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Introduction

I LHC is busy confirming the standard model
I The most important ingredient, the Higgs boson, is the

prize discovery
I Perhaps hints of new physics (B(H → γγ), vacuum

stability, ...)
I If direct searches do not show new particles, LHC could

look for possible anomalous couplings of SM particles:
“indirect search”

I Couplings of the top quark important - possible hints for
mechanism of spontaeous symmetry breaking



Polarization studies

I Basic measurement: Cross section
I More detailed tests through angular distributions, angular

asymmetries
I Additional tool: polarization studies
I Particle polarization measurements, correlated with angle

or with other spins, can give detailed information on
interactions

I Polarization of heavy particles can be measured using
distributions of decay particles



Outline

I Utilizing top polarization
I Discriminating among top production scenarios
I How top polarization can be measured:

Charged lepton angular distributions
I Example of a process for LHC

I Utilizing other top decay distributions
I Measuring anomalous couplings
I Example of a process for LHC



Top quark production at LHC

I Copious production of t t̄ pairs at LHC
σt t̄ ≈ 830 pb at 14 TeV

I Also large single top production
σ1t ≈ 320 pb at 14 TeV

I Top quarks can also arise in the decays of new particles
– resonances, new gauge bosons, Higgs bosons, squarks,
gluinos . . .

I Top being heavy decays before hadronization:

Γt ≈ 1.5GeV << ΛQCD ≈ 200MeV

I Spin information retained by decay products



Top-pair production at LHC



Detection of top quarks

I In SM, top decays almost entirely into b + W
I W then decays to

I ud̄ (two jets) (B.R. 2/3), or
I lνl (lepton + missing energy) (B.R.1/3 for each lepton)
I Mass reconstruction better with two jets, but large

background
I Leptonic signature cleaner, but mass reconstruction difficult

I For t t̄ final state, the best detection channel is semileptonic

I t decays into bl+νl
I t̄ decays into b + 2 jets
I Or vice versa

I In SM, t̄bW + vertex is left-handed
I It can receive modifications beyond SM from loops
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Production mechanisms and top polarization

I Top polarization can give more information about the
production mechanism than just the cross section

I It can allow measurement of parameters of the theory
I It is parity violating, hence measures chiral couplings
I It can give a clue to anomalous colour dipole couplings

L =
gs

Λ
Fµν

a
[̄
tσµν(ρ+ iρ′γ5)T at

]
[S. Biswal, SDR, P. Sharma, work in progress]

I It can give information on the theory in cascade decays
[J. Shelton, Phys. Rev. D. 79, 014032 (2009)
M. Nojiri, M. Takeuchi, JHEP 10 (2008) 025
M. Perelstein, A. Weiler JHEP 03 (2009) 141]

I It can be used to discriminate models for top
forward-backward asymmetry seen at Tevatron
[D-W Jung, P. Ko, J.S. Lee, Phys. Lett. B 701 (2011) 248
D. Choudhury, R.M. Godbole, SDR, P. Saha, Phys. Rev. D 84, 014023
(2011)]



Example of polarization in cascade decay

Top quark polarization vs. parent particle mass M in GeV
Purely chiral couplings.
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Solid curves: Stop decaying into top and neutralino
The red (upper) curve has a fixed neutralino mass of 200 GeV. The blue
(lower) curves have neutralino mass of M − 200 GeV.
Dashed curves: Spin-1/2 heavy quark T decaying into top and
spin-1 particle.

[J. Shelton, Phys. Rev. D. 79, 014032 (2009)]



Top polarization charged Higgs decay

I In type II two Higgs doublet model charged Higgs bosons
coupling to top depends on tanβ (ratio of vev’s)

gtbH− =
g√

2mW
(mt cotβPL + mb tanβPR)

I The chiral couplings lead to top polarization in tH−

production
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I Polarization can be a measure of tanβ if m±H is known

[K. Huitu, K. Rao, SDR, P. Sharma, JHEP 04 (2011) 026]



Top spin correlation vs. single top polarization

When t and t̄ are produced, a useful observable is top spin
correlation:

1
σ

dσ
d cos θad cos θb

=
1
4

(1 + C cos θa cos θb)

I This has been very well studied theoretically
I Also experimentally feasible
I Needs reconstruction of both t and t̄ rest frames
I It is conceivable that single top polarization can give better

statistics
I At Tevatron or LHC, single top polarization implies new

physics



Measuring polarization

Top polarization can be measured by studying the decay
distribution of a decay fermion f in the rest frame of the top:

1
Γ

dΓ

d cos θf
=

1
2

(1 + Ptκf cos θf ) ,

where

θf is the angle between the f momentum and the top spin,
Pt is the degree of top polarization,
κf is the “analyzing power” of the final-state particle f .



Analyzing power for various channels

The analyzing power kf for various channels is given by:

κb = −
m2

t − 2m2
W

m2
t + 2m2

W
' −0.4

κW = −κb ' 0.4

κ`+ = κd = 1

The charged lepton or d quark has the best analysing power
I d-quark jet cannot be distinguished from the u-quark jet.
I In the top rest frame the down quark is on average less

energetic than the up quark.
I Thus the less energetic of the two light quark jets can be

used.
I Net spin analyzing power is κj ' 0.5



Corrections to the analyzing power

I Leading QCD corrections to κb and κj are of order a few
per cent.
QCD corrections decrease |κ|[Brandenburg,Si,Uwer 2002]

I κ also affected by corrections to the form of the tbW
coupling (“anomalous couplings")

I It is useful to have a way of measuring polarization
independent of such corrections

I Also useful is distribution in lab. frame, rather than in top
rest frame

I To take into account spin correlations – need a spin density
matrix formalism



Spin density matrix

At amplitude level

M(A+B → t+X → f +X ′+X ) = M(A+B → t(λ)X ) M(t(λ)→ fX ′)

At transition probability level

|M(AB → tX → fX ′X )|2 = M(AB → t(λ)X ) M(AB → t(λ′)X )∗

×M(t(λ)→ fX ′) M(t(λ′)→ fX ′)∗

OR

|M(A + B → t + X → f + X ′ + X )|2 = ρ(λ, λ′) Γ(λ, λ′)

ρ: production density matrix
Γ: decay density matrix



Anomalous tbW couplings

General t̄bW + vertex can be written as

Γµ =
g√
2

[
γµ(f1LPL + f1RPR)− iσµν

mW
(pt − pb)ν (f2LPL + f2RPR)

]

In SM,
f1L = 1, f1R = f2L = f2R = 0

Deviations from these values will denote “anomalous” couplings



A “theorem”

I The angular distribution of charged leptons (down quarks)
from top decay is not affected by anomalous tbW
couplings (to linear order)

I Checked earlier for e−e+ → t t̄ [Grzadkowski & Hioki, SDR
(2000)] and for γγ → t t̄ [B. Grzadkowski & Z. Hioki; R.M. Godbole,
SDR, R.K. Singh]

I This is shown for any general process A + B → t + X in the
c.m. frame [R.M. Godbole, SDR, R.K. Singh (2006)]

I Assumes narrow-width approximation for the top
I This implies that charged-lepton angular distributions are

more accurate probes of top polarization, rather than
energy distributions or b or W angular distributions

I On the other hand, energy distributions, b, W angular
distributions help to study anomalous tbW couplings
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Factorization property

The above theorem depends on the factorization property of
the decay density matrix in the rest frame of the top:

〈Γ(λ, λ′)〉 ∝ A(λ, λ′) F (E0
` )

where

A(±,±) = (1± cos θl), A(±,∓) = sin θle±iφl



How do we measure polarization in the lab. frame?

I We look at a top quark produced with some fixed energy Et
I If its pT is fixed, so is its angle with the beam direction
I The rest frame distribution 1

2(1 + Pt cos θ∗` ) gets an
appropriate boost:

N(θt`) =
1
2

(1− Ptβt )(1 + Pt cos θt`)

(1− βt cos θt`)2 (1− β2
t )

βt =
1√

1− m2
t /E2

t

cos θt` = cos θt cos θ` + sin θt sin θ` cosφ`

I This enhances the forward-backward asymmetry of the
lepton

I However, at a pp collider there is no distinction between
forward and backward

I More interesting: azimuthal distribution



Lepton azimuthal distributions

Azimuthal distribution for Et = 600 GeV, pT
t = 200 GeV



Lepton azimuthal distributions

Azimuthal distribution for Et = 600 GeV, pT
t = 400 GeV



Lepton azimuthal distributions

Azimuthal distribution for Et = 200 GeV, pT
t = 50 GeV



Lepton azimuthal distributions

Azimuthal distribution for Et = 200 GeV, pT
t = 100 GeV



Toy model for top production

I Top production distribution: a0 + a2 cos2 θt

I The double distribution is then:

N(cos θt , cos θ`) =
1
2

(1 + Pt cos θt`)(a0 + a2 cos2 θt )

I Reduces to
1
2

(1 + Pt cos θt`)

on integration over cos θt

I Consider lepton polar and azimuthal distributions in lab.
frame



Lepton polar distribution

Choice of model: a0 = 1,a2 = 0: Flat distribution
Choice of model: a0 = 1,a2 = 1, Et = 200 GeV:



Lepton polar distribution

Choice of model: a0 = 0,a2 = 1, Et = 200 GeV:



Lepton polar distribution

Choice of model: a0 = 1,a2 = −1, Et = 200 GeV:



Lepton azimuthal distribution

Choice of model: a0 = 1,a2 = 0, Et = 200 GeV:



Lepton azimuthal distribution

Choice of model: a0 = 1,a2 = 1, Et = 200 GeV:



Lepton azimuthal distribution

Choice of model: a0 = 1,a2 = −1, Et = 200 GeV:



Little Higgs Model

I We choose for illustration and extra Z model
I Litle Higgs model has an extra massive gauge boson ZH

with left-handed couplings to fermions depending on one
parameter (θ):

gu
V = gu

A = g cot θ

gd
V = gd

A = −g cot θ

I t t̄ production and decay via γ,Z ,Z ′ depends only on two
new parameters: mZ ′ and cot θ.

[R. Godbole, K. Rao, SDR, R.K. Singh, JHEP 11 (2010) 144 ]



t t̄ invariant mass distribution

The model can be tested using the t t̄ invariant mass distribution
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Polarization can be a further more sensitive test



Top longitudinal polarization

Degree of top polarization:

Pt ≡
σR − σL

σR + σL
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Azimuthal distribution of the charged lepton

Azimuthal angle of the charged lepton φl defined with:
I beam axis as Z axis
I t t̄ production plane as the XZ plane
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Azimuthal distribution of the charged lepton

Normalized φl distribution, mZ ′ = 500 GeV
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Azimuthal distribution of the charged lepton

Normalized φl distribution, mZ ′ = 750 GeV
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Azimuthal asymmetry of charged lepton

Al =
1
σ

[σ(φl < π/2) + σ(φl > 3π/2)− σ(π/2 < φl < 3π/2)]
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Azimuthal asymmetry with cut-off

For better discrimination, use a cut-off in pT
t :
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Hints for polarization determination

I Azimuthal distribution in lab. frame non-trivial in SM
(with ≈ 0 polarization)

I This is a pure kinematic effect
I There is also an effect of polarization
I Choose kinematical region to enhance the polarization

effect
I Choosing large transverse momentum sample seems to

work



Collimated top quarks

Systems with large invariant mass of t t̄ can produce highly
boosted tops – with collimated decay products

I Collimated leptonic top quarks allow the energy of the
lepton and the b-jet to be separately measured, but not the
angular distributions

I The momentum fraction of the visible energy carried by the
lepton provides a natural polarimeter.

u =
E`

E` + Eb
,

[J. Shelton PRD 79, 014032 (2009)]

Blue: right-handed; Red: left-handed



Top polarization for large βt

Anomalous t̄bW + vertex can be written as

Γµ =
g√
2

[
γµ(f1LPL + f1RPR)− iσµν

mW
(pt − pb)ν (f2LPL + f2RPR)

]
Effect of anomalous coupling may not be distinguishable from
effect of polarization



Collimated top quarks

Another variable: fraction of the visible energy carried by the b
quark

z =
Eb

E` + Eb
,

[J. Shelton PRD 79, 014032 (2009)]

Red: positive helicity top; Blue: Negative helicity top
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Top polarization for large βt

z distributions with different polarizations and different
anomalous couplings can be confused
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Lepton energy distribution and anomalous couplings

I Various energy and angular distributions can be measured
in top decay

I Energies of lepton, b jet, light jets, and their angular
distributions can measure top polarization

I However, they can be affected by anomalous couplings
I On the other hand – they can be used to measure

anomalous couplings
I Example: Single-top production in association with W at

the LHC
[SDR, P. Sharma JHEP 11 (2011) 082]
[Including CP violation: PLB 712 (2012) 413]



Associated single-top W production at LHC

Single-top production in association with W− has been
seen at LHC

I ATLAS: 16.8± 2.9(syst)± 4.9(stat) pb
I CMS: 22+9

−7(syst + stat) pb

I Theory:15.6± 0.4(scale)+1.0
−1.2(PDF ) pb

I Direct measurement of Vtb = 1.03+0.16
−0.19 (ATLAS)



Determination of anomalous tbW couplings

General t̄bW + vertex can be written as

Γµ =
g√
2

[
γµ(f1LPL + f1RPR)− iσµν

mW
(pt − pb)ν (f2LPL + f2RPR)

]
In SM, f1L = 1, f1R = f2L = f2R = 0.

To a good approximation, only f2R contributes



Polarization in single-top production

Polarization of the top quark in pp → tW− + X
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Determination of anomalous tbW couplings
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Determination of anomalous tbW couplings
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Sensitivity

For LHC at
√

s = 14 TeV with integrated luminosity 10 fb−1,
possible 90% CL limits:

I [−0.034,0.086] on Ref2R from Aφ
I AE` is the most sensitive
I Limit on Ref2R of [−0.006, 0.009] possible.



W helicity measurement

I Helicity fractions of W in top decay are given by

F0 =
M2

t

(M2
t + 2M2

W )
= 0.703 + 0.002(mt − 175)

FL =
2M2

W

(M2
t + 2M2

W )
= 0.297− 0.002(mt − 175)

FR = 0

I Suggestion has been made to measure W helicity to study
anomalous couplings
[F. del Aguila, J. Aguilar-Saavedra, PRD 67, 014009 (2003)
C.-R. Chen, F. Larios, C.-P. Yuan, hep-ph/0503040]



Summary

I Top polarization could be useful in many different
theoretical scenarios where top is one of the particles
produced at LHC

I A relatively clean signature of top polarization is the
secondary lepton angular distribution

I Azimuthal distribution of charged lepton is a particularly
sensitive test.

I Polarization contribution can be enhanced by appropriate
cuts (e.g. pT )

I Lepton energy distribution and b-quark energy and angular
distributions can be used to measure anomalous couplings
in decay.

I Many other interesting scenarios deserve study
I Detailed study including appropriate cuts, parton

showering, needed
I Comparison of sensitivities with of single top and spin

correlations needed
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