Shuffle Product Formula of Multiple Zeta Values

Minking Eie
Department of Mathematics
National Chung Cheng University
Taiwan, Republic of China

Abstract

A multiple zeta values or r-fold Euler sum defined by $$
\zeta\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}\right)=\sum_{1 \leq n_{1}<n_{2}<\cdots<n_{r}} n_{1}^{-\alpha_{1}} n_{2}^{-\alpha_{2}} \cdots n_{r}^{-\alpha_{r}}
$$

with $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ an r-tuple of positive integers and $\alpha_{r} \geq 2$, is a natural generalization of the classical Euler sum

$$
S_{p, q}=\sum_{k=1}^{\infty} \frac{1}{k^{q}} \sum_{j=1}^{k} \frac{1}{j^{p}}
$$

It is a problem proposed by Goldbach to Euler in an attempt to evaluate $S_{p, q}$ in terms of the special values at positive integers of the Riemann zeta function defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad \text { Res }>1
$$

The shuffle product formula of two multiple zeta values then express the product of two multiple zeta values as a linear combination of multiple zeta values with integral coefficients.

