Minimal 4 zero Seesaw Mass Matrices and Large

 θ_{13}

Hijam Zeen Devi Physical Research Laboratory, Ahmedabad, India

Based on Work in Preparation

K.S.Babu, HZD, Srubabati Goswami and Werner Rodejohann

TINP Meetings, November 2011

Plan of the talk

- Introduction and motivation for 4 zero Yukawa textures.
- Phenomenology of these textures with 4 zeros.
- Symmetry realization of these textures.
- Connecting low energy CP violation and leptogenesis.
- Summary.

Motivation for 4 zero textures

- In the Standard Model neutrinos are massless.
- But the neutrino oscillation experiments showed that neutrinos are massive.
- Data from neutrino oscillations experiments and cosmology
 - Recent data on neutrino oscillation data at 3σ level gives us (arXiv:1106.6028 by Fogli et al)

$$\Delta m_{\odot}^{2} (10^{-5} eV^{2}) = (6.99 - 8.18)$$
$$|\Delta m_{A}^{2} (10^{-3} eV^{2})| = (2.06 - 2.67)$$
$$\sin^{2} \theta_{12} = (0.259 - 0.359)$$
$$\sin^{2} \theta_{23} = (0.34 - 0.64)$$
$$\sin^{2} \theta_{13} = (0.001 - 0.004)$$

The Double Chooz data : $\sin^2 2\theta_{13} = 0.085 \pm 0.029(stat) \pm 0.042(syst)$ at 90% CL

The bounds on the absolute neutrino masses are

$$\begin{split} m_{\nu_e} &= (\sum_i m_i^2 |U_{ei}|^2)^{1/2} < 2.3 eV \text{ (Tritium } \beta \text{ decay)} \\ m_{ee} &= |\sum_i m_i U_{ei}^2| < 0.3 - 1.0 eV \text{ (}0\nu\beta\beta \text{ decay)} \\ m_{cosmo} &= \sum_i |m_i| < 0.61 eV \text{ (cosmological bounds)} \end{split}$$

But still we do not know the absolute neutrino mass and the exact hierarchy.

All these data leads to three possible patterns of neutrino mass ordering:

Solution Normal hierarchy $m_1 < m_2 < m_3$.

with
$$m_2 = \sqrt{m_1^2 + \Delta m_\odot^2}$$

 $m_3 = \sqrt{m_1^2 + \Delta m_{\rm A}^2}$,

Inverted hierarchy $m_1 \ge m_2 > m_3$.

4

with
$$m_2 = \sqrt{m_3^2 + \Delta m_\odot^2 + \Delta m_A^2}$$
 ; $m_1 = \sqrt{m_3^2 + \Delta m_A^2}$.

Degenerate model $m_1 \simeq m_2 \simeq m_3$.

Type-I Seesaw

- The simplest way to write mass terms for the neutrino is just by adding a heavy SU(2) singlet right handed neutrino N_R .
- In the Type I Seesaw Formula addition of one singlet heavy right handed neutrino per generation gives masses to the neutrinos.

$$\mathcal{L}_{y} = -Y_{ij}^{l} \overline{L_{i}} \phi l_{Rj} - Y_{ij}^{\nu} \overline{L_{i}} \tilde{\phi} N_{Rj} + \frac{1}{2} \overline{N_{R}}^{c} M_{N} N_{R} - + \text{h.c.} \quad .$$

where $\tilde{\phi} = i\sigma_{2}\phi$, $\phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix}$

The mass matrix for the neutral fermions can be written as

$$M = \left(\begin{array}{cc} 0 & m_D \\ m_D^T & M_R \end{array}\right)$$

The light neutrino mass matrix can be written as $m_{\nu} = -m_D M_R^{-1} m_D^T$ where m_D is the Dirac neutrino mass matrix.

 M_R is the right handed Majorana mass matrix.

 $m_{
u}$ is the light neutrino mass matrix.

The Mixing Matrix

▶ The low energy neutrino mass matrix can in general be diagonalized as $V_{\nu}^{T} m_{\nu} V_{\nu} = D_{\nu}$ where $D_{\nu} = \text{diag}(m_1, m_2, m_3)$.

The leptonic mixing matrix can be obtained from the charged current for the leptons

$$J^{\mu +} = \overline{l} \gamma_{\mu} (1 - \gamma_5) \nu = \overline{l}' \gamma_{\mu} (1 - \gamma_5) V_l^{\dagger} V_{\nu}$$
$$\nu = V_{\nu} \nu' \quad l = V_l l'$$

↓
 $U_{PMNS} = V_l^{\dagger} V_{\nu}$. If charged lepton mass matrix is real and diagonal then $V_l = I$,
 →
 $U_{PMNS} = V_{\nu}$

P The matrix V_{ν} is unitary and includes 3 angles and 6 phases in general.

$$U_{PMNS} = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -c_{23} s_{12} - s_{23} s_{13} c_{12} e^{i\delta} & c_{23} c_{12} - s_{23} s_{13} s_{12} e^{i\delta} & s_{23} c_{13} \\ s_{23} s_{12} - c_{23} s_{13} c_{12} e^{i\delta} & -s_{23} c_{12} - c_{23} s_{13} s_{12} e^{i\delta} & c_{23} c_{13} \end{pmatrix} P.$$

where $P = \text{diag}(e^{i\alpha}, e^{i\beta}, 1)$ is the diagonal matrix containing the Majorana phases $s_{ij} = sin\theta_{ij}$, $c_{ij} = cos\theta_{ij}$ and δ is the Dirac CP-phase.

Motivation of the present work

- In the seesaw $m_{\nu} = -m_D M_R^{-1} m_D^T$ there are (18-3)+(12-3)=24 parameters.
- The low scale parameters are 9. So there is a mismatch in the number of parameters which prohibits definite predictions for the low energy neutrino parameters.
- One of the possible solution is imposing "texture zeros"
 i.e, some entries in m_{ν} much smaller than the other entries.
- Texture zeros in the low energy Majorana mass matrix (P. H. Frampton, S. L. Glashow and D. Marfatia, Phys. Lett. B 536, 79 (2002) ,A. Merle and W. Rodejohann, Phys. Rev. D 73, 073012 (2006) ,S. Dev, S. Kumar, S. Verma and S. Gupta, Phys. Rev. D 76, 013002 (2007).)
- Texture zeros in both the charged lepton and neutrino mass matrices (Z. Z. Xing and H. Zhang, Phys. Lett. B 569, 30 (2003), Z. Z. Xing, Int. J. Mod. Phys. A 19, 1 (2004), S. Zhou and Z. Z. Xing, Eur. Phys. J. C 38, 495 (2005)...)

Our Work

- It is more natural to consider the zeros appearing in the fundamental mass matrix in the lagrangian i.e, m_D amd M_R .
- So to reconstruct the seesaw we need to take some assumptions about m_D and M_R .
- 4 zero Yukawa textures have been investigated in detail for diagonal M_R and all the light neutrinos massive.

(G. C. Branco, D. Emmanuel-Costa, M. N. Rebelo and P. Roy, Phys. Rev. D 77, 053011 (2008))

- Solution We consider 4 zero textures in m_D and non diagonal form of M_R with the Type I seesaw mechanism and still having all 3 light neutrinos massive
- We enumerate all such possible matrices and obtain the ones that are consistent with low energy phenomenology and study the neutrino parameter predictions.
- We construct a possible model based on U(1) symmetry which can lead to the textures under study.
- We try to connect the low energy CP violation and leptogenesis in the allowed textures.

Texture Analysis

The most general form for the Dirac matrix m_D is

$$m_D = \begin{pmatrix} a_1 e^{i\alpha_1} & a_2 e^{i\alpha_2} & a_3 e^{i\alpha_3} \\ b_1 e^{i\beta_1} & b_2 e^{i\beta_2} & b_3 e^{i\beta_3} \\ c_1 e^{i\gamma_1} & c_2 e^{i\gamma_2} & c_3 e^{i\gamma_3} \end{pmatrix}$$

- The number of parameters in m_D is (18-3)=15. There are 9C_4 =126 possibilities of putting 4 zeros in m_d .
- Heavy neutrino mass matrices in non-diagonal form contain four independent zeros.

$$M_R = \begin{pmatrix} p & 0 & 0 \\ 0 & 0 & u \\ 0 & u & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r \end{pmatrix}$$

correspond to flavor symmetries $L_{\mu} - L_{\tau}$, $L_e - L_{\tau}$ and $L_e - L_{\mu}$.

In total there are 378 forms of m_{ν} .

Allowed textures

- In terms of the allowed forms of the left handed Majorana mass matrix m_{ν} . We consider the following forms of m_{ν} to be allowed
 - m_{ν} with one zero entry i.e, one vanishing entry.
 (A. Merle and W. Rodejohann; Phys. Rev. D 73, 073012 (2006))
 - m_{ν} with less than or equal to two zeros.
 (P.H. Frampton et. al. Phys. Lett. B 536, 79 (2002))
 - m_{ν} obeying scaling property.
 - (R. N. Mohapatra and W. Rodejohann; Phys. Lett. B 644, 59 (2007))

Applying the above criterion, the allowed textures can be classified into two categories

- m_{ν} of rank 3 with all lght neutrinos massive.
- m_{ν} of rank 2 with one light neutrino massless.
- Solution We find that there are total 18 allowed textures which give rise to m_{ν} with one eigenvalue =0 i.e m_{ν} with rank 2(We have not analysed them here).
- There are total 62 allowed textures with rank 3 for each form of M_R which we have analysed.

Allowed textures of rank 3 with 2 zeros

- Textures with two zeros:
 - 1. 6 cases with $m_{ee} = 0$ and $m_{e\mu} = 0$ (Identical to Case A1 of Frampton et al)
 - 2. 6 cases with $m_{ee} = 0$ and $m_{e\tau} = 0$ (Identical to Case A2 of Frampton et al)
 - 3. 6 cases with $m_{\mu\mu} = 0$ and $m_{e\mu} = 0$ (Identical to Case B3 of Frampton et al)
 - 4. 6 cases with $m_{\tau\tau} = 0$ and $m_{e\tau} = 0$ (Identical to Case B4 of Frampton et al)
 - 5. 2 cases with $m_{\mu\mu} = 0$ and $m_{\tau\tau} = 0$ (Identical to Case C of Frampton et al)
- 26 total allowed cases. Out of these 13 cases can be obtained from the other 13 by 2-3 exchange of column in m_D and they have similar predictions.

Allowed textures of rank 3 with 1 zeros

• 6 cases with $(m_{\nu})_{\alpha\alpha}=0$ for each α where $\alpha=e,\mu,\tau$. In total 18 cases for each M_R .

- 1. Under $2 \leftrightarrow 3$ column exchange of m_D these reduces to 9.
- 2. Of these there are 3 cases with vanishing minor and 1 texture zero.(S. Dev, S. Verma, S. Gupta, R. R. Gautam, Phys. Rev. **D81**, 053010 (2010).)
- 3. 6 cases have a vanishing minor like condition

 $(m_{\nu})_{\alpha\beta}(m_{\nu})_{\beta\gamma} - (1/2)(m_{\nu})_{\beta\beta}(m_{\nu})_{\alpha\gamma} = 0.$

- 12 cases for each M_R have $(m_{\nu \alpha\beta}) = 0$ and one zero texture
 - 1. 4 cases with $m_{e\mu} = 0$ and vanishing 1-3 minor.
 - 2. 4 cases with $m_{e\tau} = 0$ and vanishing 1-2 minor.
 - 3. 4 cases with $m_{\mu\tau} = 0$ and vanishing 1-2 minor.

These are identical to cases analysed by S Dev et al.

Allowed textures of rank 3 with no zeros

- There are 6 such cases in total:
 - 1. 2 case with two vanishing minors where the minors corresponding to 33 and 22 vanish.
 - 2. 2 case with two vanishing minors where the minors corresponding to 33 and 11 vanish.
 - 3. 2 case with two vanishing minors where the minors corresponding to 22 and 11 vanish.
- Cases 1, 2 and 3 are identical to the cases D, F₁ and F₂ analysed in E. I. Lashin, N. Chamoun, Phys. Rev. **D78**, 073002 (2008).

Total new scenarios allowed

- Two solutions with $(m_{\nu})_{ee} = 0$ and a vanishing minor like condition are allowed for the normal hierarchy.
- One solution with $(m_{\nu})_{\mu\mu} = 0$ and a vanishing minor like condition is allowed for inverted hierarchy.
- One with $(m_{\nu})_{\tau\tau} = 0$ and vanishing minor like condition is allowed for inverted hierarchy

Solution Type I

$$m_{\nu} = \left(\begin{array}{ccc} 0 & x & y \\ \cdot & 2xz & zy \\ \cdot & \cdot & w \end{array}\right),$$

with complex x, y, z, w.

The matrix satisfies the following two conditions:

$$m_{ee} = 0,$$

$$m_{e\mu}m_{\mu\tau} - \frac{1}{2}m_{\mu\mu}m_{e\tau} = 0.$$

Analysis of Solution Type I

- Solution As ee element of m_{ν} being zero so the IH not allowed.
- Left panel shows $\sin^2 \theta_{13} \ge 0.014$ for lightest mass (0- 0.1)eV.
- Right panel shows that m_{β} is in the range (0.008 0.013) eV within the KATRIN sensitivity.

Analysis of Solution Type I

- \blacksquare A plot of the smallest mass m_1 vs. the sum of the neutrino masses Σ .
- \blacktriangleright Σ is always bounded from below by 0.054 eV and above by 0.064 eV.
- Much smaller then the current bounds of $\Sigma < 0.28 \text{ eV}(95)\text{C.L}$

Approximate analytic estimates- Type I

$$m_{ee} = 0,$$

$$m_{e\mu}m_{\mu\tau} - \frac{1}{2}m_{\mu\mu}m_{e\tau} = 0.$$

$$Xm_1 + Ym_2 + Zm_3 = 0$$

$$am_2^2 + bm_2^2 + cm_3^2 + dm_1m_2 + em_1m_3 + fm_2m_3 = 0$$

$$\left(\frac{m_1}{m_2}\right) = \frac{-A_{12} + \sqrt{A_{12}^2 - 4A_{11}A_{22}}}{2A_{11}}$$
$$\left(\frac{m_1}{m_3}\right) = \frac{(-B_{13} + \sqrt{B_{13}^2 - 4B_{11}B_{33}})}{2B_{11}}$$

Approximate analytic estimates- Type I

$$aZ^{2} + cX^{2} - eZX = A_{11}$$
$$2XYc + dZ^{2} - eYZ - fXZ = A_{12}$$
$$bZ^{2} + CY^{2} - fYZ = A_{22}$$

$$aY^{2} + bX^{2} - dXY = B_{11}$$
$$2XZb + eY^{2} - dYZ - fXY = B_{13}$$
$$bZ^{2} + CY^{2} - fYZ = B_{33}$$

 $\theta_{23} = \frac{\pi}{4}$ and $\theta_{12} = \sin^{-1}(\frac{1}{\sqrt{3}})$, and $\sin^2 \theta_{13} = 0.04$, δ =0.5, α =2.848 and $\beta = 4.284$ from the allowed values of parameters, one finds for the neutrino mass ratios:

$$R \equiv \frac{\Delta m_{\odot}^2}{\Delta m_{\rm A}^2} == 2.3 \times 10^{-2}$$

Solution Type II

$$m_{\nu} = \left(\begin{array}{ccc} 0 & y & x \\ \cdot & w & zy \\ \cdot & \cdot & 2zx \end{array}\right)$$

The matrix satisfies the following two conditions:

$$(m_{\nu})_{ee} = 0, \tag{1}$$

$$(m_{\nu})_{e\tau}(m_{\nu})_{\mu\tau} - (1/2)(m_{\nu})_{\tau\tau}(m_{\nu})_{e\tau} = 0.$$
⁽²⁾

Analysis of Solution Type II

- \blacksquare ee element of m_{ν} being zero so the IH not allowed.
- **D** The lower bound on $sin^2\theta_{13}$ is 0.017.
- δ lies within $(\frac{\pi}{2} \le \delta_{CP} \le \frac{3\pi}{2})$.
- Right panel shows that m_{β} is in the range (0.004 0.012) eV within the KATRIN sensitivity.

Analysis of Solution Type II

- \blacksquare A plot of the smallest mass m_1 vs. the sum of the neutrino masses Σ .
- \square is always bounded from below by 0.056 eV and above by 0.065 eV.
- Analytic estimate of the mass squared difference ratio R following the preceeding procedure gives

$$R \equiv \frac{\Delta m_{\odot}^2}{\Delta m_{\rm A}^2} = 1.7 \times 10^{-2}$$

Solution Type III

$$m_{\nu} = \left(\begin{array}{ccc} w & z & x \\ \cdot & 0 & yz \\ \cdot & \cdot & 2xy \end{array}\right)$$

The matrix satisfies the following two conditions:

$$(m_{\nu})_{\mu\mu} = 0,$$

$$(m_{\nu})_{e\tau}(m_{\nu})_{\tau\mu} - (1/2)(m_{\nu})_{\tau\tau}(m_{\nu})_{e\tau} = 0.$$

Analysis of Solution Type III

- This is of inverted hierarchical ordering.
- **D** The lower bound on $sin^2\theta_{13}$ is 0.012.
- δ within limits of $(0 \le \delta_{CP} \le \frac{\pi}{2})$ and $(\frac{3\pi}{4} \le \delta_{CP} \le 2\pi)$.
- **P** Right panel shows that m_{β} is in the range (0.024 0.034) eV.

Analysis of Solution Type III

 \checkmark Left panel shows Σ is always bounded from below by 0.090 eV and above by 0.107 eV.

Effective mass m_{ee} probed in $0\nu 2\beta$ decay against the smallest neutrino mass m_3 lies within $0.012 \text{ eV} < m_{ee} < 0.028 \text{ eV}$.

$$R \equiv \frac{\Delta m_{\odot}^2}{\Delta m_{\rm A}^2} = 1.7 \times 10^{-2}$$

Solution Type IV

$$m_{\nu} = \left(\begin{array}{ccc} w & x & z \\ \cdot & 2xy & yz \\ \cdot & \cdot & 0 \end{array}\right)$$

The matrix satisfies the following two conditions:

$$(m_{\nu})_{\tau\tau} = 0,$$

$$(m_{\nu})_{e\tau}(m_{\nu})_{\mu\tau} - (1/2)(m_{\nu})_{\mu\mu}(m_{\nu})_{e\tau} = 0.$$

Analysis of Solution Type IV

- This is of inverted hierarchical ordering.
- **D** The lower bound on $sin^2\theta_{13}$ is 0.013.
- δ within limits of $(\frac{\pi}{2} \le \delta_{CP} \le \frac{3\pi}{4})$
- **P** Right panel shows that m_{β} is in the range (0.022 0.043) eV.

Analysis of Solution Type IV

D Left panel shows Σ is always bounded from below by 0.091 eV and above by 0.108 eV.

Effective mass m_{ee} lies within 0.012 eV $< m_{ee} < 0.029$ eV.

$$R \equiv \frac{\Delta m_{\odot}^2}{\Delta m_{\rm A}^2} = 3.8 \times 10^{-2}$$

Symmetry Realization of the Textures

- Texture zeros are a basis-dependent concept can be justified by an underlying model.
- Apply U(1) symmetry illustrate Solution Type I.
 Add right-handed singlets N_{Ri} and new scalar weak doublets of the form

 $\chi_{ij} = \begin{pmatrix} \chi_{ij}^+ \\ \chi_{ij}^0 \end{pmatrix}$, *ij* indicates the position of non zero entry in m_D .

$$L \to e^{i\gamma n_L} L,$$

$$l_R \to e^{i\gamma n_R} l_R,$$

$$N_R \to e^{i\gamma n_\nu} N_R$$

$$\chi_{ij} \to e^{i\gamma Q_{ij}} \chi_{ij}$$

$$\mathcal{L}_{\mathcal{Y}} = -Y_{ij}\bar{L}_{i}\phi l_{Rj} - Y_{ij}^{\nu}\bar{L}_{i}\chi_{ij}N_{Rj} - Y_{ij}^{\nu'}\bar{L}_{i}\tilde{\phi}N_{Rj} + \frac{1}{2}\bar{N}^{c}{}_{Ri}M_{Rij}N_{Rj} + h.c.$$

where $\tilde{\chi} = i\sigma_2\chi^*$ and the Higgs doublet $\tilde{\phi} = i\sigma_2\phi^*$

Charged lepton mass matrix is diagonal and all SM fermions get their masses through the Yukawa coupling with the SM Higgs ϕ but are not allowed to couple with χ_{ij} .

Symmetry Realization of the Textures

$$m_D = \begin{pmatrix} 0 & a_2 & 0 \\ 0 & b_2 & b_3 \\ c_1 & 0 & c_3 e^{i\gamma} \end{pmatrix},$$

Solution For every non-zero entry in m_D we need a new scalar doublet except for the (22) entry which can be generated from the SM Higgs $\tilde{\phi}$.

 \checkmark There are five non zero entries in m_D we require four new scalar doublets.

Fermions	U(1) charge	<u> </u>	
\bar{L}_1	-1	Scalar Particle	U(1) charge
_		$\chi ilde{1}$ 3	-1
\bar{L}_2	+2	$ ilde{\phi}$	0
$ar{L}_3$	-4	,	-
N_{R1}	0	$ ilde{\chi_{23}}$	-4
-		$\chi ilde{3}$ 1	4
N_{R2}	-2	$\chi ilde{3}2$	6
N_{R3}	2	λ32	

- Since θ_{13} is large and non-zero it should be possible to relate low energy CP violation with the phases of the Yukawa matrices.
- The neutrino oscillation can measure the Dirac CP phase and hence can be relegated to the Jarkslog invariant J_{CP}

$$J_{CP} = Im\{U_{e1}U_{\mu 2}U_{e2}^{*}U_{\mu 1}^{*}\} = \frac{Im\{h_{12}h_{23}h_{13}\}}{\Delta m_{21}^{2}\Delta m_{31}^{2}\Delta m_{32}^{2}}$$

where $h=m_{
u}m_{
u}^{\dagger}$

A non-zero J_{CP} which indicate a possible low energy CP violation.

- CP violation also plays a very crucial role in the leptogenesis.
- The RH neutrino can decay into a lepton and a Higgs or an antilepton and Higgs.
- The difference in the decay rates of the lepton and anti lepton generates a CP asymmetry through the interference of the tree level and loop correction diagrams

In the daiagonal basis of M_R , $m_D \rightarrow \tilde{m_D} = m_D U_R$

The CP asymmetry is in general given by

$$\epsilon_i^{\alpha} \equiv \frac{\Gamma(N_i \to \phi \bar{l}_{\alpha}) - \Gamma(N_i \to \phi^{\dagger} l_{\alpha})}{\sum_{\beta} \left[\Gamma(N_i \to \phi \bar{l}_{\beta}) + \Gamma(N_i \to \phi^{\dagger} l_{\beta}) \right]}$$
$$= \frac{1}{8\pi v_u^2} \frac{1}{(\tilde{m}_D^{\dagger} \tilde{m}_D)_{ii}} \sum_{j \neq i} \left(\mathcal{I}_{ij}^{\alpha} f(M_j^2/M_i^2) + \mathcal{J}_{ij}^{\alpha} \frac{1}{1 - M_j^2/M_i^2} \right),$$

where

$$\begin{split} \mathcal{I}_{ij}^{\alpha} &= Im \Big[\left(\tilde{m}_{D}^{\dagger} \right)_{i\alpha} \left(\tilde{m}_{D} \right)_{\alpha j} \left(\tilde{m}_{D}^{\dagger} \tilde{m}_{D} \right)_{ij} \Big] \,, \quad \mathcal{J}_{ij}^{\alpha} = \mathrm{Im} \Big[\left(\tilde{m}_{D}^{\dagger} \right)_{i\alpha} \left(\tilde{m}_{D} \right)_{\alpha j} \left(\tilde{m}_{D}^{\dagger} \tilde{m}_{D} \right)_{ji} \Big] \,. \\ \alpha &= \mathsf{e}, \, \mu, \tau \text{ and } \mathsf{i}, \mathsf{j} = \mathsf{1}, \mathsf{2}, \mathsf{3} \text{ and } f(x) = \sqrt{x} \left[\frac{2}{1-x} - \ln \left(\frac{1+x}{x} \right) \right] \,. \end{split}$$

The second term vanishes when summed over all the flavours and the only relevent contribution comes from the first term.

Solution-Type-I

	m_D	M_R	J_{CP}	${\mathcal I}^lpha_{ij}$ and ${\mathcal J}^lpha_{ij}$
la	$\left(\begin{array}{cccc} 0 & a_2 & 0 \\ 0 & b_2 & b_3 \\ c_1 & 0 & c_3 e^{i\gamma} \end{array}\right)$	$\left(egin{array}{ccc} p & 0 & 0 \ 0 & 0 & u \ 0 & u & 0 \end{array} ight)$	≠0	$\begin{split} \mathcal{I}_{12}^{\tau} =& -c_1^2 c_3^2 cos(\gamma) sin(\gamma) \\ \mathcal{I}_{13}^{\tau} =& c_1^2 c_3^2 cos(\gamma) sin(\gamma) \end{split}$
lb	$\left(\begin{array}{ccc} 0 & a_2 & 0 \\ b_1 e^{i\gamma} & b_2 & 0 \\ c_1 & 0 & c_3 \end{array}\right)$	$\left(\begin{array}{ccc} 0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r \end{array}\right)$	≠0	$\mathcal{I}_{12}^{e} = \mathcal{J}_{12}^{e} = \frac{1}{2}a_{2}^{2}b_{1}b_{2}sin(\gamma)$ $\mathcal{I}_{12}^{\mu} = \frac{1}{2}b_{1}b_{2}(a_{2}^{2} - 2b_{1}^{2} + 2b_{2}^{2} - c_{1}^{2})sin(\gamma)$ $\mathcal{J}_{12}^{\mu} = \frac{1}{2}b_{1}b_{2}(a_{2}^{2} - c_{1}^{2})sin(\gamma)$
lc	$ \left(\begin{array}{cccc} 0 & 0 & a_{3} \\ b_{1} & 0 & b_{3} \\ c_{1}e^{i\gamma} & c_{2} & 0 \end{array}\right) $	$\left(\begin{array}{rrrr} 0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0 \end{array}\right)$	≠0	$\begin{split} \mathcal{I}_{12}^{\tau} = &\mathcal{J}_{12}^{\tau} = -\frac{1}{2} b_1 b_2 c_1^2 sin(\gamma) \\ \\ \mathcal{I}_{12}^{\tau} = &-c_1^2 c_2^2 cos(\gamma) sin(\gamma) \\ \\ \\ \mathcal{I}_{13}^{\tau} = &c_1^2 c_2^2 cos(\gamma) sin(\gamma) \end{split}$

Solution-Type-II

	m_D	M_R	J_{CP}	${\cal I}^lpha_{ij}$ and ${\cal J}^lpha_{ij}$
lla	$\left(\begin{array}{cccc} 0 & a_2 & 0 \\ b_1 & 0 & b_3 \\ 0 & c_2 & c_3 e^{i\gamma} \end{array}\right)$	$\left(egin{array}{ccc} p & 0 & 0 \ 0 & 0 & u \ 0 & u & 0 \end{array} ight)$	≠0	0
lip	$\left(\begin{array}{cccc} 0 & a_2 & 0 \\ b_1 & 0 & b_3 \\ c_1 e^{i\gamma} & c_2 & 0 \end{array}\right)$	$\left(\begin{array}{ccc} 0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r \end{array}\right)$	≠0	$\begin{split} \mathcal{I}_{12}^{e} &= \mathcal{J}_{12}^{e} = \frac{1}{2}a_{2}^{2}c_{1}c_{2}sin(\gamma) \\ \\ \mathcal{I}_{12}^{\mu} &= \mathcal{J}_{12}^{\mu} = -\frac{1}{2}b_{1}^{2}c_{1}c_{2}sin(\gamma) \\ \\ \mathcal{I}_{12}^{\tau} &= -\frac{1}{2}c_{1}c_{2}(a_{2}^{2} - b_{1}^{2} - 2c_{1}^{2} + 2c_{2}^{2})sin(\gamma) \\ \\ &= \mathcal{J}_{12}^{\tau} = -\frac{1}{2}c_{1}c_{2}(a_{2}^{2} - b_{1}^{2} - b_{1}^{2})sin(\gamma) \end{split}$
llc	$\left(\begin{array}{cccc} 0 & 0 & a_3 \\ b_1 & b_2 & 0 \\ c_1 e^{i\gamma} & 0 & c \end{array}\right)$	$\left(\begin{array}{ccc} 0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0 \end{array} \right)$	≠0	0

Solution-Type-III

	m_D	M_R	J_{CP}	${\cal I}^lpha_{ij}$ and ${\cal J}^lpha_{ij}$
Illa	$\left(\begin{array}{cccc} a_1 & 0 & a_3 \\ 0 & b_2 & 0 \\ 0 & c_2 & c_3 e^{i\gamma} \end{array}\right)$	$\left(egin{array}{ccc} p & 0 & 0 \ 0 & 0 & u \ 0 & u & 0 \end{array} ight)$	≠0	0
IIIb	$\left(\begin{array}{ccc} a_{1} & 0 & a_{3} \\ 0 & b_{2} & 0 \\ c_{1}e^{i\gamma} & c_{2} & 0 \end{array}\right)$	$\left(\begin{array}{ccc} 0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r \end{array}\right)$		$\begin{split} \mathcal{I}_{12}^{e} = &\mathcal{J}_{12}^{e} = \frac{1}{2}a_{1}^{2}c_{1}c_{2}sin(\gamma) \\ \\ \mathcal{I}_{12}^{\mu} = &\mathcal{J}_{12}^{\mu} = \frac{1}{2}b_{2}^{2}c_{1}c_{2}sin(\gamma) \\ \\ \mathcal{I}_{12}^{\tau} = &\frac{1}{2}c_{1}c_{2}(-a_{1}^{2} + b_{2}^{2} - 2c_{1}^{2} + 2c_{2}^{2})sin(\gamma) \\ \\ &\mathcal{J}_{12}^{\tau} = &\frac{1}{2}c_{1}c_{2}(a_{1}^{2} - b_{2}^{2})sin(\gamma) \end{split}$
IIIc	$\left(\begin{array}{cccc} a_1 & a_2 & 0 \\ 0 & 0 & b_3 \\ c_1 e^{i\gamma} & 0 & c_3 \end{array}\right)$	$\left(\begin{array}{ccc} 0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0 \end{array} \right)$	≠0	0

Solution-Type-IV

	m_D	M_R	J_{CP}	${\cal I}^lpha_{ij}$ and ${\cal J}^lpha_{ij}$
IVa	$ \left(\begin{array}{cccc} a_1 & 0 & a_3 e^{i\gamma} \\ 0 & b_2 & 0 \\ 0 & c_2 & c_3 \end{array}\right) $	$\left(\begin{array}{ccc} p & 0 & 0 \\ 0 & 0 & u \\ 0 & u & 0 \end{array}\right)$	≠0	$\begin{split} \mathcal{I}^e_{12} &= -a_1^2 a_3^2 cos(\gamma) sin(\gamma) \\ \mathcal{I}^e_{13} &= a_1^2 a_3^2 cos(\gamma) sin(\gamma) \end{split}$
IVb	$\left(\begin{array}{ccc} a_{1} & 0 & a_{3}e^{i\gamma} \\ b_{1} & b_{2} & 0 \\ 0 & c_{2} & 0 \end{array}\right)$	$\left(\begin{array}{ccc} 0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r \end{array}\right)$	≠0	$\begin{aligned} \mathcal{I}_{12}^{e} &= \mathcal{J}_{12}^{e} = \cdot \frac{1}{2} a_{1}^{2} b_{1} b_{2} sin(\gamma) \\ \mathcal{I}_{12}^{\mu} &= -\frac{1}{2} b_{1} b_{2} (-a_{1}^{2} - 2b_{1}^{2} + 2b_{2}^{2} + c_{2}^{2}) sin(\gamma) \\ \mathcal{J}_{12}^{\mu} &= \frac{1}{2} b_{1} b_{2} (a_{1}^{2} - c_{2}^{2}) \\ \mathcal{I}_{12}^{\tau} &= \mathcal{J}_{12}^{\tau} = \frac{1}{2} b_{1} b_{2} c_{2}^{2} sin(\gamma) \end{aligned}$
IVc	$ \left(\begin{array}{cccc} a_1 e^{i\gamma} & a_2 & 0 \\ b_1 & 0 & b_3 \\ 0 & 0 & c_3 \end{array}\right) $	$\left(\begin{array}{rrrr} 0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0 \end{array}\right)$	≠0	$\mathcal{I}_{12}^{e} = -a_{1}^{2}a_{2}^{2}cos(\gamma)sin(\gamma)$ $\mathcal{I}_{13}^{e} = a_{1}^{2}a_{2}^{2}cos(\gamma)sin(\gamma)$

Conclusion and Summary

- Solution When we consider the m_{ν} with all the light neutrinos massive we get 62 possibilities according to our required classification.
- Solution We find six new cases of m_{ν} which have not been analyzed in the literature earlier and out of these only four are allowed by low energy phenomenology.
- **J** Type I and Type II with $m_{ee} = 0$ are of normal hierarchical ordering.
- There is a constrain on the Dirac CP phase for Type I and Type II but they are completely non-overlapping.
- **P** Type III with $m_{\mu\mu} = 0$ and Type IV with $m_{\tau\tau} = 0$ are of inverted hierarchy.
- In Type III and IV also we find some constrain in the Dirac CP phase.
- The models constrain $\sin^2 \theta_{13}$ in the range 0.02-0.05 in all the four cases which is consistent with the recent observations in T2K and Double Chooz experiments.
- These models follow a U(1) symmetry.
- There are only cases with M_R corresponding to $L_e L_\tau$ where we can draw a correlation between the high and the low energy CP violation.

Thank You