{m_{t}^{2}}{\hat{s}}}.$$

- FB asymmetry near the threshold is approximately linear in ŝ.
- Some nontrivial structure like wiggles or it changes the shape, one can say more about the underlying physics.

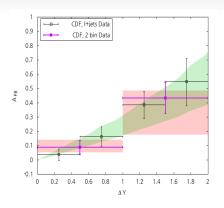
#### • Most models predict that only one of $C_1$ or $C_2$ nonzero.

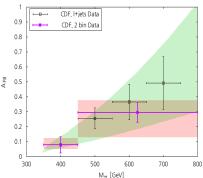
$$(C_1, C_2) = (0.15 \sim 0.97, 0) \quad \text{or} \quad (C_1, C_2) = (0, -0.67 \sim -0.15).$$

$$(C_1, C_2$$

## More general analysis

- Through the region  $A_{\rm FB}^{t\bar{t}} = 0.158 \pm 0.074 \; [0.058 \pm 0.009]$ .
- Assuming that  $C_1 + C_2 = 0$ , which means no contribution to the cross section.
  - ightarrow Reasonable assumption since variation of  $\sigma$  is smaller than  $A_{FB}$ .
- To minimize the  $NP^2$  contribution, we take  $C_{8q}^{RR}=C_{8q}^{LL}=\frac{1}{2}C_1$  and  $C_{8q}^{RL}=C_{8q}^{LR}=-\frac{1}{2}C_1$ . In this case there is no contribution to  $\hat{A}_{FB}$  from  $NP^2$  terms.
- $NP^2$  increases as larger  $M_{tt}$  and  $\Delta Y. \rightarrow$  Validity of EFT??

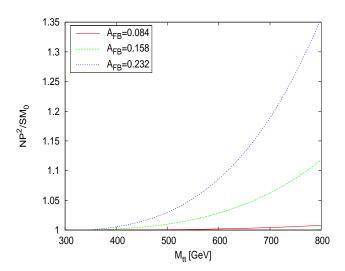




- Well fit!
- Central value of *A<sub>FB</sub>* is favored.
- Validity issue :  $NP^2/SM0$  goes upto 0.08%, 12% and 35% in the high  $M_{tt}$  and  $\Delta Y$  region.

Outline

e.g.,



## Summary and Prospect

- $M_{tt}$  and  $\Delta Y$  dependent  $\hat{A}_{FB}$  can be well fit with EFT approach.
- Preferred region for the Wilson coefficients can be selected: Model discrimination?
- For large  $M_{tt}$  and  $\Delta Y$  region there is validity issue of EFT approach.
- LHC study and longitudinal observables etc. ..?