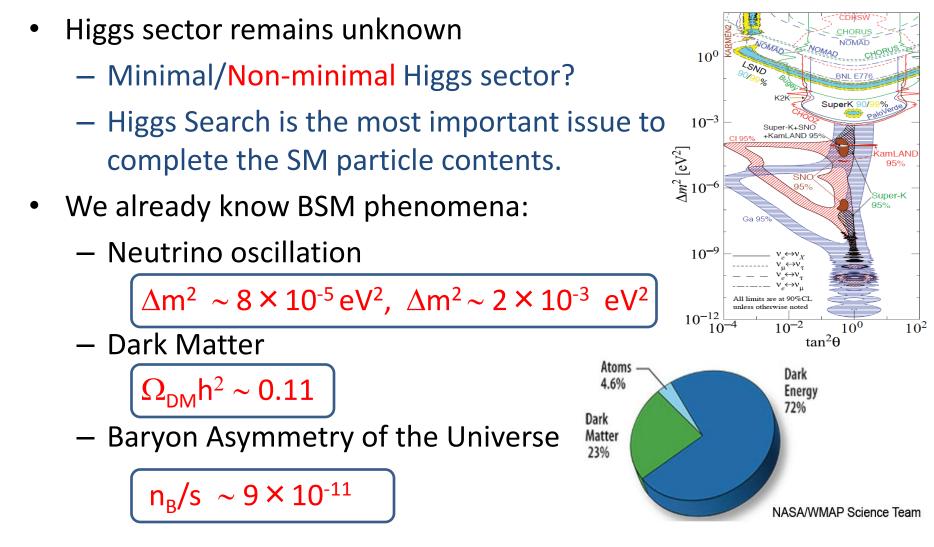
KIAS Workshop on Theoretical Issues in Neutrino Physics

13 - 16, November, 2011 Korea Institute for Advanced Study


Seesaw from the Loop-Induced Neutrino Dirac Yukawa Coupling

Shinya KANEMURA University of TOYAMA

S.K., T. Nabeshima, H. Sugiyama, PLB703, 66 (2011) S.K., T. Nabeshima, H. Sugiyama, arXiv: 1111.0059

Introduction

To understand these phenomena, we need to go beyond-SM

2 possibilities

- 1) Scenario dependent on very high scales
 - Maybe compatible with canonical GUTs
 - Large mass hierarchy
 - A direct link to the GUT or Planck Scale?
 - Too high to be tested

- 2) Scenario due to the TeV scale physics
 - Renormalizable theory at the TeV scale
 - No large hierarchy among mass scales
 - Strong connection to Electroweak Symmetry Breaking
 - Testable at collider experiments

Neutrino Mass

Neutirno Mass Term (= Effective dim-5 operator)

$$L^{eff} = (c_{ij}/M) v^{i} v^{j} \varphi \phi$$

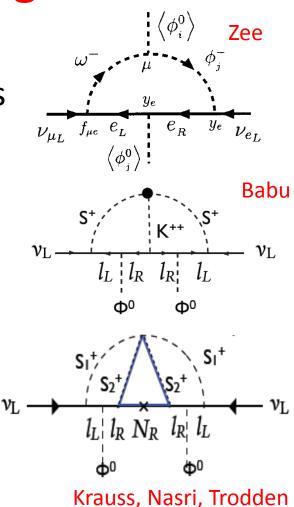
$$\langle \phi \rangle = v = 246 \text{GeV}$$

Mechanism for tiny masses:

$$m_{ij}^{v} = (c_{ij}/M) v^{2} < 0.1 eV$$

Seesaw (tree level) $m_{ij}^{\nu} = y_i y_j v^2 / M$

(M>> 1TeV)

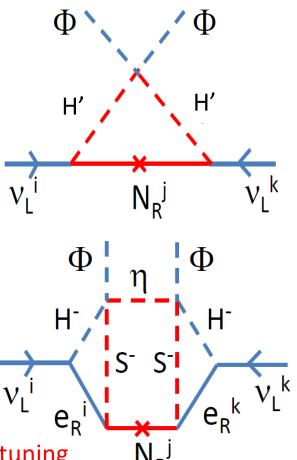

<u>Quantum Effects</u> N-th order of perturbation theory $m_{ij}^{v} = [g^{2}/(16\pi^{2})]^{N} C_{ij} v^{2}/M$ (M can be 1 TeV)

Scenario of Radiative vv \$\$ generation

- Tiny v-Masses come from loop effects
 - Zee (1980, 1985)
 - Zee, Babu (1988)
 - Krauss-Nasri-Trodden (2002)
 - Ma (2006),
- Merit
 - Super heavy particles are not necessary

Size of tiny m_v can naturally be deduced from TeV scale by higher order perturbation

Physics at TeV: Testable at collider experiments



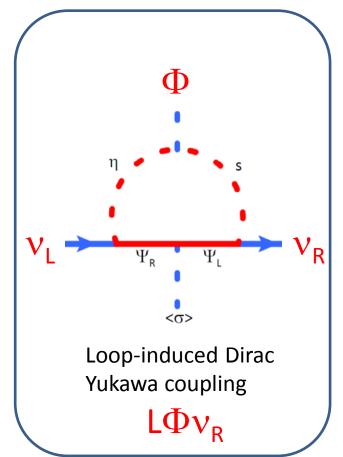
Radiative seesaw with Z₂

Z₂-parity plays roles: 1. No Yukawa coupling (Radiative neutrino mass) 2. Stability of the lightest Z₂ odd particle (DM)

- Ex1) 1-loop Ma (2006)
 - Simplest model
 - $-SM + N_R + Inert doublet (H')$
 - DM candidate [H' or NR]
- Ex2) 3-loop Aoki-Kanemura-Seto (2008)
 - Neutrino mass from O(1) coupling
 - $2HDM + \eta^{0} + S^{+} + N_{R}$
 - DM candidate [η^0 (or NR)]
 - Electroweak Baryogenesis

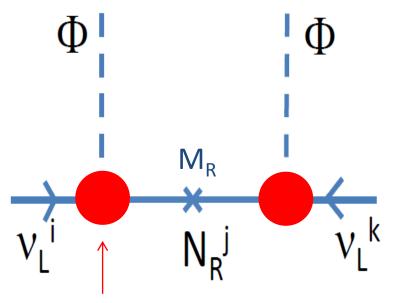
All 3 problems may be solved by TeV physics w/o fine tuning

Questions on Radiative Seesaw with Z₂


- What is the origin of LNV at the TeV scale?
- What is the origin of the DM mass?
- Where the Z₂ parity come from?

Gauged U(1)_{B-L} would solve these problems

- LNV: SSB of U(1)_{B-L} at the TeV scale
- DM mass: chiral for U(1)_{B-L}
 → Dirac fermion after the SSB
- Global U(1)_{DM} as remnant of the SSB of U(1)_{B-L}


Phenomenological interest

- It is interesting if mass of v_R is at TeV
- Seesaw Mechanism:
 - v_R must be very heavy, if y=O(1)
- Radiative Seesaw:
 - v_R can be at the TeV scale w/o fine tuning but it is Z_2 -odd in many models
- Can we have mechanism to have a TeV scale Z_2 -even V_R w/o finetuning ?
- Loop-induced the Yukawa coupling!
- After the SSB of Lepton Number at the TeV scale, Type-I seesaw happens with
 TeV-scale v_R via the loop-induced Dirac Yukawa coupling

Raditative Type-I seesaw model

If Dirac Yukawa couplings are 1-loop induced, M_R can be at TeV scale or below w/o large fine tuning (g~0.1).

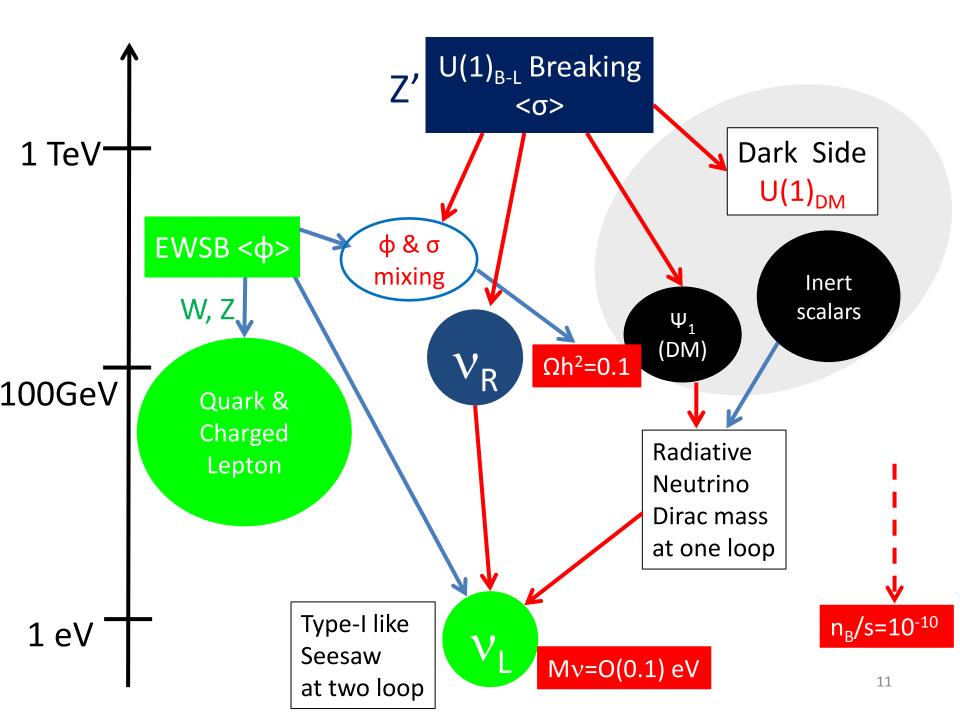
1-loop induced Yukawa

 $M_{\mbox{\tiny NR}}$ is naturally at TeV scale so that it is testable at LHC

In this model, v_R is Z_2 -even, so that it can decay into SM particles DM candidate may be in the loop sub-diagram of Yukawa coupling

Our Model

S.K., T. Nabeshima, H. Sugiyama arXiv: 1111.0059


 $SU(3)_{C} \times SU(2)_{I} \times U(1)_{Y} \times U(1)_{B-L}$

- Z' : B-L gauge boson
- σ^0 : B-L Higgs
- v_{R}^{i} : RH-neutrino (i=1,2)
- Ψ_{L,R}ⁱ: chiral (i=1,2)
- s⁰ : singlet
- η : doublet

half-unit B-L charge Remnant global U(1)_{DM} remains after SSB of B-L

Masses of ν_{R} and Ψ are generated by SSB of U(1)_{\text{B-L}}

Particles	s^0	η	$(\Psi_R)_i$	$(\Psi_L)_i$	$(\nu_R)_i$	σ^0
$SU(3)_C$	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
$SU(2)_L$	<u>1</u>	<u>2</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
$U(1)_{Y}$	0	1/2	0	0	0	0
$U(1)_{B-L}$	1/2	1/2	-1/2	3/2	1	2

$$U(1)_{B-L} \Rightarrow \text{Masses of Z', } v_{R} \text{ and } \Psi$$

$$B-L \text{ gauge boson Z'} \qquad m_{Z'} = 2g_{B-L} v_{\sigma} \qquad v_{\sigma} [= \sqrt{2}\langle \sigma^{0} \rangle]$$

$$\text{LEP bounds: } m_{Z'}/g_{B-L} = 2 v_{\sigma} > 6-7 \text{ TeV} \Rightarrow v_{\sigma} > 3-3.5 \text{ TeV}$$

$$\text{Weyl fermions } v_{R}, \Psi_{L}, \Psi_{R}$$

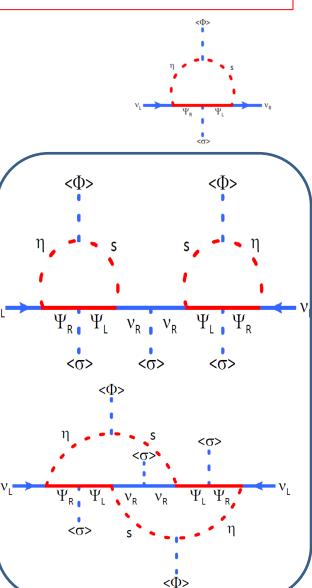
$$\mathcal{L}_{\text{Yukawa}} = -(y_{R})_{i} \overline{(v_{R})_{i}^{c}} (v_{R})_{i} (\sigma^{0})^{*} - (y_{\Psi})_{i} \overline{(\Psi_{R})_{i}} (\Psi_{L})_{i} (\sigma^{0})^{*}$$

$$\boxed{m_{\nu_{R}} = \sqrt{2}y_{R}v_{\sigma}} \qquad \text{Majorana mass of } v_{R} \qquad \sum_{\gamma_{R}=0.05, v_{\sigma}=3 \text{ TeV}} (\psi_{R})_{\Gamma} \psi_{R} = 100 \text{ GeV for}$$

$$\boxed{m_{\Psi} = y_{\Psi} \frac{v_{\sigma}}{\sqrt{2}}} \qquad \sum_{\text{Dirac mass of } \Psi} (\Psi^{1}) \text{ is the DM candidate}$$

$U(1)_{B-L} \Rightarrow$ Mass of Neutrinos

- No Yukawa $L \Phi v_R$ by the B-L charge assignment
- $\mathcal{V}(1)_{B-L}$: Source of LNV $v_{\sigma} \rightarrow m_{vR}, m_{\psi}$
- $U(1)_{B-L}$: Remnant $U(1)_{DM}$
- Radiative generation of the operator $L \Phi v_R \sigma$
- Seesaw mechanism \rightarrow Majorana mass of v_L


$$(m_{\nu})_{\ell\ell'} = \left(\frac{1}{16\pi^2}\right)^2 f_{\ell i} h_{ia} (m_R)_a (h^T)_{aj} (f^T)_{j\ell'} \frac{(8\pi^2 \sin 2\theta)^2 m_{\Psi_i} m_{\Psi_j}}{(m_R)_a^2}$$

The correct neutrino mass O(0.1) eV can be deduced from TeV scale physics w/o fine tuning

- All mass parameters = O(0.1 1) TeV
- All coupling constants = O(0.1)

Mass structure is similar but not exactly same as the tree-level seesaw scenario.

S.K., T. Nabeshima, H. Sugiyama, arXiv: 1111.0059

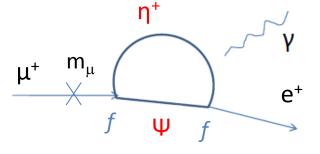
A viable parameter set (Set A)

$$s_{23}^2 = \frac{1}{2}, \quad s_{13}^2 = 0, \quad s_{12}^2 = \frac{1}{3},$$

 $\Delta m_{21}^2 = 7.5 \times 10^{-5} \,\mathrm{eV}^2, \quad |\Delta m_{31}^2| = 2.3 \times 10^{-3} \,\mathrm{eV}^2.$

Coupling constants are all O(0.01 -0.1)

Masses are O(0.1-1) TeV

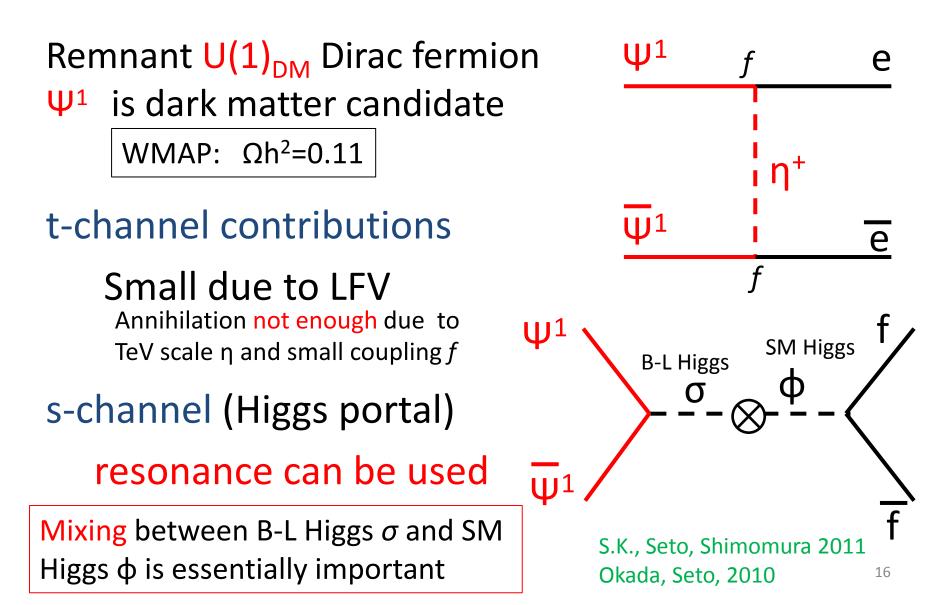

Among Ψ , s⁰, η which have U(1)_{DM} charge, Ψ^1 is the DM candidate

$f_{\ell i}$	$\begin{pmatrix} -0.00726 & 0.00667 \\ -0.0523 & 0.0206 \\ -0.0378 & 0.00723 \end{pmatrix}$			
h_{ij}	$\begin{pmatrix} -0.119 & 0.150 \\ 0.150 & 0.150 \end{pmatrix}$			
$(y_3)_{ij}$	$\begin{pmatrix} 0.0152 & 0.0152 \\ 0.0152 & 0.0152 \end{pmatrix}$			
$m_R \equiv (m_R)_1 = (m_R)_2$	$250{ m GeV}$			
$\{m_{\Psi_1}, \ m_{\Psi_2}\}$	$\{57.0{ m GeV},\ 800{ m GeV}\}$			
$\{m_{h^0}, \ m_{H^0}, \ \cos\alpha\}$	$\{120{ m GeV},\ 140{ m GeV},\ 1/\sqrt{2}\}$			
$\{m_{s_1^0},\ m_{s_2^0},\ \cos\theta\}$	$\{200{ m GeV},\ 300{ m GeV},\ 0.05\}$			
$m_{\eta^{\pm}}$	$280{ m GeV}$			
$g_{\rm B-L}$	0.2			
$m_{Z'}$	$2000{ m GeV}$			

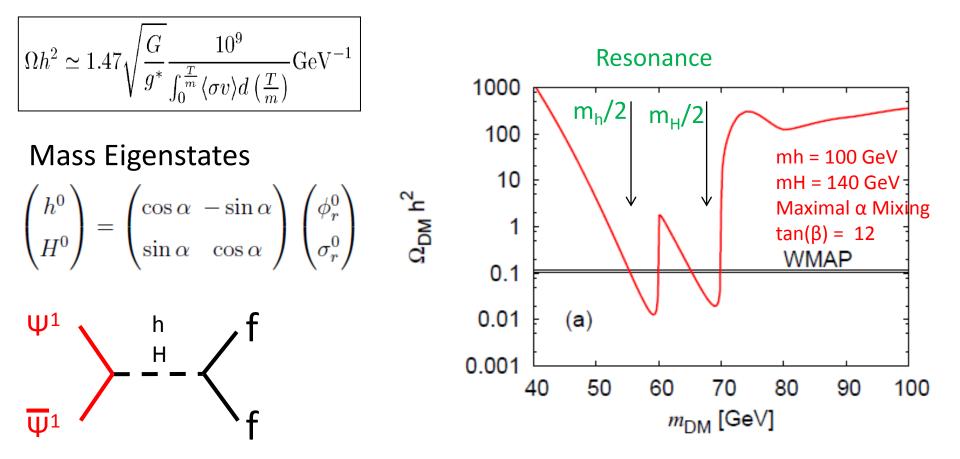
LFV constraint

 Ψ and η (have U(1)_{DM} charge) contribute to $\mu \rightarrow e \gamma$ process

$$BR(\mu \to e\gamma) = \frac{3\alpha_{EM}}{64\pi G_F^2} \left| \frac{1}{m_{\eta^{\pm}}^2} f_{\mu i} F_2\left(\frac{m_{\Psi_i}^2}{m_{\eta^{\pm}}^2}\right) (f^{\dagger})_{ie} \right|^2$$



Experimental upper bound $Br(\mu \rightarrow e\gamma) < 2.4 \times 10^{-12}$ is satisfied


For Set A, it is evaluated as $Br(\mu \rightarrow e\gamma) = 5.1 \times 10^{-13}$ Safe against the current bound but can be future experimental reach

$$F_2(a) \equiv \frac{1 - 6a + 3a^2 + 2a^3 - 6a^2 \ln(a)}{6(1 - a)^4}$$

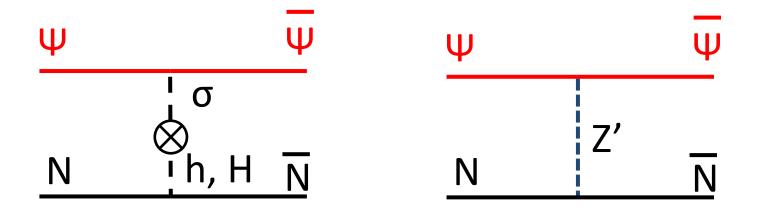
Thermal relic abundance of Ψ^1

Thermal Relic Abundance of Ψ^1

 Ψ can explain Ω h²=0.11, so that Ψ^1 can be a Dirac DM

Direct searches

Ex) XENON 100 Results


$$\sigma(\Psi_1 N \rightarrow \Psi_1 N) < 8 \times 10^{-45} \text{ cm}^2$$

E. Aprile et al, PRL107,131302 (2011)

Prediction in our model for set A

$$\sigma(\Psi_1 N \to \Psi_1 N) = 2.7 \times 10^{-45} \,[\mathrm{cm}^2]$$

Z' mediation dominant

Testable at ILC and the future direct detection experiments

Parameters Mass Spectrum Inputs Vs = 3-4 TeVV =246 GeV Neutrino mass mixing 1TeV Z' LFV Mh=O(100) GeV DM abundance MH=O(100)GeV $Sin\alpha = 1/Sqrt[2]$ Direct search results tanβ=12-15 H' LEP precision tests MNR=50 GeV Z' search results mZ'= 1000-2000 GeV N_R $g=y=\lambda 5=O(0.01-0.1)$ Particle mass =O(0.1-1) TeV 100GeV h, H

Մ1

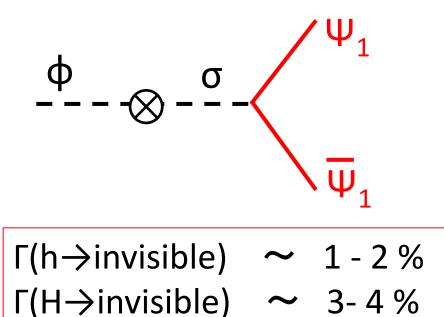
DN

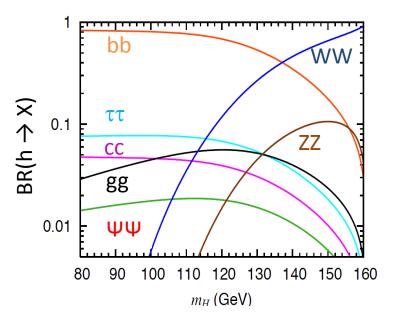
Multi Higgs [h and H]

Large Mixing $[\alpha \sim \pi/4]$ [$\leftarrow \Omega h^2 = 0.11$] All the *ffh, ffH* coupling constants are 1/Sqrt[2] of the SM *ff* φ_{SM} values.

 $\Rightarrow \Gamma(h,H \rightarrow ff) \sim (1/2) \Gamma(\varphi_{SM} \rightarrow ff) \\ \Gamma(h,H \rightarrow VV) \sim (1/2) \Gamma(\varphi_{SM} \rightarrow VV) \\ \sigma(pp \rightarrow h,H) \sim (1/2) \sigma(pp \rightarrow \varphi_{SM})$

But , $B(h \rightarrow X) \sim B(H \rightarrow X) \sim B(\varphi_{SM} \rightarrow X)$


Two SM-like light Higgs bosons with about a half width


Similar to Type I 2HDM, but no charged Higgs states H⁺, H⁻.

Easily testable at the LHC and the ILC

Invisible Higgs decays

Higgs decays into $\Psi_1 \overline{\Psi}_1$ via the same coupling as the DM annihilation

ILC may be able to test the Higgs invisible decay at the 1 %level

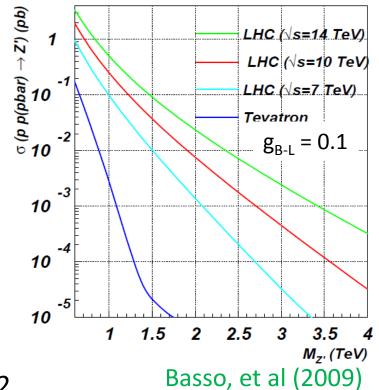
Physics of Z'

Z' Mass: 500 GeV - a few TeV $\Gamma(Z' \rightarrow XX) \propto (B-L \text{ charge})^2$

Decay rates determined by B-L charges

Invisible decay = 40 %

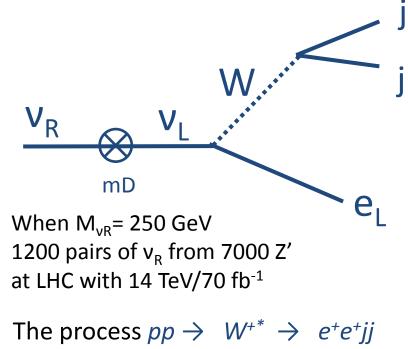
$$\begin{array}{ll} \mathsf{Z}' \rightarrow \ \mathsf{v}_{\mathsf{L}} \mathsf{v}_{\mathsf{L}} & 0.15 \\ \mathsf{Z}' \rightarrow \ \Psi_{1} \ \Psi_{1} & 0.13 \\ \mathsf{Z}' \rightarrow \ \Psi_{2} \ \Psi_{2} \ \rightarrow \ \mathsf{v}_{\mathsf{L}} \mathsf{v}_{\mathsf{L}} \ \Psi_{1} \ \Psi_{1} \ \text{etc} & 0.12 \end{array}$$


Production Cross section at the LHC:

For $v_s = 3.5$ TeV and $m_z'=2$ TeV, we have $g_{B-L}=0.2$, then

 $\sigma(pp \rightarrow Z') = 70 \text{ fb}$

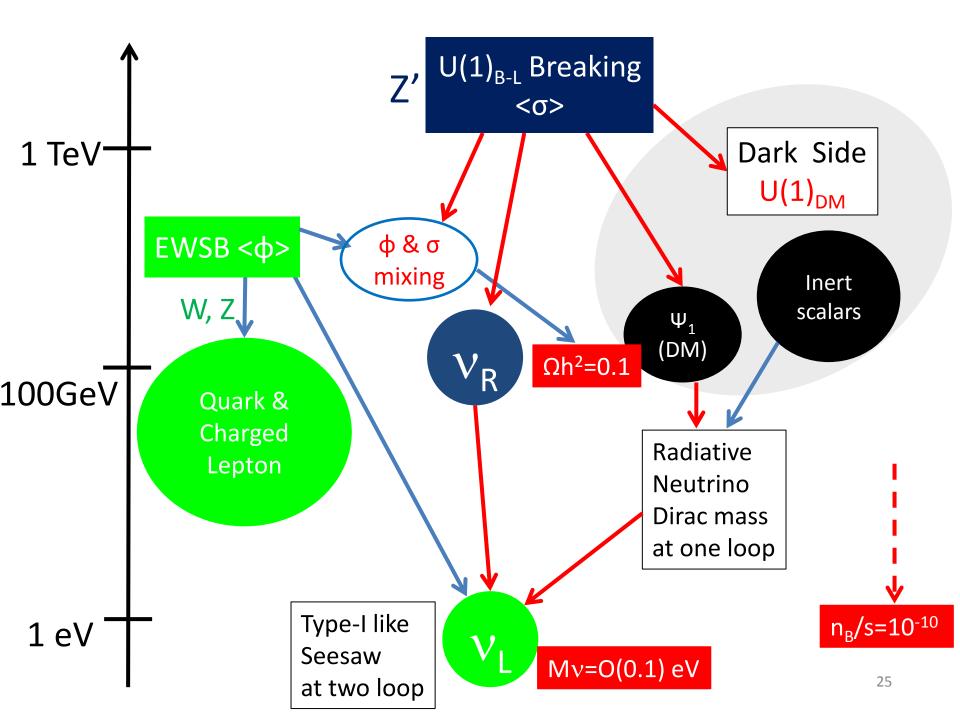
Model can be tested by measuring (invisible) decays of the Z' boson


7000 of Z' are produced for 100fb⁻¹

light RH neutrinos

- light RH neutrinos are a good feature of the scenario of radiative Dirac masses
- RH neutrinos are produced from Z'
- It decays via Dirac mass term
- Reconstructing jje or jjµ, RH neutrino can be tested at the LHC/ILC/CLIC

${\rm BR}(\nu_R \to XY)$						
$W^{\pm}\ell^{\mp}$	$Z\nu_L$	$h^0 \nu_L$	$H^0 \nu_L$			
0.53	0.28	0.10	0.09			


can also be useful

Summary

• Radiative seesaw scenario is interesting:

Testability and strong connection with EWSB

- A model with gauged U(1)_{B-L} (SSB at the TeV scale)
- A remnant global U(1)_{DM} remains after the SSB, which forbids tree-level Yukawa coupling and also guarantees stability of DM
- The SSB also gives Dirac mass of Ψ^1 (DM) as well as Majorana mass of v_R at tree level
- Dirac Yukawa coupling is also induced at one-loop level after SSB.
- Type-I seesaw mechanism occurs at two-loop level, and tiny neutrino masses can be explaind w/o excessive fine tuning
- A light v_R (O(100)GeV) is predicted: testable at the LHC
- A unique Higgs sector is predicted (two SM-like Higgs bosons)
- Invisible decay of Z' can also be used to test the model

