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Introduction

Obstacle Problems

Let 2 be a bounded, open and connected domain in R™.
Definition

For any given function ¢ € C?(Q)(or ¢ € H'(£2)), known as the obstacle, and
g € HY(Q) satisfying the compatibility condition ¢ < g on 92, we say u is the
solution of the obstacle problem if u is the minimizer of the functional

J(v) z/Q|Vv|2+2fvdx

wherevisin K={ve H (Q):v>¢inQ, v—geH}(Q)}.
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Obstacle Problems

If the obstacle is only defined on (n-1)-dimensional manifold T then we call such
problems Signorini problem or Thin obstacle problem.

Definition

For any given function ¢ € C2(Q)(or v € HY(Q) N L>(Q)), g € H(Q) satisfying
the compatibility condition 1) < g on 0f), we say w is the solution of the obstacle
problem if u is the minimize of the functional

J(v) :/Q|Vv|2+2fvdx

where visin K ={ve H (Q):v > on (I'NQ), v—gec HY}.

In this talk, we assume that n > 3 and g = 0.



Introduction

Periodical Background

For a given open subset T" of By, we define TF by ek + a.T and T by UTF

where k € Z™ and a. < €.




Introduction

Periodical Background

For any subset D of R™ and for any ¢ € H'(R"), we define D. = DN T. and

Ye = $Xo, {
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Y(z) ifz € Dy,
0 ifrd D,
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Introduction

Highly Oscillating Obstacle Problem

Let u. be the solution of the obstacle problem with obstacle .. More precisely,
u, is the minimizer of the functional

J(v) :/Q|Vv|2 + 2fvdx (M)

forve K. ={ve H (Q);v>%.inQ, v—ge HI} N}
Then our main problem is to determine the limit u of the solution u. in terms of a
limit equation it solves.

Definition
Q If D =, then we call (M.) a highly oscillating obstacle problem.

@ If D =T, (n — 1)-dimensional manifold, then we call (M.) a highly
oscillating thin obstacle problem.

Actually, the limit behavior of u. is related with the decay rate a. of holes.
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Introduction

Averaged Capacity

Definition

Let A be any compact subset of R™. Then, for any n > 3, the capacity of A is
defined as follow

cap(A) = inf {/ |Vpl*dz : p € C°(R™),p > 1 on A}
R"'L

Now we define the new concept of the capacity to describe the equation that
satisfies the limit u of u..

Let ' be a hyper plane in R™ with normal v € S”~!. and let

I'(s)=T,(s) =T+ sv.

be the family of hyper-planes.



Introduction

Averaged Capacity
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Introduction

Averaged Capacity

Definition (Averaged capacity)
fT eR”and ' = {(z — z¢) - v = 0},
f(s) =cap(TNT + sv)

is integrable, then we set

can,(1) = [ Z F(5)ds

and call this quantity the averaged capacity of T" with respect to v.




Introduction

Main Theroem

Theorem

Let n > 3 and u. be the solution of (M_) when
D=T={zeR":(x—x) -v=0} Wesetweseta. =c7-1. Thenu. — u
weakly in H} () and u is the unique minimizer of

J,,(v):/Q|Vv|2—l—2fvd:v—|—capl,(T)/F((z/J—v)'*')2da7 v>0 (M)

for a.e. v e S™ 1L,
In particular, if f is non-negative, then u is the solution of

—Au A+ cap, (T)(p —u)tdo + f = 0.
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Related Works

@ In 1997, Cioranescu and Murat proved that if D = Q and a. = -2, then
the solution u. of (M.) converges to u and u satisfies the following equation:

—Au+pu= fin Q

for some constant p.

@ They also proved that if D = {x,, =0} and a. = 77, then the limit u

satisfies
—Au+ puddy,, —oy = fin Q.

@ In 2008, Caffarelli and Lee proved the similar result for the fully nonlinear
operator ' when D = (). The decay rate a. is determined by the constant A
that makes

)

a solution of F/(D?V) = 0 except the singular point.

@ In 2009, Caffarelli and Mellet proved the similar result when T'= T'(k,w) is
distributed randomly. If cap(T'(k,w)) is stationary ergodic, D = (2, and
a. = e7-2 then we have similar result to (1) and the limit doesn't depend on
w.

V() = fo] e
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Proof of Main Theroem

Corrector

Proposition (Existence of Corrector)

LetT'={z € R";(x —x0)-v =0} and let a. = c7-1. Then, for almost all
v € S™71, there exists a sequence of functions w, satisfying
Q w.=1o0onT,
@ w. — 0 weakly in H}(S2)
© For any sequence z. € H}(Q) such that z. =0 on T,
2. — z weakly in H}(S)) there holds

Ze|lpe (o) < C and

lim < Awe, pze > -1 1= cap,(T') / pzdo (2.1)
e—0 70 r

for all p € C§°(€2).




Proof of Theorem

Lemma (Lower semicontinuity of the Energy)

Let z. € H} be a sequence which is bounded uniformly on €, z. — z weakly in
H} and z. =0 on T'.. Then, we have

liminf/ |V2’5|2dx2/ |Vz|2dx+capy(T)/z2do.
Q Q r

The last term comes from the choice of the test function z..

Sketch of proof.

From the proposition,
[ vl > can 1) [ o, pecr@)
r

Apply this to 0 < [, |V (2 — wep)|*dz and then apply p = z.. Then, we get the
conclusion. ]

o
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Proof of Theorem

Lemma

Let u. be solution of (M.). Then we have

liminf/ \Vu€|2dx2/ |Vu|2dar+cap,,(T)/ (6 — u)*)? do.
Q Q r

Proof.

We have the identity ue = — (¥ — ue)™ + (¢ — )~ + 1. Since ue > 1 on I,
(¢ —u.)t =0 on T;, we have

- 2 2 2
11m1nf/ﬂ|V(¢—u5)+| de/Q|V(w—u)+| dm—i—cap,,(T)/F((l/J—u)"') do.

Then, the lemma follows from above and the general weak lower
semi-continuity. ]

w
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Proof of Main Theroem

Proof of Theorem

Lemma

Let u. be solution of (M.). Then we have

limsup/ |Vue|?de < / |Vv|2dx+capV(T)/v2da.
Q Q T

for all v € C§°(R?) and v > 0.

Sketch of Proof.

@ For any given v, let v. = (w. — 1)(¢p —v)* + (¥ —v)~ + 1. Then
ve € K. = {v e H}(Q);v > 9.}

@ Since w,. converges to 0 weakly in H}(Q), v. — v weakly in H} ().

@ From the minimality of u., J(us) < J(ve).
@ Finally, by using the proposition, we have

lim sup J(ve) < J,(v).




Proof of Main Theroem

Proof of Theorem

Proof of Main Theorem.

@ Since T is in the set K, for all ¢, J(u.) < J(¢»") and hence ||uc||g1 is
bounded uniformly on e. From this, we can extract a subsequence u.; which
converges to u weakly in H*.

@ From previous two lemmas,

/Q %|Vu|2 + fudx + cap,,(T)% /F((ftl) - u)+)2da

1 1
<liminf [ =|Vu.|* + fu.dz < limsup/ —|Vu.|* + fucdz
e—0 0 2 Q 2

e—=0

1o o
< [ SIVe + foda -+ cap, (1) [ (0 = 0)*odo,

for all v € C§°(2) with v > 0.
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Construction of Corrector

Construction of Correctors

We are going to construct w, in proposition by defining w. locally near the
intersection between I and T*.

Let v¥* = TN TF and let w be the restriction of w. to Q.(ck) given by

wF=1 on~¥
Aw? =0 in Ba/2 \75
w§:0 in Qc \ Be ),
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Construction of Correctors

If we define w. =3, wk, the energy of w, is given by

/|Vw5|2d:r:2/ |Vwk ?da.
Q PRAY
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Construction of Corrector

Construction of Correctors

So, we need to calculate the energy [, [Vw?|?dx.
To make our problem more simple, we assume I' = {z - v = 0}.

Let g-(s) = [, 12 |Vw?|?dx where w¢ solves the local corrector equation defined
as follow

I'+sa.v

Awf=0
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Construction of Correctors

Define w? = w2( ) and G=(s) = [ L, Ve |2dz. Then, we have

ge(s) = a?72GE (s)

I'+sv

AE=0

=0
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Construction of Corrector

Construction of Correctors

Lemma

Ge(s) converges to f(s) =cap (T NT,(s)) ase — 0 where ', (s) =T + (s)v.
Moreover, the convergence is uniform on s.

From now on, we assume v,, # 0.
We define

Iy =projn1(ENT), Z.=e 'Trnz" "

Then I" may be represented as

I'nkE= {(33’,04 . .’13/);.]3/ S FlE}) o = (_Vl/l/nz' o 7_1/71—1/7/1'7,)



Construction of Correctors

I={x|x, =x"-a}

'y

Note that o(I';) = vpo(E NT) where o is the surface measure induced by R™.



Construction of Corrector

Construction of Correctors

Lemma

For any measurable subset E of R™ and for a.e. v € S"~1,

/ \Vw,|*dx — (' N E) cap, (T).
E

if we choose a, = 1.
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Construction of Corrector

Construction of Correctors

Proof.
Note that (ek +T:) NT' # 0 (k = (K, ky)) is equivalent to the condition

e(a-k —ky) € (asc,acd).

isk'




Construction of Correctors

proof continued.
Lett=t(k')=¢c(a-k —k,). Thent € (—%, %)
And, since
—ek+ ((ek+T.)NT) =T N (¢(K)en + 1),
the shape of ((¢k + T.) NT') is completely determined by ¢ = ¢(k"). Hence we
have

Vil = / (Vwl/e¥n 2de = g.((t/ac)vn).
B /2 (ek) B. /2




Construction of Correctors

proof continued.

For given any M € N, let § = %=¢ and I(i) defined as follow:
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Construction of Corrector

Construction of Correctors

proof continued.

Since UM, I(i) = (c,d), we have

M
/ |Vw, |*dz = Z Z / |V |2da
E B

=1 t(k') Ja-€1(i) * Be/2(2h)

Let No = #2Z.. And A;(e) = #{t(k)/a- € I(i) : k' € Z.}.
Note that t(k')/e are distributed in a unit interval.
We assume that those points distributed uniformly. In other words, we have

Aife) = (14 pE)NE) L, p(0+4) = 0.

3




Construction of Correctors

proof continued.

From those, we have

[ 1vuep =y Y /

i=1t(k")/a-€1(3)

S ZAl(E)

t/ac€I(i)

az0

< (L4 pOINE Y

3

< (1+pEN%

where 5(0+) = 0.

( ) ae 5

|Vw?|?dx

s/2(5k)

sup  ge((t/ac)vn)

M

sup ga((t/as)l/n)
= 1t/a5€I(i)

7 sup Gu((tasva),

P t/a-€1(i)
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Construction of Corrector

Construction of Correctors
proof continued.
Taking limit superior on both sides we obtain, by the uniform convergence of G,

(d—c
M~

~
=
w0
=
e}
~
5
3
~

limsup/ |Vw, |*de < o(T')
B

e—=0

Then, passing to the limit M — oo,
limsup/ |Vw5|2dx§a(1"§5)/f(t~un)dt
e—0 E
F/
- "(VE) /f(s)ds —o(Tn E)/f(s)ds

In a completely analogous way, we find

hmmf/ |Vw,|*dz > o(T'N E) /f

zDz::




Construction of Corrector

Proof of Proposition

Proposition (Existence of Corrector)
LetT'={z € R";(x —x0)-v =0} and let a. = c7-1. Then, for almost all
v € S™71, there exists a sequence of functions w, satisfying

Q w.=1o0onT,

Q w. — 0 weakly in H}(Q2)

© For any sequence z. € H}(Q) such that z. =0 on T,
2. — z weakly in H}(S)) there holds

lim < Awe, pze >g-1 g1 — cap,(T) / pzdo
e—0 770 r

for all p € C§°(€2).

Ze|lpe (o) < C and

(3.2)
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Construction of Corrector

Proof of Proposition

Lemma (Compact embedding with o(e) error)

Suppose v. — v weakly in H}(Q) and let T' = QN {xz,, = 0}. Then

€
1/ /(ve(x’,:vn) —v(2',0))dz'dz,, — 0.
€Jo Jr

Next we note that there exist measures p* and v/* such that

Awk =y — ¥ supp pF € OB.(ek), supp vt C AF.

He :ZHI;'
k

We define
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Proof of Proposition

Lemma

Fora.e. v € S™" L, u. — cap,(T)o in the weakly star sense of measures. That is,

() = can,(T) [ pdo, for all p € C2(@).
T

Proof.
Since (1 — w,) is zero on T'. and 1 on Ui0B.(ck) we get

/d,ug = / Aw: (1 —w,) :/ |Vw,|?dz < C.
Q Q Q

Thus pe — p in the weak-* sense of measure for some finite measure p.

Clearly, supp u C I and,
/ dp = lim/ dpe = / |Vwe|*dx — cap, (T)o(ENT)
E ¢ JE E

tells us the shape of p.




Construction of Corrector

Proof of Proposition

Let ve (2, 2n) = (zep) (@', ex) and v(2', ) = (2p)(2’,0). Then, from the
compact embedding lemma, we have

1 e/2 , ) /
g/ /H|(Zap)($7$n)—(2p)(x,0)|dx dz,

—e/2
1/2

/ |(zep) (', e2) — (2p)(2',0)|dx’ dz), — O
I

1/2
and thus
(2:0) (2", exn) =t ve (2, 2p) = (@', 2,) = (2p)(2",0),

a.e.on S:=Tx(-1/2,1/2).
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Construction of Corrector

Proof of Proposition

By Egoroff's theorem we can assert the existence of a set Sy such that
ve — v uniformly on S5, S\ Ss| < 4,

for any § > 0.
Upon rescaling we find: There exists €y > 0 such that

|(zep) (2, ) — (2p)(2',0)] < don S5, [S°\ S5| <ed, foralle< e,

where, for any set E € R”, E¢ = {(2/,ex,) : (2/,z,) € E}.
Note that since Aw. = . — v, with suppr. C Iz and z. =0 on T,

/Awgpzadx:/ngd,us.
Q Q

This allows us to compute

' /Q (zep — 2p)dpte

< [l spldpe+ 2o~ [ de
S5 55\ S5
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Construction of Corrector

Proof of Proposition

The first term converges to 0 because z.¢ converges to z¢ uniformly on S§ and

the last term is smaller than C¢ for arbitrary § > 0. So, UQ(zep — zp)d,u€| should
be converge to 0.

Finally, we are done if we prove

lim [ zp(2',0)du. = capl,(T)/zpda.
e=0 Jq r
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Uniform Distribution for the 1-dimensional sequence

Definition (Uniform distribution mod 1)

© Let {7,}72, be given sequence of real numbers. For a positive integer N and
a subset E of [0, 1], let the counting function A (E;{z;}; N) be defined as
the numbers of terms z;, 1 < j < N, for which z; € E (mod 1).

@ The sequence of real numbers {x;} is said to be uniformly distributed
modulo 1 if for every pair a,b of real numbers with 0 < a < b < 1 we have

i Ae,0)i {2} N)

=b—a.
N—o0 N “
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Uniform Distribution Sequence

Uniform Distribution for the 1-dimensional sequence

Lemma (Weyl's criterion)

A sequence {x;}52, is uniformly distributed mod 1 if and only if
| X
~ Z 2™ 50, as N — o0,
=1

for any nonzerol € 7.

From the Weyl's criterion, we can easily check that the sequence {ka}ren is
uniformly distributed modulo 1 sense if « is a irrational number.
In other words, the sequence {ka} satisfies the following:

A(fa, b); {z;},N) = (b — a)N(1 + p(N 1)),

37/47



Uniform Distribution Sequence

Uniform Distribution for the 1-dimensional sequence

But, we cannot assert that above is true when the length of interval is shrinking
as j — 0o. This is a much stronger result that relies on deeper arithmetic
properties of .

Definition

Let {xj}?i1 be a sequence of real numbers. The discrepancy of its N first
elements is the number

A([a7b);{$j};.;17N)
Dy({z;};5) =  sup N —(b—a)l.

0<a<b<1

If z; = ja, we simply write Dy ().
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Uniform Distribution Sequence

Uniform Distribution for the 1-dimensional sequence

Theorem (Kesten,1964)
NDy(a) 2

log N log(log N) e

in measure w.r.t. o as N — oo. In particular, this result is true for a.e. « in a
bounded set.

Corollary

For a.e. a € R holds
lo 2+5N
Dn(a) =0 (gT ;

for any § > 0.

Definition

If o € R satisfies the condition above, then we write

a€ A




Application to the Sequence {k'a}

I={x|x, =x"-a}

€
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Uniform Distribution Sequence

Application to the Sequence {k'a}

Lemma

Let « = (a1, ,qy,) be any vector in R™. Suppose that E C R™ is a (regular)
subset with positive measure. Suppose also that «; € A, for at least one
ie{l,---,m}.

Let

N(e) = #(EnZ™)
A(eP ) == #{k' e ENZ™ : t(K')/Z =€ (c,c+ €P)/Z}
Then for any 0 < p < 1,

A(eP,c¢) = (1 + p(e))N(e)eP, for some p such that p(0T) = 0.
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Uniform Distribution Sequence

Application to the Sequence {k'a}

Proof.

Suppose first that E is a cube, E = = + (a,b)™. Without loss of generality, we
may assume «,, € A.

Let
SLi={K ezZ™ " (K, ky) €e'E, forsome k,, € Z}.
If & € S., there exists integers m. and M, such that
(K' k) € (e*E)NZ™,  for m. < ky, < M..

Hence we have
N(E) = (#SE{Z)HE’ HE = Ms — Me.




Application to the Sequence {k'a}

proof continued.

M, 1E_x+1 pym
gf=gts@h
m€
) r
PN
‘\Srs
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Uniform Distribution Sequence

Application to the Sequence {k'a}

proof continued.
Let

A (EPe) = #{km : &/ - K + "k € (c,c+EP)/Z,m. <k, < M.},

Then,
AP, c) = Z A (€, ¢).

k'€S!
From the definition of A(e?,t), we conclude that
A (eP c) = #{km : ' - K + amkn, € (c,e+P)/Z,me < Ky, < M}
= #{km : kmim € (6,6+€P)/Z, 1 < by < H. + 1}

for some ¢. O
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Uniform Distribution Sequence

Application to the Sequence {k'a}

proof continued.

By applying Kesten's theorem to the set
{km : kmaum, € [¢,¢+€P)/Z, 1 < k,, < H. 4+ 1}, we have

A (eP
e R X
Ay (eP
:"C(E’C)_EP < Dy (o) =0(H;?), 0<p<l.
H.
And hence
AP o) | _ He Ak’
_ < == P
o< 2 -
<£Z = Dpy_(am) = o(e?), ase — 0.
s N e e m ’
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Uniform Distribution Sequence

Application to the Sequence {k'a}

proof continued.

It can be easily extended when E is a finite union of cubes.

Finally, when E is just measurable, approximate E by a finite union of cubes U.
Then, by applying the previous result, we get the conclusion. ]
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Uniform Distribution Sequence

Thank You!
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