Minimal 4 zero Seesaw Mass Matrices and Large

θ_{13}

Hijam Zeen Devi
Physical Research Laboratory,Ahmedabad,India

Based on Work in Preparation
K.S.Babu, HZD, Srubabati Goswami and Werner Rodejohann

Plan of the talk

- Introduction and motivation for 4 zero Yukawa textures.
- Phenomenology of these textures with 4 zeros.
- Symmetry realization of these textures.
- Connecting low energy CP violation and leptogenesis.
- Summary.

Motivation for 4 zero textures

- In the Standard Model neutrinos are massless .
- But the neutrino oscillation experiments showed that neutrinos are massive.
- Data from neutrino oscillations experiments and cosmology
- Recent data on neutrino oscillation data at 3σ level gives us (arXiv:1106.6028 by Fogli et al)

$$
\begin{gathered}
\triangle m_{\odot}^{2}\left(10^{-5} e V^{2}\right)=(6.99-8.18) \\
\left|\triangle m_{A}^{2}\left(10^{-3} e V^{2}\right)\right|=(2.06-2.67) \\
\sin ^{2} \theta_{12}=(0.259-0.359) \\
\sin ^{2} \theta_{23}=(0.34-0.64) \\
\sin ^{2} \theta_{13}=(0.001-0.004)
\end{gathered}
$$

- The Double Chooz data :

$$
\sin ^{2} 2 \theta_{13}=0.085 \pm 0.029(\text { stat }) \pm 0.042 \text { (syst) at } 90 \% \mathrm{CL}
$$

- The bounds on the absolute neutrino masses are

$$
\begin{gathered}
m_{\nu_{e}}=\left(\sum_{i} m_{i}^{2}\left|U_{e i}\right|^{2}\right)^{1 / 2}<2.3 \mathrm{eV} \text { (Tritium } \beta \text { decay) } \\
m_{e e}=\left|\sum_{i} m_{i} U_{e i}^{2}\right|<0.3-1.0 \mathrm{eV} \text { (} 0 \nu \beta \beta \text { decay) } \\
m_{\text {cosmo }}=\sum_{i}\left|m_{i}\right|<0.61 \mathrm{eV} \text { (cosmological bounds) }
\end{gathered}
$$

- But still we do not know the absolute neutrino mass and the exact hierarchy.

All these data leads to three possible patterns of neutrino mass ordering:

- Normal hierarchy $m_{1}<m_{2}<m_{3}$.

$$
\begin{aligned}
& \text { with } m_{2}=\sqrt{m_{1}^{2}+\Delta m_{\odot}^{2}} \\
& \qquad m_{3}=\sqrt{m_{1}^{2}+\Delta m_{\mathrm{A}}^{2}}
\end{aligned}
$$

- Inverted hierarchy $m_{1} \geq m_{2}>m_{3}$.

$$
\begin{aligned}
& \text { with } m_{2}=\sqrt{m_{3}^{2}+\Delta m_{\odot}^{2}+\Delta m_{\mathrm{A}}^{2}} \\
& \qquad \begin{array}{l}
\\
m_{1}=\sqrt{m_{3}^{2}+\Delta m_{\mathrm{A}}^{2}}
\end{array}
\end{aligned}
$$

- Degenerate model $m_{1} \simeq m_{2} \simeq m_{3}$.

Type-I Seesaw

- The simplest way to write mass terms for the neutrino is just by adding a heavy $\operatorname{SU}(2)$ singlet right handed neutrino N_{R}.
- In the Type I Seesaw Formula addition of one singlet heavy right handed neutrino per generation gives masses to the neutrinos.

$$
\mathcal{L}_{y}=-Y_{i j}^{l} \overline{L_{i}} \phi l_{R j}-Y_{i j}^{\nu} \overline{L_{i}} \tilde{\phi} N_{R j}+\frac{1}{2} \overline{N_{R}{ }^{c}} M_{N} N_{R}-+ \text { h.c. } .
$$

where $\tilde{\phi}=i \sigma_{2} \phi, \quad \phi=\binom{\phi^{+}}{\phi^{0}}$

- The mass matrix for the neutral fermions can be written as

$$
M=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D}^{T} & M_{R}
\end{array}\right)
$$

- The light neutrino mass matrix can be written as $m_{\nu}=-m_{D} M_{R}^{-1} m_{D}^{T}$
where
m_{D} is the Dirac neutrino mass matrix.
M_{R} is the right handed Majorana mass matrix.
m_{ν} is the light neutrino mass matrix.

The Mixing Matrix

- The low energy neutrino mass matrix can in general be diagonalized as $V_{\nu}^{\mathrm{T}} m_{\nu} V_{\nu}=D_{\nu}$ where $D_{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$.
- The leptonic mixing matrix can be obtained from the charged current for the leptons

$$
\begin{gathered}
J^{\mu+}=\bar{l} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu=\bar{l}^{\prime} \gamma_{\mu}\left(1-\gamma_{5}\right) V_{l}^{\dagger} V_{\nu} \\
\nu=V_{\nu} \nu^{\prime} \quad l=V_{l} l^{\prime}
\end{gathered}
$$

- $U_{P M N S}=V_{l}^{\dagger} V_{\nu}$. If charged lepton mass matrix is real and diagonal then $V_{l}=I$, $\rightarrow U_{P M N S}=V_{\nu}$
- The matrix V_{ν} is unitary and includes 3 angles and 6 phases in general.
$U_{P M N S}=\left(\begin{array}{ccc}c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\ -c_{23} s_{12}-s_{23} s_{13} c_{12} e^{i \delta} & c_{23} c_{12}-s_{23} s_{13} s_{12} e^{i \delta} & s_{23} c_{13} \\ s_{23} s_{12}-c_{23} s_{13} c_{12} e^{i \delta} & -s_{23} c_{12}-c_{23} s_{13} s_{12} e^{i \delta} & c_{23} c_{13}\end{array}\right) P$
where $P=\operatorname{diag}\left(e^{i \alpha}, e^{i \beta}, 1\right)$ is the diagonal matrix containing the Majorana phases $, s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}$ and δ is the Dirac CP-phase.

Motivation of the present work

- In the seesaw $m_{\nu}=-m_{D} M_{R}^{-1} m_{D}^{T}$ there are (18-3)+(12-3)=24 parameters.
- The low scale parameters are 9. So there is a mismatch in the number of parameters which prohibits definite predictions for the low energy neutrino parameters.
- One of the possible solution is imposing "texture zeros" i.e, some entries in m_{ν} much smaller than the other entries.
- Texture zeros in the low energy Majorana mass matrix (P. H. Frampton, S. L. Glashow and D. Marfatia, Phys. Lett. B 536, 79 (2002) ,A. Merle and W. Rodejohann, Phys. Rev. D 73, 073012 (2006) ,S. Dev, S. Kumar, S. Verma and S. Gupta, Phys. Rev. D 76, 013002 (2007).)
- Texture zeros in both the charged lepton and neutrino mass matrices (Z. Z. Xing and H. Zhang, Phys. Lett. B 569, 30 (2003), Z. Z. Xing, Int. J. Mod. Phys. A 19, 1 (2004), S. Zhou and Z. Z. Xing, Eur. Phys. J. C 38, 495 (2005)...)

Our Work

- It is more natural to consider the zeros appearing in the fundamental mass matrix in the lagrangian i.e, m_{D} amd M_{R}.
- So to reconstruct the seesaw we need to take some assumptions about m_{D} and M_{R}.
- 4 zero Yukawa textures have been investigated in detail for diagonal M_{R} and all the light neutrinos massive.
(G. C. Branco, D. Emmanuel-Costa, M. N. Rebelo and P. Roy,Phys. Rev. D 77, 053011 (2008))
- We consider 4 zero textures in m_{D} and non diagonal form of M_{R} with the Type I seesaw mechanism and still having all 3 light neutrinos massive
- We enumerate all such possible matrices and obtain the ones that are consistent with low energy phenomenology and study the neutrino parameter predictions.
- We construct a possible model based on $\mathrm{U}(1)$ symmetry which can lead to the textures under study.
- We try to connect the low energy CP violation and leptogenesis in the allowed textures.

Texture Analysis

- The most general form for the Dirac matrix m_{D} is

$$
m_{D}=\left(\begin{array}{ccc}
a_{1} e^{i \alpha_{1}} & a_{2} e^{i \alpha_{2}} & a_{3} e^{i \alpha_{3}} \\
b_{1} e^{i \beta_{1}} & b_{2} e^{i \beta_{2}} & b_{3} e^{i \beta_{3}} \\
c_{1} e^{i \gamma_{1}} & c_{2} e^{i \gamma_{2}} & c_{3} e^{i \gamma_{3}}
\end{array}\right)
$$

- The number of parameters in m_{D} is (18-3)=15. There are ${ }^{9} C_{4}=126$ possibilities of putting 4 zeros in m_{d}.
- Heavy neutrino mass matrices in non-diagonal form contain four independent zeros.

$$
M_{R}=\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & 0 & u \\
0 & u & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 0 & t \\
0 & q & 0 \\
t & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & s & 0 \\
s & 0 & 0 \\
0 & 0 & r
\end{array}\right)
$$

correspond to flavor symmetries $L_{\mu}-L_{\tau}, L_{e}-L_{\tau}$ and $L_{e}-L_{\mu}$.

- In total there are 378 forms of m_{ν}.

Allowed textures

- In terms of the allowed forms of the left handed Majorana mass matrix m_{ν}. We consider the following forms of m_{ν} to be allowed
- m_{ν} with one zero entry i.e, one vanishing entry.
(A. Merle and W. Rodejohann; Phys. Rev. D 73, 073012 (2006))
- m_{ν} with less than or equal to two zeros.
(P.H. Frampton et. al. Phys. Lett. B 536, 79 (2002))
- m_{ν} obeying scaling property.
(R. N. Mohapatra and W. Rodejohann; Phys. Lett. B 644, 59 (2007))

Applying the above criterion,the allowed textures can be classified into two categories

- m_{ν} of rank 3 with all lght neutrinos massive.
- m_{ν} of rank 2 with one light neutrino massless.
- We find that there are total 18 allowed textures which give rise to m_{ν} with one eigenvalue $=0$ i.e m_{ν} with rank 2(We have not analysed them here).
- There are total 62 allowed textures with rank 3 for each form of M_{R} which we have analysed.

Allowed textures of rank 3 with 2 zeros

- Textures with two zeros:

1. 6 cases with $m_{e e}=0$ and $m_{e \mu}=0$ (Identical to Case A1 of Frampton et al)
2. 6 cases with $m_{e e}=0$ and $m_{e \tau}=0$
(Identical to Case A2 of Frampton et al)
3. 6 cases with $m_{\mu \mu}=0$ and $m_{e \mu}=0$
(Identical to Case B3 of Frampton et al)
4. 6 cases with $m_{\tau \tau}=0$ and $m_{e \tau}=0$
(Identical to Case B4 of Frampton et al)
5. 2 cases with $m_{\mu \mu}=0$ and $m_{\tau \tau}=0$
(Identical to Case C of Frampton et al)

- 26 total allowed cases. Out of these 13 cases can be obtained from the other 13 by 2-3 exchange of column in m_{D} and they have similar predictions.

Allowed textures of rank 3 with 1 zeros

- 6 cases with $\left(m_{\nu}\right)_{\alpha \alpha}=0$ for each α where $\alpha=e, \mu, \tau$. In total 18 cases for each M_{R}.

1. Under $2 \leftrightarrow 3$ column exchange of m_{D} these reduces to 9 .
2. Of these there are 3 cases with vanishing minor and 1 texture zero. (S. Dev, S. Verma, S. Gupta, R. R. Gautam, Phys. Rev. D81, 053010 (2010).)
3. 6 cases have a vanishing minor like condition

$$
\left(m_{\nu}\right)_{\alpha \beta}\left(m_{\nu}\right)_{\beta \gamma}-(1 / 2)\left(m_{\nu}\right)_{\beta \beta}\left(m_{\nu}\right)_{\alpha \gamma}=0 .
$$

- 12 cases for each M_{R} have $\left(m_{\nu \alpha \beta}\right)=0$ and one zero texture

1. 4 cases with $m_{e \mu}=0$ and vanishing 1-3 minor.
2. 4 cases with $m_{e \tau}=0$ and vanishing 1-2 minor.
3. 4 cases with $m_{\mu \tau}=0$ and vanishing 1-2 minor.

These are identical to cases analysed by S Dev et al.

Allowed textures of rank 3 with no zeros

- There are 6 such cases in total:

1. 2 case with two vanishing minors where the minors corresponding to 33 and 22 vanish.
2. 2 case with two vanishing minors where the minors corresponding to 33 and 11 vanish.
3. 2 case with two vanishing minors where the minors corresponding to 22 and 11 vanish.

- Cases 1, 2 and 3 are identical to the cases D, F_{1} and F_{2} analysed in E. I. Lashin, N. Chamoun, Phys. Rev. D78, 073002 (2008).

Total new scenarios allowed

- Two solutions with $\left(m_{\nu}\right)_{e e}=0$ and a vanishing minor like condition are allowed for the normal hierarchy.
- One solution with $\left(m_{\nu}\right)_{\mu \mu}=0$ and a vanishing minor like condition is allowed for inverted hierarchy.
- One with $\left(m_{\nu}\right)_{\tau \tau}=0$ and vanishing minor like condition is allowed for inverted hierarchy

Solution Type I

$$
m_{\nu}=\left(\begin{array}{ccc}
0 & x & y \\
\cdot & 2 x z & z y \\
\cdot & \cdot & w
\end{array}\right)
$$

with complex x, y, z, w.

- The matrix satisfies the following two conditions:

$$
\begin{aligned}
m_{e e} & =0 \\
m_{e \mu} m_{\mu \tau}-\frac{1}{2} m_{\mu \mu} m_{e \tau} & =0
\end{aligned}
$$

Analysis of Solution Type I

- As ee element of m_{ν} being zero so the IH not allowed.
- Left panel shows $\sin ^{2} \theta_{13} \geq 0.014$ for lightest mass $(0-0.1) \mathrm{eV}$.
- Right panel shows that m_{β} is in the range (0.008-0.013) eV within the KATRIN sensitivity.

Analysis of Solution Type I

- A plot of the smallest mass m_{1} vs. the sum of the neutrino masses Σ.
- Σ is always bounded from below by 0.054 eV and above by 0.064 eV .
- Much smaller then the current bounds of $\Sigma<0.28 \mathrm{eV}(95) \mathrm{C} . \mathrm{L}$

Approximate analytic estimates- Type I

$$
\begin{gathered}
m_{e e}=0, \\
m_{e \mu} m_{\mu \tau}-\frac{1}{2} m_{\mu \mu} m_{e \tau}=0 . \\
X m_{1}+Y m_{2}+Z m_{3}=0 \\
a m_{2}^{2}+b m_{2}^{2}+c m_{3}^{2}+d m_{1} m_{2}+e m_{1} m_{3}+f m_{2} m_{3}=0 \\
\left(\frac{m_{1}}{m_{2}}\right)=\frac{-A_{12}+\sqrt{A_{12}^{2}-4 A_{11} A_{22}}}{2 A_{11}} \\
\left(\frac{m_{1}}{m_{3}}\right)=\frac{\left(-B_{13}+\sqrt{B_{13}^{2}-4 B_{11} B_{33}}\right)}{2 B_{11}}
\end{gathered}
$$

Approximate analytic estimates- Type I

$$
\begin{aligned}
a Z^{2}+c X^{2}-e Z X & =A_{11} \\
2 X Y c+d Z^{2}-e Y Z-f X Z & =A_{12} \\
b Z^{2}+C Y^{2}-f Y Z & =A_{22} \\
a Y^{2}+b X^{2}-d X Y & =B_{11} \\
2 X Z b+e Y^{2}-d Y Z-f X Y & =B_{13} \\
b Z^{2}+C Y^{2}-f Y Z & =B_{33}
\end{aligned}
$$

$\theta_{23}=\frac{\pi}{4}$ and $\theta_{12}=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$, and $\sin ^{2} \theta_{13}=0.04, \delta=0.5, \alpha=2.848$ and $\beta=4.284$ from the allowed values of parameters, one finds for the neutrino mass ratios:

$$
R \equiv \frac{\Delta m_{\odot}^{2}}{\Delta m_{\mathrm{A}}^{2}}==2.3 \times 10^{-2}
$$

Solution Type II

$$
m_{\nu}=\left(\begin{array}{ccc}
0 & y & x \\
\cdot & w & z y \\
\cdot & \cdot & 2 z x
\end{array}\right)
$$

- The matrix satisfies the following two conditions:

$$
\begin{align*}
\left(m_{\nu}\right)_{e e} & =0 \tag{1}\\
\left(m_{\nu}\right)_{e \tau}\left(m_{\nu}\right)_{\mu \tau}-(1 / 2)\left(m_{\nu}\right)_{\tau \tau}\left(m_{\nu}\right)_{e \tau} & =0 \tag{2}
\end{align*}
$$

Analysis of Solution Type II

- ee element of m_{ν} being zero so the IH not allowed.
- The lower bound on $\sin ^{2} \theta_{13}$ is 0.017 .
- δ lies within $\left(\frac{\pi}{2} \leq \delta_{C P} \leq \frac{3 \pi}{2}\right)$.
- Right panel shows that m_{β} is in the range ($0.004-0.012$) eV within the KATRIN sensitivity.

Analysis of Solution Type II

- A plot of the smallest mass m_{1} vs. the sum of the neutrino masses Σ.
- Σ is always bounded from below by 0.056 eV and above by 0.065 eV .
- Analytic estimate of the mass squared difference ratio R following the preceeding procedure gives

$$
R \equiv \frac{\Delta m_{\odot}^{2}}{\Delta m_{\mathrm{A}}^{2}}=1.7 \times 10^{-2}
$$

Solution Type III

$$
m_{\nu}=\left(\begin{array}{ccc}
w & z & x \\
\cdot & 0 & y z \\
\cdot & \cdot & 2 x y
\end{array}\right)
$$

- The matrix satisfies the following two conditions:

$$
\begin{aligned}
\left(m_{\nu}\right)_{\mu \mu} & =0 \\
\left(m_{\nu}\right)_{e \tau}\left(m_{\nu}\right)_{\tau \mu}-(1 / 2)\left(m_{\nu}\right)_{\tau \tau}\left(m_{\nu}\right)_{e \tau} & =0
\end{aligned}
$$

Analysis of Solution Type III

- This is of inverted hierarchical ordering.
- The lower bound on $\sin ^{2} \theta_{13}$ is 0.012 .
- δ within limits of $\left(0 \leq \delta_{C P} \leq \frac{\pi}{2}\right)$ and ($\left.\frac{3 \pi}{4} \leq \delta_{C P} \leq 2 \pi\right)$.
- Right panel shows that m_{β} is in the range (0.024-0.034) eV.

Analysis of Solution Type III

- Left panel shows Σ is always bounded from below by 0.090 eV and above by 0.107 eV .
- Effective mass $m_{e e}$ probed in $0 \nu 2 \beta$ decay against the smallest neutrino mass m_{3} lies within $0.012 \mathrm{eV}<m_{e e}<0.028 \mathrm{eV}$.

$$
R \equiv \frac{\Delta m_{\odot}^{2}}{\Delta m_{\mathrm{A}}^{2}}=1.7 \times 10^{-2}
$$

Solution Type IV

$$
m_{\nu}=\left(\begin{array}{ccc}
w & x & z \\
\cdot & 2 x y & y z \\
\cdot & \cdot & 0
\end{array}\right)
$$

- The matrix satisfies the following two conditions:

$$
\begin{aligned}
\left(m_{\nu}\right)_{\tau \tau} & =0 \\
\left(m_{\nu}\right)_{e \tau}\left(m_{\nu}\right)_{\mu \tau}-(1 / 2)\left(m_{\nu}\right)_{\mu \mu}\left(m_{\nu}\right)_{e \tau} & =0
\end{aligned}
$$

Analysis of Solution Type IV

- This is of inverted hierarchical ordering.
- The lower bound on $\sin ^{2} \theta_{13}$ is 0.013 .
- δ within limits of ($\frac{\pi}{2} \leq \delta_{C P} \leq \frac{3 \pi}{4}$)
- Right panel shows that m_{β} is in the range (0.022-0.043) eV.

Analysis of Solution Type IV

- Left panel shows Σ is always bounded from below by 0.091 eV and above by 0.108 eV .
- Effective mass $m_{e e}$ lies within $0.012 \mathrm{eV}<m_{e e}<0.029 \mathrm{eV}$.
-

$$
R \equiv \frac{\Delta m_{\odot}^{2}}{\Delta m_{\mathrm{A}}^{2}}=3.8 \times 10^{-2}
$$

Symmetry Realization of the Textures

- Texture zeros are a basis-dependent concept can be justified by an underlying model.
- Apply $U(1)$ symmetry - illustrate Solution Type I.

Add right-handed singlets $N_{R i}$ and new scalar weak doublets of the form
$\chi_{i j}=\binom{\chi_{i j}^{+}}{\chi_{i j}^{0}}, i j$ indicates the position of non zero entry in m_{D}.

$$
\begin{aligned}
& L \rightarrow e^{i \gamma n_{L}} L, \\
& l_{R} \rightarrow e^{i \gamma n_{R}} l_{R}, \\
& N_{R} \rightarrow e^{i \gamma n_{\nu}} N_{R} \\
& \chi_{i j} \rightarrow e^{i \gamma Q_{i j}} \chi_{i j} \\
& \mathcal{L}_{\mathcal{Y}}=-Y_{i j} \bar{L}_{i} \phi l_{R j}-Y_{i j}^{\nu} \bar{L}_{i} \tilde{\chi}_{i j} N_{R j}-Y_{i j}^{\nu^{\prime}} \bar{L}_{i} \tilde{\phi} N_{R j}+\frac{1}{2} \overline{N^{c}}{ }_{R i} M_{R i j} N_{R j}+\text { h.c. }
\end{aligned}
$$

where $\tilde{\chi}=i \sigma_{2} \chi^{*}$ and the Higgs doublet $\tilde{\phi}=i \sigma_{2} \phi^{*}$

- Charged lepton mass matrix is diagonal and all SM fermions get their masses through the Yukawa coupling with the SM Higgs ϕ but are not allowed to couple with $\chi_{i j}$.

Symmetry Realization of the Textures

$$
m_{D}=\left(\begin{array}{ccc}
0 & a_{2} & 0 \\
0 & b_{2} & b_{3} \\
c_{1} & 0 & c_{3} e^{i \gamma}
\end{array}\right)
$$

- For every non-zero entry in m_{D} we need a new scalar doublet except for the (22) entry which can be generated from the SM Higgs $\tilde{\phi}$.
- There are five non zero entries in m_{D} we require four new scalar doublets.

Fermions	$\mathrm{U}(1)$ charge
\bar{L}_{1}	-1
\bar{L}_{2}	+2
\bar{L}_{3}	-4
$N_{R 1}$	0
$N_{R 2}$	-2
$N_{R 3}$	2

Scalar Particle	$\mathrm{U}(1)$ charge
$\chi \tilde{1} 3$	-1
$\tilde{\phi}$	0
$\chi \tilde{2} 3$	-4
$\chi \tilde{3} 1$	4
$\tilde{\chi_{3} 2}$	6

CP violation and Leptogenesis

- Since θ_{13} is large and non-zero it should be possible to relate low energy CP violation with the phases of the Yukawa matrices.
- The neutrino oscillation can measure the Dirac CP phase and hence can be relegated to the Jarkslog invariant $J_{C P}$

$$
J_{C P}=\operatorname{Im}\left\{U_{e 1} U_{\mu 2} U_{e 2}^{*} U_{\mu 1}^{*}\right\}=\frac{\operatorname{Im}\left\{h_{12} h_{23} h_{13}\right\}}{\Delta m_{21}^{2} \Delta m_{31}^{2} \Delta m_{32}^{2}}
$$

where $h=m_{\nu} m_{\nu}^{\dagger}$

- A non-zero $J_{C P}$ which indicate a possible low energy CP violation.

CP violation and Leptogenesis

- CP violation also plays a very crucial role in the leptogenesis.
- The RH neutrino can decay into a lepton and a Higgs or an antilepton and Higgs.
- The difference in the decay rates of the lepton and anti lepton generates a CP asymmetry through the interference of the the tree level and loop correction diagrams

(a)

(b)

(c)

CP violation and Leptogenesis

- In the daiagonal basis of M_{R}, $m_{D} \rightarrow \tilde{m_{D}}=m_{D} U_{R}$
- The CP asymmetry is in general given by

$$
\begin{array}{r}
\epsilon_{i}^{\alpha} \equiv \frac{\Gamma\left(N_{i} \rightarrow \phi \bar{l}_{\alpha}\right)-\Gamma\left(N_{i} \rightarrow \phi^{\dagger} l_{\alpha}\right)}{\sum_{\beta}\left[\Gamma\left(N_{i} \rightarrow \phi \bar{l}_{\beta}\right)+\Gamma\left(N_{i} \rightarrow \phi^{\dagger} l_{\beta}\right)\right]} \\
=\frac{1}{8 \pi v_{u}^{2}} \frac{1}{\left(\tilde{m}_{D}^{\dagger} \tilde{m}_{D}\right)_{i i}} \sum_{j \neq i}\left(\mathcal{I}_{i j}^{\alpha} f\left(M_{j}^{2} / M_{i}^{2}\right)+\mathcal{J}_{i j}^{\alpha} \frac{1}{1-M_{j}^{2} / M_{i}^{2}}\right),
\end{array}
$$

where
$\mathcal{I}_{i j}^{\alpha}=\operatorname{Im}\left[\left(\tilde{m}_{D}^{\dagger}\right)_{i \alpha}\left(\tilde{m}_{D}\right)_{\alpha j}\left(\tilde{m}_{D}^{\dagger} \tilde{m}_{D}\right)_{i j}\right], \mathcal{J}_{i j}^{\alpha}=\operatorname{Im}\left[\left(\tilde{m}_{D}^{\dagger}\right)_{i \alpha}\left(\tilde{m}_{D}\right)_{\alpha j}\left(\tilde{m}_{D}^{\dagger} \tilde{m}_{D}\right)_{j i}\right]$.
$\alpha=\mathrm{e}, \mu, \tau$ and $\mathrm{i}, \mathrm{j}=1,2,3$ and $f(x)=\sqrt{x}\left[\frac{2}{1-x}-\ln \left(\frac{1+x}{x}\right)\right]$.

- The second term vanishes when summed over all the flavours and the only relevent contribution comes from the first term .

CP violation and Leptogenesis

$$
\epsilon_{i}=\frac{1}{8 \pi v_{u}^{2}} \frac{1}{\left(\tilde{m}_{D}^{\dagger} \tilde{m}_{D}\right)_{i i}} \mathcal{I}_{i j}, \text { where } \mathcal{I}_{i j}=\sum_{\alpha} \mathcal{I}_{i j}^{\alpha} f\left(\frac{M_{j}^{2}}{M_{i}^{2}}\right) .
$$

$$
\begin{array}{r}
\tilde{m}_{1}^{\alpha}=\frac{\left(\tilde{m}_{D}^{\dagger}\right)_{1 \alpha}\left(\tilde{m}_{D}\right)_{\alpha 1}}{M_{1}} . \\
\tilde{m}=\sum_{\alpha} \tilde{m}_{1}^{\alpha}
\end{array}
$$

Solution-Type-I

	m_{D}	M_{R}	$J_{C P}$	$\mathcal{I}_{i j}^{\alpha}$ and $\mathcal{J}_{i j}^{\alpha}$
la	$\left(\begin{array}{ccc}0 & a_{2} & 0 \\ 0 & b_{2} & b_{3} \\ c_{1} & 0 & c_{3} e^{i \gamma}\end{array}\right)$	$\left(\begin{array}{lll}p & 0 & 0 \\ 0 & 0 & u \\ 0 & u & 0\end{array}\right)$	$\neq 0$	$\begin{gathered} \mathcal{I}_{12}^{\tau}=-c_{1}^{2} c_{3}^{2} \cos (\gamma) \sin (\gamma) \\ \mathcal{I}_{13}^{\tau}=c_{1}^{2} c_{3}^{2} \cos (\gamma) \sin (\gamma) \end{gathered}$
Ib	$\left(\begin{array}{ccc}0 & a_{2} & 0 \\ b_{1} e^{i \gamma} & b_{2} & 0 \\ c_{1} & 0 & c_{3}\end{array}\right)$	$\left(\begin{array}{lll}0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r\end{array}\right)$	$\neq 0$	$\begin{gathered} \mathcal{I}_{12}^{e}=\mathcal{J}_{12}^{e}=\frac{1}{2} a_{2}^{2} b_{1} b_{2} \sin (\gamma) \\ \mathcal{I}_{12}^{\mu}=\frac{1}{2} b_{1} b_{2}\left(a_{2}^{2}-2 b_{1}^{2}+2 b_{2}^{2}-c_{1}^{2}\right) \sin (\gamma) \\ \mathcal{J}_{12}^{\mu}=\frac{1}{2} b_{1} b_{2}\left(a_{2}^{2}-c_{1}^{2}\right) \sin (\gamma) \\ \mathcal{I}_{12}^{\tau}=\mathcal{J}_{12}^{\tau}=-\frac{1}{2} b_{1} b_{2} c_{1}^{2} \sin (\gamma) \end{gathered}$
Ic	$\left(\begin{array}{ccc}0 & 0 & a_{3} \\ b_{1} & 0 & b_{3} \\ c_{1} e^{i \gamma} & c_{2} & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0\end{array}\right)$	$\neq 0$	$\begin{gathered} \mathcal{I}_{12}^{\tau}=-c_{1}^{2} c_{2}^{2} \cos (\gamma) \sin (\gamma) \\ \mathcal{I}_{13}^{\tau}=c_{1}^{2} c_{2}^{2} \cos (\gamma) \sin (\gamma) \end{gathered}$

Solution-Type-II

	m_{D}	M_{R}	$J_{C P}$	$\mathcal{I}_{i j}^{\alpha}$ and $\mathcal{J}_{i j}^{\alpha}$
Ila	$\left(\begin{array}{ccc}0 & a_{2} & 0 \\ b_{1} & 0 & b_{3} \\ 0 & c_{2} & c_{3} e^{i \gamma}\end{array}\right)$	$\left(\begin{array}{lll}p & 0 & 0 \\ 0 & 0 & u \\ 0 & u & 0\end{array}\right)$	$\neq 0$	0
Ilb	$\left(\begin{array}{ccc}0 & a_{2} & 0 \\ b_{1} & 0 & b_{3} \\ c_{1} e^{i \gamma} & c_{2} & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r\end{array}\right)$	$\neq 0$	$\begin{gathered} \mathcal{I}_{12}^{e}=\mathcal{J}_{12}^{e}=\frac{1}{2} a_{2}^{2} c_{1} c_{2} \sin (\gamma) \\ \mathcal{I}_{12}^{\mu}=\mathcal{J}_{12}^{\mu}=-\frac{1}{2} b_{1}^{2} c_{1} c_{2} \sin (\gamma) \\ \mathcal{I}_{12}^{\tau}=-\frac{1}{2} c_{1} c_{2}\left(a_{2}^{2}-b_{1}^{2}-2 c_{1}^{2}+2 c_{2}^{2}\right) \sin (\gamma) \\ =\mathcal{J}_{12}^{\tau}=-\frac{1}{2} c_{1} c_{2}\left(a_{2}^{2}-b_{1}^{2}\right) \sin (\gamma) \end{gathered}$
Ilc	$\left(\begin{array}{ccc}0 & 0 & a_{3} \\ b_{1} & b_{2} & 0 \\ c_{1} e^{i \gamma} & 0 & c\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0\end{array}\right)$	$\neq 0$	0

Solution-Type-III

	m_{D}	M_{R}	$J_{C P}$	$\mathcal{I}_{i j}^{\alpha}$ and $\mathcal{J}_{i j}^{\alpha}$
IIIa	$\left(\begin{array}{ccc}a_{1} & 0 & a_{3} \\ 0 & b_{2} & 0 \\ 0 & c_{2} & c_{3} e^{i \gamma}\end{array}\right)$	$\left(\begin{array}{lll}p & 0 & 0 \\ 0 & 0 & u \\ 0 & u & 0\end{array}\right)$	$\neq 0$	0
IIIb	$\left(\begin{array}{ccc}a_{1} & 0 & a_{3} \\ 0 & b_{2} & 0 \\ c_{1} e^{i \gamma} & c_{2} & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r\end{array}\right)$	$\neq 0$	$\begin{gathered} \mathcal{I}_{12}^{e}=\mathcal{J}_{12}^{e}=-\frac{1}{2} a_{1}^{2} c_{1} c_{2} \sin (\gamma) \\ \mathcal{I}_{12}^{\mu}=\mathcal{J}_{12}^{\mu}=\frac{1}{2} b_{2}^{2} c_{1} c_{2} \sin (\gamma) \\ \mathcal{I}_{12}^{\tau}=\frac{1}{2} c_{1} c_{2}\left(-a_{1}^{2}+b_{2}^{2}-2 c_{1}^{2}+2 c_{2}^{2}\right) \sin (\gamma) \\ \mathcal{J}_{12}^{\tau}=\frac{1}{2} c_{1} c_{2}\left(a_{1}^{2}-b_{2}^{2}\right) \sin (\gamma) \end{gathered}$
IIIC	$\left(\begin{array}{ccc}a_{1} & a_{2} & 0 \\ 0 & 0 & b_{3} \\ c_{1} e^{i \gamma} & 0 & c_{3}\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0\end{array}\right)$	$\neq 0$	0

Solution-Type-IV

	m_{D}	M_{R}	$J_{C P}$	$\mathcal{I}_{i j}^{\alpha}$ and $\mathcal{J}_{i j}^{\alpha}$
IVa	$\left(\begin{array}{ccc}a_{1} & 0 & a_{3} e^{i \gamma} \\ 0 & b_{2} & 0 \\ 0 & c_{2} & c_{3}\end{array}\right)$	$\left(\begin{array}{lll}p & 0 & 0 \\ 0 & 0 & u \\ 0 & u & 0\end{array}\right)$	$\neq 0$	$\mathcal{I}_{12}^{e}=-a_{1}^{2} a_{3}^{2} \cos (\gamma) \sin (\gamma)$ $\mathcal{I}_{13}^{e}=a_{1}^{2} a_{3}^{2} \cos (\gamma) \sin (\gamma)$
IVb	$\left(\begin{array}{ccc}a_{1} & 0 & a_{3} e^{i \gamma} \\ b_{1} & b_{2} & 0 \\ 0 & c_{2} & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & s & 0 \\ s & 0 & 0 \\ 0 & 0 & r\end{array}\right)$	$\neq 0$	$\begin{gathered} \mathcal{I}_{12}^{e}=\mathcal{J}_{12}^{e}=-\frac{1}{2} a_{1}^{2} b_{1} b_{2} \sin (\gamma) \\ \mathcal{I}_{12}^{\mu}=-\frac{1}{2} b_{1} b_{2}\left(-a_{1}^{2}-2 b_{1}^{2}+2 b_{2}^{2}+c_{2}^{2}\right) \sin (\gamma) \\ \mathcal{J}_{12}^{\mu}=\frac{1}{2} b_{1} b_{2}\left(a_{1}^{2}-c_{2}^{2}\right) \\ \mathcal{I}_{12}^{\tau}=\mathcal{J}_{12}^{\tau}=\frac{1}{2} b_{1} b_{2} c_{2}^{2} \sin (\gamma) \end{gathered}$
IVc	$\left(\begin{array}{ccc}a_{1} e^{i \gamma} & a_{2} & 0 \\ b_{1} & 0 & b_{3} \\ 0 & 0 & c_{3}\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & t \\ 0 & q & 0 \\ t & 0 & 0\end{array}\right)$	$\neq 0$	$\mathcal{I}_{12}^{e}=-a_{1}^{2} a_{2}^{2} \cos (\gamma) \sin (\gamma)$ $\mathcal{I}_{13}^{e}=a_{1}^{2} a_{2}^{2} \cos (\gamma) \sin (\gamma)$

Conclusion and Summary

- When we consider the m_{ν} with all the light neutrinos massive we get 62 possibilities according to our required classification.
- We find six new cases of m_{ν} which have not been analyzed in the literature earlier and out of these only four are allowed by low energy phenomenology.
- Type I and Type II with $m_{e e}=0$ are of normal hierarchical ordering.
- There is a constrain on the Dirac CP phase for Type I and Type II but they are completely non-overlapping.
- Type III with $m_{\mu \mu}=0$ and Type IV with $m_{\tau \tau}=0$ are of inverted hierarchy.
- In Type III and IV also we find some constrain in the Dirac CP phase.
- The models constrain $\sin ^{2} \theta_{13}$ in the range $0.02-0.05$ in all the four cases which is consistent with the recent observations in T2K and Double Chooz experiments.
- These models follow a U (1) symmetry.
- There are only cases with M_{R} corresponding to $L_{e}-L_{\tau}$ where we can draw a correlation between the high and the low energy CP violation.

Thank You

