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Plan of the talk

Introduction and motivation for 4 zero Yukawa textures.

Phenomenology of these textures with 4 zeros.

Symmetry realization of these textures.

Connecting low energy CP violation and leptogenesis.

Summary.
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Motivation for 4 zero textures

In the Standard Model neutrinos are massless .

But the neutrino oscillation experiments showed that neutrinos are massive.

Data from neutrino oscillations experiments and cosmology

Recent data on neutrino oscillation data at 3σ level gives us (arXiv:1106.6028 by
Fogli et al)

△m2
⊙(10−5eV 2) = (6.99− 8.18)

| △m2
A(10−3eV 2)| = (2.06− 2.67)

sin2 θ12 = (0.259− 0.359)

sin2 θ23 = (0.34− 0.64)

sin2 θ13 = (0.001− 0.004)

The Double Chooz data :
sin2 2θ13 = 0.085± 0.029(stat)± 0.042(syst) at 90% CL

The bounds on the absolute neutrino masses are

mνe = (
∑

i m
2
i |Uei|2)1/2 < 2.3eV (Tritium β decay)

mee = |∑i miU
2
ei| < 0.3− 1.0eV (0νββ decay)

mcosmo =
∑

i |mi| < 0.61eV (cosmological bounds)

But still we do not know the absolute neutrino mass and the exact hierarchy.
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All these data leads to three possible patterns of neutrino mass ordering:

Normal hierarchy m1 < m2 < m3.

with m2 =
√

m2
1 +∆m2

⊙

m3 =
√

m2
1 +∆m2

A
,

Inverted hierarchy m1 ≥ m2 > m3.

with m2 =
√

m2
3 +∆m2

⊙ +∆m2
A

;

m1 =
√

m2
3 +∆m2

A
.

Degenerate model m1 ≃ m2 ≃ m3.

. – p.5/41



Type-I Seesaw

The simplest way to write mass terms for the neutrino is just by adding a heavy SU(2)
singlet right handed neutrino NR.

In the Type I Seesaw Formula addition of one singlet heavy right handed neutrino per
generation gives masses to the neutrinos.

Ly = −Y l
ijLiφlRj − Y ν

ijLiφ̃NRj +
1

2
NR

cMNNR − +h.c. .

where φ̃ = iσ2φ, φ =





φ+

φ0





The mass matrix for the neutral fermions can be written as

M =





0 mD

mT
D MR





The light neutrino mass matrix can be written as
mν = −mDM−1

R mT
D

where
mD is the Dirac neutrino mass matrix.
MR is the right handed Majorana mass matrix.
mν is the light neutrino mass matrix.
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The Mixing Matrix

The low energy neutrino mass matrix can in general be diagonalized as
V T
ν mν Vν = Dν where Dν = diag(m1,m2,m3).

The leptonic mixing matrix can be obtained from the charged current for the leptons

Jµ+ = lγµ (1− γ5) ν = l
′
γµ (1− γ5)V

†
l Vν

ν = Vνν′ l = Vll
′

UPMNS = V †
l Vν . If charged lepton mass matrix is real and diagonal then Vl = I ,

→ UPMNS = Vν

The matrix Vν is unitary and includes 3 angles and 6 phases in general.

UPMNS =









c12 c13 s12 c13 s13 e−iδ

−c23 s12 − s23 s13 c12 eiδ c23 c12 − s23 s13 s12 eiδ s23 c13

s23 s12 − c23 s13 c12 eiδ −s23 c12 − c23 s13 s12 eiδ c23 c13









P .

where P = diag(eiα, eiβ , 1) is the diagonal matrix containing the Majorana phases
,sij = sinθij ,cij = cosθij and δ is the Dirac CP-phase.
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Motivation of the present work

In the seesaw mν = −mDM−1
R mT

D there are (18-3)+(12-3)=24 parameters.

The low scale parameters are 9. So there is a mismatch in the number of parameters
which prohibits definite predictions for the low energy neutrino parameters.

One of the possible solution is imposing “texture zeros"
i.e, some entries in mν much smaller than the other entries.

Texture zeros in the low energy Majorana mass matrix ( P. H. Frampton, S. L. Glashow
and D. Marfatia, Phys. Lett. B 536, 79 (2002) ,A. Merle and W. Rodejohann, Phys. Rev. D
73, 073012 (2006) ,S. Dev, S. Kumar, S. Verma and S. Gupta, Phys. Rev. D 76, 013002
(2007).)

Texture zeros in both the charged lepton and neutrino mass matrices ( Z. Z. Xing and
H. Zhang, Phys. Lett. B 569, 30 (2003), Z. Z. Xing, Int. J. Mod. Phys. A 19, 1 (2004),
S. Zhou and Z. Z. Xing, Eur. Phys. J. C 38, 495 (2005)...)
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Our Work

It is more natural to consider the zeros appearing in the fundamental mass matrix in the
lagrangian i.e, mD amd MR.

So to reconstruct the seesaw we need to take some assumptions about mD and MR.

4 zero Yukawa textures have been investigated in detail for diagonal MR and all the light
neutrinos massive.
(G. C. Branco, D. Emmanuel-Costa, M. N. Rebelo and P. Roy,Phys. Rev. D 77, 053011
(2008))

We consider 4 zero textures in mD and non diagonal form of MR with the Type I seesaw
mechanism and still having all 3 light neutrinos massive

We enumerate all such possible matrices and obtain the ones that are consistent with
low energy phenomenology and study the neutrino parameter predictions.

We construct a possible model based on U(1) symmetry which can lead to the textures
under study.

We try to connect the low energy CP violation and leptogenesis in the allowed textures.
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Texture Analysis

The most general form for the Dirac matrix mD is

mD =









a1 eiα1 a2 eiα2 a3 eiα3

b1 eiβ1 b2 eiβ2 b3 eiβ3

c1 eiγ1 c2 eiγ2 c3 eiγ3









.

The number of parameters in mD is (18-3)=15. There are 9C4=126 possibilities of
putting 4 zeros in md.

Heavy neutrino mass matrices in non-diagonal form contain four independent zeros.

MR =









p 0 0

0 0 u

0 u 0









,









0 0 t

0 q 0

t 0 0









,









0 s 0

s 0 0

0 0 r









correspond to flavor symmetries Lµ − Lτ , Le − Lτ and Le − Lµ.

In total there are 378 forms of mν .

. – p.10/41



Allowed textures

In terms of the allowed forms of the left handed Majorana mass matrix mν . We consider
the following forms of mν to be allowed

mν with one zero entry i.e, one vanishing entry.
(A. Merle and W. Rodejohann; Phys. Rev. D 73, 073012 (2006))

mν with less than or equal to two zeros.
(P.H. Frampton et. al. Phys. Lett. B 536, 79 (2002))

mν obeying scaling property.
(R. N. Mohapatra and W. Rodejohann; Phys. Lett. B 644, 59 (2007))

Applying the above criterion,the allowed textures can be classified into two categories

mν of rank 3 with all lght neutrinos massive.

mν of rank 2 with one light neutrino massless.

We find that there are total 18 allowed textures which give rise to mν with one
eigenvalue =0 i.e mν with rank 2(We have not analysed them here).

There are total 62 allowed textures with rank 3 for each form of MR which we have
analysed.
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Allowed textures of rank 3 with 2 zeros

Textures with two zeros:

1. 6 cases with mee = 0 and meµ = 0

( Identical to Case A1 of Frampton et al)

2. 6 cases with mee = 0 and meτ = 0

( Identical to Case A2 of Frampton et al)

3. 6 cases with mµµ = 0 and meµ = 0

( Identical to Case B3 of Frampton et al)

4. 6 cases with mττ = 0 and meτ = 0

( Identical to Case B4 of Frampton et al)

5. 2 cases with mµµ = 0 and mττ =0
( Identical to Case C of Frampton et al)

26 total allowed cases. Out of these 13 cases can be obtained from the other 13 by 2-3
exchange of column in mD and they have similar predictions.
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Allowed textures of rank 3 with 1 zeros

6 cases with (mν)αα=0 for each α where α = e, µ, τ . In total 18 cases for each MR.

1. Under 2↔ 3 column exchange of mD these reduces to 9.

2. Of these there are 3 cases with vanishing minor and 1 texture zero.
( S. Dev, S. Verma, S. Gupta, R. R. Gautam, Phys. Rev. D81, 053010 (2010).)

3. 6 cases have a vanishing minor like condition

(mν)αβ(mν)βγ − (1/2)(mν)ββ(mν)αγ = 0.

12 cases for each MR have (mναβ) = 0 and one zero texture

1. 4 cases with meµ = 0 and vanishing 1-3 minor.

2. 4 cases with meτ = 0 and vanishing 1-2 minor.

3. 4 cases with mµτ = 0 and vanishing 1-2 minor.

These are identical to cases analysed by S Dev et al.
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Allowed textures of rank 3 with no zeros

There are 6 such cases in total:

1. 2 case with two vanishing minors where the minors corresponding to 33 and 22
vanish.

2. 2 case with two vanishing minors where the minors corresponding to 33 and 11
vanish.

3. 2 case with two vanishing minors where the minors corresponding to 22 and 11
vanish.

Cases 1, 2 and 3 are identical to the cases D, F1 and F2 analysed in E. I. Lashin,
N. Chamoun, Phys. Rev. D78, 073002 (2008).

. – p.14/41



Total new scenarios allowed

Two solutions with (mν)ee = 0 and a vanishing minor like condition are allowed for the
normal hierarchy.

One solution with (mν)µµ = 0 and a vanishing minor like condition is allowed for
inverted hierarchy.

One with (mν)ττ = 0 and vanishing minor like condition is allowed for inverted hierarchy
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Solution Type I

mν =









0 x y

· 2xz zy

· · w









,

with complex x, y, z, w.

The matrix satisfies the following two conditions:

mee = 0,

meµmµτ − 1

2
mµµmeτ = 0.
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Analysis of Solution Type I

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1/2 π  π 3/2 π 2 π

si
n2 θ 1

3

δ

 0.007

 0.009

 0.011

 0.013

 0.015

10-5   10-4  10-3 10-2 10-1

m
β[

eV
]

m[eV]

As ee element of mν being zero so the IH not allowed.

Left panel shows sin2 θ13 ≥ 0.014 for lightest mass (0- 0.1)eV.

Right panel shows that mβ is in the range (0.008 - 0.013) eV within the KATRIN
sensitivity.
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Analysis of Solution Type I

 0.05

 0.055

 0.06

 0.065

 0.07

10-5   10-4  10-3 10-2 10-1
Σ[

eV
]

m[eV]

A plot of the smallest mass m1 vs. the sum of the neutrino masses Σ.

Σ is always bounded from below by 0.054 eV and above by 0.064 eV.

Much smaller then the current bounds of Σ <0.28 eV(95)C.L
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Approximate analytic estimates- Type I

mee = 0,

meµmµτ − 1

2
mµµmeτ = 0.

Xm1 + Y m2 + Zm3 = 0

am2
2 + bm2

2 + cm2
3 + dm1m2 + em1m3 + fm2m3 = 0

(

m1

m2

)

=
−A12 +

√

A2
12 − 4A11A22

2A11

(

m1

m3

)

=
(−B13 +

√

B2
13 − 4B11B33)

2B11
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Approximate analytic estimates- Type I

aZ2 + cX2 − eZX = A11

2XY c+ dZ2 − eY Z − fXZ = A12

bZ2 + CY 2 − fY Z = A22

aY 2 + bX2 − dXY = B11

2XZb+ eY 2 − dY Z − fXY = B13

bZ2 + CY 2 − fY Z = B33

θ23 = π
4

and θ12 = sin−1( 1√
3
), and sin2 θ13 = 0.04, δ=0.5, α=2.848 and β = 4.284 from

the allowed values of parameters, one finds for the neutrino mass ratios:

R ≡
∆m2

⊙
∆m2

A

== 2.3× 10−2
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Solution Type II

mν =









0 y x

· w zy

· · 2zx









The matrix satisfies the following two conditions:

(mν)ee = 0, (1)

(mν)eτ (mν)µτ − (1/2)(mν)ττ (mν)eτ = 0. (2)
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Analysis of Solution Type II

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1/2 π  π 3/2 π 2 π

si
n2 θ 1

3
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 0.004

 0.006
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 0.01
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β[
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]
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ee element of mν being zero so the IH not allowed.

The lower bound on sin2θ13 is 0.017.

δ lies within (π
2
≤ δCP ≤ 3π

2
).

Right panel shows that mβ is in the range (0.004 - 0.012) eV within the KATRIN
sensitivity.
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Analysis of Solution Type II

 0.05

 0.055

 0.06

 0.065

 0.07

10-5   10-4  10-3 10-2 10-1
Σ[

eV
]

m[eV]

A plot of the smallest mass m1 vs. the sum of the neutrino masses Σ.

Σ is always bounded from below by 0.056 eV and above by 0.065 eV.

Analytic estimate of the mass squared difference ratio R following the preceeding
procedure gives

R ≡
∆m2

⊙
∆m2

A

= 1.7× 10−2
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Solution Type III

mν =









w z x

· 0 yz

· · 2xy









The matrix satisfies the following two conditions:

(mν)µµ = 0,

(mν)eτ (mν)τµ − (1/2)(mν)ττ (mν)eτ = 0.
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Analysis of Solution Type III

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1/2 π  π 3/2 π 2 π

si
n2 θ 1

3

δ
 0

 0.01

 0.02

 0.03

 0.04

 0.05
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m
β[

eV
]

m[eV]

This is of inverted hierarchical ordering.

The lower bound on sin2θ13 is 0.012.

δ within limits of (0 ≤ δCP ≤ π
2

) and ( 3π
4

≤ δCP ≤ 2π).

Right panel shows that mβ is in the range (0.024 - 0.034) eV.
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Analysis of Solution Type III

 0.07

 0.09

 0.11

 0.13

10-5   10-4  10-3 10-2 10-1

Σ[
eV

]

m[eV]

 0

 0.01

 0.02

 0.03

 0.04

10-5   10-4  10-3 10-2 10-1

|m
ee

|[e
V

]

m[eV]

Left panel shows Σ is always bounded from below by 0.090 eV and above by 0.107 eV.

Effective mass mee probed in 0ν2β decay against the smallest neutrino mass m3 lies
within 0.012 eV < mee < 0.028 eV.

R ≡
∆m2

⊙
∆m2

A

= 1.7× 10−2
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Solution Type IV

mν =









w x z

· 2xy yz

· · 0









The matrix satisfies the following two conditions:

(mν)ττ = 0,

(mν)eτ (mν)µτ − (1/2)(mν)µµ(mν)eτ = 0.
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Analysis of Solution Type IV

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1/2 π  π 3/2 π 2 π

si
n2 θ 1

3

δ

 0

 0.01

 0.02
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 0.04
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10-5   10-4  10-3 10-2 10-1

m
β[

eV
]
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This is of inverted hierarchical ordering.

The lower bound on sin2θ13 is 0.013.

δ within limits of (π
2
≤ δCP ≤ 3π

4
)

Right panel shows that mβ is in the range (0.022 - 0.043) eV.
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Analysis of Solution Type IV

 0.07

 0.09

 0.11

 0.13

10-5   10-4  10-3 10-2 10-1

Σ[
eV
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m[eV]

 0

 0.01
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 0.03
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Left panel shows Σ is always bounded from below by 0.091 eV and above by 0.108 eV.

Effective mass mee lies within 0.012 eV < mee < 0.029 eV.

R ≡
∆m2

⊙
∆m2

A

= 3.8× 10−2
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Symmetry Realization of the Textures

Texture zeros are a basis-dependent concept can be justified by an underlying model.

Apply U(1) symmetry - illustrate Solution Type I.
Add right-handed singlets NRi and new scalar weak doublets of the form

χij=





χ+
ij

χ0
ij



, ij indicates the position of non zero entry in mD .

L → eiγnLL,
lR → eiγnR lR,
NR → eiγnνNR

χij → eiγQijχij

LY = −YijL̄iφlRj − Y ν
ijL̄iχ̃ijNRj − Y ν′

ij L̄iφ̃NRj +
1

2
N̄c

RiMRijNRj + h.c.

where χ̃ = iσ2χ∗ and the Higgs doublet φ̃ = iσ2φ∗

Charged lepton mass matrix is diagonal and all SM fermions get their masses through
the Yukawa coupling with the SM Higgs φ but are not allowed to couple with χij .
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Symmetry Realization of the Textures

mD =









0 a2 0

0 b2 b3

c1 0 c3eiγ









,

For every non-zero entry in mD we need a new scalar doublet except for the (22) entry
which can be generated from the SM Higgs φ̃.

There are five non zero entries in mD we require four new scalar doublets.

Fermions U(1) charge

L̄1 -1

L̄2 +2

L̄3 -4

NR1 0

NR2 -2

NR3 2

Scalar Particle U(1) charge

χ̃13 -1

φ̃ 0

χ̃23 -4

χ̃31 4

χ̃32 6
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CP violation and Leptogenesis

Since θ13 is large and non-zero it should be possible to relate low energy CP violation
with the phases of the Yukawa matrices.

The neutrino oscillation can measure the Dirac CP phase and hence can be relegated to
the Jarkslog invariant JCP

JCP = Im{Ue1Uµ2U
∗
e2U

∗
µ1} =

Im{h12h23h13}
∆m2

21∆m2
31∆m2

32

where h = mνm
†
ν

A non-zero JCP which indicate a possible low energy CP violation.
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CP violation and Leptogenesis

CP violation also plays a very crucial role in the leptogenesis.

The RH neutrino can decay into a lepton and a Higgs or an antilepton and Higgs.

The difference in the decay rates of the lepton and anti lepton generates a CP
asymmetry through the interference of the the tree level and loop correction diagrams

Nk

φ

ℓj

NmNk

ℓn

ℓj

φ

ℓj

φ
Nm

Nk

ℓn, ℓn

(a) (b) (c)
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CP violation and Leptogenesis

In the daiagonal basis of MR ,
mD → m̃D = mDUR

The CP asymmetry is in general given by

ǫαi ≡ Γ(Ni → φ l̄α)− Γ(Ni → φ† lα)
∑

β

[

Γ(Ni → φ l̄β) + Γ(Ni → φ† lβ)
]

=
1

8π v2u

1

(m̃†
D m̃D)ii

∑

j 6=i

(

Iα
ij f(M

2
j /M

2
i ) + J α

ij

1

1−M2
j /M

2
i

)

,

where

Iα
ij = Im

[

(

m̃†
D

)

iα

(

m̃D

)

αj

(

m̃†
Dm̃D

)

ij

]

, Jα
ij = Im

[

(

m̃†
D

)

iα

(

m̃D

)

αj

(

m̃†
Dm̃D

)

ji

]

.

α= e, µ, τ and i,j=1,2,3 and f(x) =
√
x
[

2
1−x

− ln
(

1+x
x

)]

.

The second term vanishes when summed over all the flavours and the only relevent
contribution comes from the first term .
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CP violation and Leptogenesis

ǫi =
1

8π v2u

1

(m̃†
D m̃D)ii

Iij , where Iij =
∑

α

Iα
ij f(

M2
j

M2
i

) .

m̃α
1 =

(m̃†
D)1α (m̃D)α1

M1

.

m̃ =
∑

α

m̃α
1
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Solution-Type-I

mD MR JCP Iα
ij and Jα

ij

Ia









0 a2 0

0 b2 b3

c1 0 c3e
iγ

















p 0 0

0 0 u

0 u 0









6=0 Iτ
12

=−c2
1
c2
3
cos(γ)sin(γ)

Iτ
13

=c2
1
c2
3
cos(γ)sin(γ)

Ie
12

=J e
12

= 1

2
a2

2
b1b2sin(γ)

Ib









0 a2 0

b1e
iγ b2 0

c1 0 c3

















0 s 0

s 0 0

0 0 r









6=0 I
µ
12

= 1

2
b1b2(a

2

2
− 2b2

1
+ 2b2

2
− c2

1
)sin(γ)

J
µ
12

= 1

2
b1b2(a

2

2
− c2

1
)sin(γ)

Iτ
12

=J τ
12

=- 1
2
b1b2c

2

1
sin(γ)

Ic









0 0 a3

b1 0 b3

c1e
iγ c2 0

















0 0 t

0 q 0

t 0 0









6=0 Iτ
12

=−c2
1
c2
2
cos(γ)sin(γ)

Iτ
13

=c2
1
c2
2
cos(γ)sin(γ)
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Solution-Type-II

mD MR JCP Iα
ij and Jα

ij

IIa









0 a2 0

b1 0 b3

0 c2 c3e
iγ

















p 0 0

0 0 u

0 u 0









6=0 0

Ie
12

= J e
12

= 1

2
a2

2
c1c2sin(γ)

IIb









0 a2 0

b1 0 b3

c1e
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Solution-Type-III

mD MR JCP Iα
ij and Jα
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Solution-Type-IV

mD MR JCP Iα
ij and Jα
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Conclusion and Summary

When we consider the mν with all the light neutrinos massive we get 62 possibilities
according to our required classification.

We find six new cases of mν which have not been analyzed in the literature earlier and
out of these only four are allowed by low energy phenomenology.

Type I and Type II with mee = 0 are of normal hierarchical ordering.

There is a constrain on the Dirac CP phase for Type I and Type II but they are completely
non-overlapping.

Type III with mµµ = 0 and Type IV with mττ = 0 are of inverted hierarchy.

In Type III and IV also we find some constrain in the Dirac CP phase.

The models constrain sin2 θ13 in the range 0.02-0.05 in all the four cases which is
consistent with the recent observations in T2K and Double Chooz experiments.

These models follow a U(1) symmetry.

There are only cases with MR corresponding to Le − Lτ where we can draw a
correlation between the high and the low energy CP violation.
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Thank You
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