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e Introduction

Many experimental evidences are found for dark matter
(DM).

@ rotation curves of spiral galaxy
o CMB observation by WMAP
@ gravitational lensing

@ large scale structure of the universe  etc...

74% Dark Energy

DM exists !




The Nature of DM

@ /ero electric charge
@ Non-relativistic particle

@ Stable or extremely long lifetime

YY — SM particles

3.0 x 10726
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WMAP requires the annihilation cross section:

(ov) ~ 3% 107%[cm®/s]
~ 1077[GeV~?]




Indirect detection

The produced particles are observed as the cosmic ray
(ex.v,p. v etc).

PAM ELA O. Adriani et al. arXiv:0810.4995, arXiv:1007.0821

e observation anti-proton observation

=t
=

=1
T
T

—Notiee: Fermi"g(p.
reached at 20%_ eV.
—F}j— :

=1
ka
T
=
[

£
T
=
[

ANSE M Agudai ol al)
i BESS-garlarid ¥, Ak ot al.)
- BESH 1908 (Y. Aasin ai al)

antiproton flux [GeV m* s sr]”

=
=

- BESS2000 (Y. Assskn al al)
o CAFRICE1HE M. Boozis al al)
CAPRICE1HM (M. Boozis al al)

©
k-3
+
)
s
)
k-3
c
=]
S
&

T
-t
[ =]

i

] FAMELA

| 4§
M11 1 1 1 1 11 11 1 1 1 ||||!|m 1[] 1111

Energy (GeV)

11
10 10°
kinetic energy [GeV]

Leptophilic DM is in favor of explaining the observation
of the positron excess and no excess of anti-proton.




Annihilation DM

(ov) ~ 1077 [GeV ™7 for et excess of PAMELA

(ov) ~ 107 Q[Gf*\-’ ] for correct relic abundance
O(100) difference

o Breit-Wigner enhancement
Techniques: @ Sommerfeld enhancement
@ Non-thermal production of DM

Decaying DM [~ (TeV)>/A* ~ 1072%/sec.




Flavor dependence on
DM DM = ¢'¢
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dependence exists
for gamma ray flux.
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Constraint from gamma ray ¢ wieade et al aiv 09050480 M. Papucei et al., 00120742

Annihilation

DM DM = ¢'e” . NFW profile
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Decaying

DM = 4u, 130thermal profile
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Direct detection

Important to search the DM!
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D 6 Model



D 6 Group

® Dihedral groups N(N=3,4,5,...) are the
non-abelian finite subgroups of SO(3).

The element

—sinfy cosfy
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RN:< cosfy sinfy

|2 elements, four singlets and two doubles.




Dg Flavor Symmetric Model Eur.Phys.J.c71:1688,2011. (Y. kajiyama, H.0., T. Toma)

o Field contents
SM + n;, n and ¢
D¢ X Zo X Zy symmetry is imposed.
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@ Dg — predict the lepton mixing, restrict annihilation

channels of DM
o Zs — suppress FCNC of the quark sector

® /o — forbid Dirac neutrino masses and stabilize DM
candidate

Lipton = D |V (Laio2da)ef + Yos!(nhLa)ms
ab,d=12 5

M,y Mg
nrny — > ngng

&
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After the EWV breaking, the neutrino masses are radiatively
generaed.

E. Ma(phys.Rev.D73:077301,2006)

Y*YVk 0 M E
m,, ~ 14

(47)2 Mg

5 &

k<1, YY~1, Mg, M, ~1][TeV].

Predictions:

@ [he maximal mixing of atmospheric neutrino is derived.

o Inverted hierachy is only allowed. ( |Am3,| < |[AmZs] )




DM candidates :Z5 odd particles

— 1% 1%, nr, ns

We assume ng to be DM. It is interesting because there are
only a few parameters due to Dg flavor symmetry.

We have to study whether ng can satisfy the correct relic

abundance.
ny. Ng. Ng

0 h :

LOnit;Yyn;,, Y~ 00 — for charged leptons
" 0

0 0 _
LD ?;?E}’;j-?'r.j-_ Y = ) 0 0 for neutrinos

0 h




Indirect Detection (e* excess)

This process is enhanced by the Breit-Wigner enhancement,
and effective at only the present universe, and neglected at the
early universe.




CmMpy=230GeV ———
Mpn = 450 GeV 3 Note:
Mgy = 790 GeV -]

230GeV < Mg < 750GeV

comes from the WMAP
and LFV experiments.

Positron Fraction

Remarks: These shapes of the line are
only determined by the final particles.




Direct Detection

ns

This process ocuurs through
the Higgs mixing.

" mixing=0.1
CDMS|| Soudan (All) ——

CDMSI Soudan Ge
XEMOM100 ——
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| NOTE:
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5 [GeV]
then a light dark matter can be

T ey gy considered to explain CoGent.
(1109.2722;Y. Kajiyama, H.O., T.Toma)

(2,-1/2)
2.’

1 2! 1 "
+ + 7
~—~

_|_ —
- - R -~




Decaying DM Model

(A _4,T 13)




Decaying Dark Matters

To minimaly well-explain Indirect
detection like PAMELA/Fermi-Lat

L= +MXX

A~GUT scale(107 16 GeV) ——> ' ~ (TeV)*/A* ~ 1072 /sec.

However one simultaneously has to forbid
many terms in the SM model without any
symmetries except the baryon number !

Diimensicns DM decay operators
4 LH*X
5 _
& LELX, HHLHX, (H°D,H*E+X,
QDLX, UQLX, LDQX, Uy DEwX,

DFHD,LX, D+D,H°LX, (Baryon number is conserved)
B, Lo HX, W& Lo r"HX

Tahle 3: The decay operators of the gauge-singlet fermionic dark matter X up to dimension s By, TrTf'E,,
and [y are the field strength tensor of hypercharge gauge boson, weak gauge boson, and the electroweal:

covariant derivative.



NOTE | 1..

p
NOTE |..

~N

.How to realize such a situation?

.How to control the final state enough?
(No pure tauon by gamma ray Fermi-Lat exp.)

arXiv:0912.0742

J

Non-Abelian discrete symmetries might give us an

answer!!

O A 4 Model Matsumoto, H.O., Yoshioka, etc, (Phys.Lett.B695:476-481,2011.)

Comp

oT 13 Moc

ete universal decay mode is achieved.

el Yajiyama, H.O., (Nucl.Phys.B848:303-313,2011.)

Two family universal decay mode is achieved.

(If you assgin appropriately.)




A 4 Model

Even permutation of N objects. It has N!/2 elements.

A 4..lIt is known as a minimal group with
triplet (three singlets and one triplets).

U D - E H

21/6 193 143 200 14 21 /2 1o

singlets singlets singlets 3 3 (1,17,1") 1

Table 2: The A, charge assignment of the SM fields and the dark matter X.

This assignmnets derive the universal decay mode.

% A 5 (A’_5) can derive the decay mode.
(1110.3640 with K. Hashimoto and H.O.)




The symemtries determind the final states!!!

Br(X — e*uFr,) = Br(X — 7%e¥y,) = Br(X — p=771,) =

" Mgy =1.0TeV
Background

Moy = 1.0 TeV
Background

Positron Fraction

X -
E'([D ot Do) i) (GeV /™ sec str)

100 1000 100
E [GeV] E [GeV]

Figure 1: The positron fraction and the total e™ 4+ e~ flux predicted in the leptonically-
decaying DM scenario with A4 symmetry. The DM mass is fixed to 1, 1.5, and 2 TeV. As
for the DM decay width used in the fit, see the text.

The universal decay mode is fitting well !
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T 13 Model

It consists of 4 triplets and 3 singlets.

The generators, a and b, are represented e.g. as

0
b=1| 0 3
1

0
0
fin
where p = 2™ Thege olements are classified into seven conjugacy classes,
'f_-rj_ : {E“}
Cll s b, ba, ke, ., Bal?, hall, Bal?),
o B, BPa, BPe?, .., FPa!®, e, et
s, [a. a , f:g},
Cs, - [at, a'?, al?},
s, : [a®, a5, af},
Oy, - [aT , a®, all},

The Tis group has three singlets 1, with k = 0, 1, 2 and two complex triplets 3; and 34
irreducible representations. The characters are shown in Table 1, where & = g+ §° + ¢, &
4 gt 45, and w = &M,

Next we show the multiplication mules of the Tis group. Wa define the triplets as

Ty
31 = T3

Iy

where the subscripts denote 3 charge of each element.




The tensor products between triplets are obtained as
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Two triplet multiplication rules give different type of triplets
that is different from A4 and A(27).
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The tensor products between singlets are obtained as
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The tensor products between triplets and singlets are obtained as
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In the following section, we discuss mass matrices of the lepton sector determined by the Tig

flavor symmetry.




T(13) assignments

Q) o D L E H H X
SN2 = U 1y 218 Lo 1_ 45 2_1_{-5 L 4 2y 2y Ly

Tis lpga loaz lopz S 33 31,32 loga 1o
.33 1 et w? 1 1 1 wd 1

Table 2: The Tz and Z5 charge assignment of the SM fields and the dark matter X, where w = £2™/3,

This assignmnets derive the two family universal
decay mode.




The symemtries determind the final states!!!

BR(X — HEE;E;]

(,B.Y)=[(eTe), (Hel),(TUT), (eeT), (UHe),(TTH),]/6

...three families are mixed

T T T ™ 3':":' T T
mDM = E.D -I-Ellln'I _; mDM = ED TE:I'i'I

Mgy =3.0 TeV ®. 200 Mgy = 3.0 TeV
Background i : Background
- T i
"l""’""'l. . v B

100 1000 1000 3000
E [GeV]

B9 |t 1D, | gug) (G

The two family universal decay mode is also fitting well !




Some Non-Abelian discrete symmeties could have a

possibilities to well-explain direct and indirect detection

without spoiling lepton/quark sectors.
(D_6,A 4,T(13),...)

In decaying DM scenario, if one wants to predict
lepton/quark sector maintaining the explanation of
PAMELA/Fermi-lat,
some more complicated groups might be promising
(S_4,A 5,..)

NOTE;

Higgs sector is discussed more seriouly.

J

Thanks !




