Finite Quantum Corrections to the Neutrino Mixing Matrix

Takeshi Araki (IHEP, China) CQ. Geng (NTHU, Taiwan) ZZ. Xing (IHEP, China)

PLB699, arXiv: 1012.2970 [hep-ph] JHEP1109, arXiv: 1108.3175 [hep-ph]

Outline

- Introduction
- neutrino oscillation experiments
- theoretical studies
- Motivation
- Finite Quantum Corrections
- framework \& Numerical analysis
- simple realization
- Summary

Introduction - experiment -

Neutrinos do oscillate, have masses, and mix.

$$
V_{P M N S}=\left(\begin{array}{ccc}
c_{13} c_{12} & c_{13} s_{12} & s_{13} e^{-i \delta} \\
-c_{23} s_{12}-s_{23} s_{13} c_{12} e^{i \delta} & c_{23} c_{12}-s_{23} s_{13} s_{12} e^{i \delta} & s_{23} c_{13} \\
s_{23} s_{12}-c_{23} s_{13} c_{12} e^{i \delta} & -s_{23} c_{12}-c_{23} s_{13} s_{12} e^{i \delta} & c_{23} c_{13}
\end{array}\right) P_{\nu}
$$

[T.Schwets, et al, arXiv:1108.1376]

Two large angles

$$
\begin{aligned}
& \theta_{23}=45.6^{\circ}{ }_{-3.5^{\circ}}^{+3.0^{\circ}} \\
& \theta_{12}=34.0^{\circ} \pm 1.0^{\circ}
\end{aligned}
$$

One small angle

$$
\theta_{13}=5.7^{\circ}{ }_{-2.1^{\circ}}^{+2.2^{\circ}}
$$

$$
\theta_{13}^{\mathrm{T}, \mathrm{M}, \mathrm{D}}=8.3^{\circ}\left(8.6^{\circ}\right)
$$

[Minakata, et al, arXiv:1111.3330]

We don't know even the ordering of neutrino masses

$$
\begin{gathered}
m_{3} \gg m_{2}>m_{1} \\
\text { [Normal] }
\end{gathered} \text { or } \begin{gathered}
m_{2}>m_{1} \gg m_{3} \\
\text { [Inverted] }
\end{gathered} \text { or } \quad \begin{gathered}
m_{1} \simeq m_{2} \simeq m_{3} \\
\text { [Degenerate] }
\end{gathered}
$$

and what is even worse, no info. about CP violations.

Introduction - theory -

Constant-number-parametrizations:

$$
\begin{aligned}
& V_{D C}=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{6} & 2 / \sqrt{6} \\
1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right) \quad \square \quad \begin{array}{l}
\theta_{23} \simeq 54.7^{\circ} \\
\theta_{12}=45^{\circ} \\
\theta_{13}=0^{\circ}
\end{array} \\
& \text { [H.Fritzsch and Z.Z.Xing, PLB372(1996)] } \\
& V_{B M}=\left(\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
-1 / 2 & 1 / 2 & 1 / \sqrt{2} \\
1 / 2 & -1 / 2 & 1 / \sqrt{2}
\end{array}\right) \quad \square \quad \begin{array}{l}
\theta_{23}=45^{\circ} \\
\theta_{12}=45^{\circ} \\
\theta_{13}=0^{\circ}
\end{array} \\
& V_{T B M}=\left(\begin{array}{ccc}
2 / \sqrt{6} & 1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & -1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \square \sqrt{\theta_{23}=45^{\circ}} \begin{array}{l}
\theta_{12} \simeq 35.3^{\circ} \\
\theta_{13}=0^{\circ}
\end{array}
\end{aligned}
$$

[P.F.Harrison, et.al, PLB530(2002)]
These special mixing matrices can be derived from nonAbelian discrete flavor symmetres: e.g., S3, S4, A4(T)) ...

Broken symmetries

We define the diagonalizations of mass matrices as

$$
\begin{aligned}
& U_{\nu}^{\dagger} M_{\nu} U_{\nu}^{*}=D_{\nu}=\operatorname{Diag}\left(m_{1}, m_{2}, m_{3}\right) \\
& U_{e}^{\dagger} M_{e} M_{e}^{\dagger} U_{e}=D_{e}^{2}
\end{aligned} \quad \square V_{P M N S}=U_{e}^{\dagger} U_{\nu}
$$

Let us consider the following (flavor) symmetry:

$$
G_{L}^{\dagger} M_{e} M_{e}^{\dagger} G_{L}=M_{e} M_{e}^{\dagger}, \quad G_{L}^{\dagger} M_{\nu} G_{L}^{*}=M_{\nu} \quad\left(G_{L} \equiv G_{e L}=G_{\nu L}\right)
$$

Then, we obtain two conditions for G_{L}.

$$
\begin{aligned}
& {\left[U_{e}^{\dagger} G_{L} U_{e}\right]^{\dagger} D_{e}^{2}\left[U_{e}^{\dagger} G_{L} U_{e}\right]=D_{e}^{2}} \\
& \quad P_{e}=\operatorname{Diag}\left(e^{i \phi_{1}^{e}}, e^{i \phi_{2}^{e}}, e^{i \phi_{3}^{e}}\right) \\
& {\left[U_{\nu}^{\dagger} G_{L} U_{\nu}\right]^{\dagger} D_{\nu}\left[U_{\nu}^{\dagger} G_{L} U_{\nu}\right]^{*}=D_{\nu}}
\end{aligned}
$$

$$
P_{\nu}=\operatorname{Diag}\left(e^{i \phi_{1}^{\nu}}, e^{i \phi_{2}^{\nu}}, e^{i \phi_{3}^{\nu}}\right) \quad\left(\phi_{i}=0, \pi\right)
$$

Broken symmetries

From the two conditions

$$
\begin{aligned}
& G_{L}= U_{e} P_{e} U_{e}^{\dagger}=U_{\nu} P_{\nu} U_{\nu}^{\dagger} \\
&\left(V_{P M N S}=U_{e}^{\dagger} U_{\nu}\right) \square \\
& P_{e} V_{P M N S}=V_{P M N S} P_{\nu} \\
&\left(e^{i \phi_{i}^{e}}-e^{i \phi_{j}^{\nu}}\right)\left(V_{P M N S}\right)_{i j}=0
\end{aligned}
$$

Only $P_{e}=P_{\nu}=e^{i \phi} \square G_{L}=1$ is possible,
otherwise some elements of $V_{P M N S}$ must be vanishing.
The conclusion is based on the assumption: $\underline{G_{e L}=G_{\nu L}}$.

$$
\begin{aligned}
& G_{e L} \neq G_{\nu L} \\
& G_{e L}\left(G_{\nu L}\right) \text { is only valid in the charged lepton }
\end{aligned}
$$ (neutrino) sector, and it is broken in the neutrino (charged lepton) sector.

Motivation

- Constant-number mixings may approximately be reasonable, but they are not completely consistent with experiments.

- These mixings can be derived from family symmetries, but they should be broken symmetries.

Motivated by these facts, here we consider

$$
M_{\nu}=M_{\nu}^{T B}+\delta M_{\nu}\left(V_{M N S}=V^{T B}+\delta V\right)
$$

TB is exact at leading order
small corrections e.g., discrete symmetries (breaking term)

Motivation

Question: What is the correction term?

We know nothing about the correction term.

How many parameters?

$$
M_{\nu}=M_{\nu}^{0}+?
$$

How small?

Exception: RGE
$V^{0} V_{0} V^{e x p}, V_{D C} V_{0} V_{B M} \mathrm{~V}_{0} V_{T B M}$, No prediction.
It is very important to study not only M^{0} but also δM.
We would like to focus on the origin of δM and propose a new mechanism.

Finite Quantum Corrections

- Tree Level

Suppose, at tree-level (and arbitrary energy scale), the TBM mixing is exact and ensured by a family symmetry,
$M_{\nu}^{0}=\frac{m_{1}^{0} e^{i \rho}}{6}\left(\begin{array}{ccc}4 & -2 & -2 \\ -2 & 1 & 1 \\ -2 & 1 & 1\end{array}\right)+\frac{m_{2}^{0} e^{i \sigma}}{3}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)+\frac{m_{3}^{0}}{2}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1\end{array}\right)$
in the basis of $D_{e}=\operatorname{Diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)$.
Spontaneously broken S_{4} [C.S.Lam, PLB656(2007)]

$$
\begin{aligned}
& Z_{2}: G_{\nu}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \text { for } \mathcal{L}_{\nu} \\
& Z_{3}: G_{\ell}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 1 \\
0 & 0 & \omega^{2}
\end{array}\right) \omega=e^{i \frac{2 \pi}{3}} \quad \text { for } \mathcal{L}_{\ell}
\end{aligned}
$$

Finite Quantum Corrections

- 1 loop level

There may exist 1-loop corrections

$$
\begin{aligned}
\delta M_{\nu}= & \frac{M_{\nu}^{0} D_{e}^{2}+D_{e}^{2} M_{\nu}^{0}}{v^{2}} \times I^{\text {loop }} \\
& I^{l o o p}: \text { Dim-less para. from loop } \int \\
& v: \text { electroweak scale }
\end{aligned}
$$

No new Yukawa coupling, no new energy scale.

- Tree + 1 loop

Hence, the full mixing matrix departs from the treelevel mixing after including the finite quantum effects.

Finite Quantum Corrections

- A specific correction term is automatically obtained once a specific mixing is given at tree level.
- No new energy scale; the deviation from the tree-level mixing would naturally be small.
- This is a finite quantum correction, not RGEs, and is defined at an arbitrary energy scale. (No running.)
- Only an overall factor ($I^{\text {loop }}$) depends on the model details.
- The Dirac CP phase is radiatively induced from two Majorana phases: ρ and σ.

Finite Guantum Corrections

More higher order loop corrections are possible.

$$
\begin{aligned}
& \delta M_{\nu}=\frac{D_{e} M_{\nu}^{0} D_{e}}{v^{2}} \times I^{\text {loop }} \\
& \delta M_{\nu}=\frac{\tilde{M}_{\nu}^{0} D_{e}\left(M_{\nu}^{0}\right)^{*} D_{e} \tilde{M}_{\nu}^{0}}{v^{2}} \times I^{\text {loop }} \\
& \begin{array}{l}
\tilde{M}_{\nu}^{0}=M_{\nu}^{0} /(1 \mathrm{eV}) \\
I^{\text {loop }}: \text { Dim-less para. from loop } \\
v: \text { electroweak scale }
\end{array}
\end{aligned}
$$

Setup of numerical analysis

Setup: $M_{\nu}=M_{\nu}^{0}+\delta M_{\nu}$

$$
M_{\nu}^{0}=\left(V^{0}\right)^{T} D_{\nu} V^{0}, \quad \delta M_{\nu}=\frac{M_{\nu}^{0} D_{e}^{2}+D_{e}^{2} M_{\nu}^{0}}{v^{2}} \times I^{\mathrm{loop}}
$$

For $V_{D C}^{0}, V_{B M}^{0}$ and $V_{T B M}^{0}$.
Input parameters:

$$
\left.\begin{array}{c}
\Delta m_{31}^{2}= \begin{cases}+\left(2.45_{-0.27}^{+0.28}\right) \times 10^{-3} & \mathrm{eV}^{2} \\
-\left(2.34_{-0.26}^{+0.30}\right) \times 10^{-3} & \text { for NO } \\
\mathrm{eV}^{2} & \text { for IO }\end{cases} \\
\Delta m_{21}^{2}=\left(7.59_{-0.50}^{+0.60}\right) \times 10^{-5} \mathrm{eV}^{2} \quad \theta_{12}=\left(34.0_{-2.7}^{+2.9}\right)^{\circ}
\end{array}\right\} \begin{aligned}
& m_{e}=0.486 \mathrm{MeV}, \quad m_{\mu}=102.718 \mathrm{MeV}, \quad m_{\tau}=1746.24 \mathrm{MeV} \\
& m_{\nu}^{\text {heaviest }}=0.2 \mathrm{eV} \quad \rho, \sigma=0 \sim 2 \pi \quad I^{\text {loop }}=-125 \sim 125
\end{aligned}
$$

Outputs: θ_{13}, θ_{23} and $J_{C P}$.

Perturbative Expansion

$M_{\nu}=M_{\nu}^{0}+\delta M_{\nu}:$

$$
M_{\nu}^{0}=\left(V^{0}\right)^{T} D_{\nu} V^{0}, \quad \delta M_{\nu}=\frac{M_{\nu}^{0} D_{e}^{2}+D_{e}^{2} M_{\nu}^{0}}{v^{2}} \times I^{l o o p}
$$

By regarding δM_{ν} as small perturtabations

$$
\sin \theta_{13}^{T B M} \simeq \frac{m_{\tau}^{2}}{3 \sqrt{2} v^{2}}\left|\frac{m_{3}^{0}+m_{1}^{0} e^{i \rho}}{m_{3}^{0}-m_{1}^{0} e^{i \rho}}-\frac{m_{3}^{0}+m_{2}^{0} e^{i \sigma}}{m_{3}^{0}-m_{2}^{0} e^{i \sigma}}\right| I^{l o o p}
$$

$$
\tan \theta_{23}^{T B M} \simeq\left|1-\frac{m_{\tau}^{2}}{3 v^{2}}\left[\frac{m_{3}^{0}+m_{1}^{0} e^{i \rho}}{m_{3}^{0}-m_{1}^{0} e^{i \rho}}+2 \frac{m_{3}^{0}+m_{2}^{0} e^{i \sigma}}{m_{3}^{0}-m_{2}^{0} e^{i \sigma}}\right] I^{\text {loop }}\right|
$$

$$
\tan \theta_{12}^{T B M} \simeq \frac{1}{\sqrt{2}}\left|1-\frac{m_{\tau}^{2}}{2 v^{2}} \frac{m_{2}^{0} e^{i \sigma}+m_{1}^{0} e^{i \rho}}{m_{2}^{0} e^{i \sigma}-m_{1}^{0} e^{i \rho}} I^{l o o p}\right| \begin{gathered}
\text { Most } \\
\text { sensitive }
\end{gathered}
$$

The corrections can be enhanced due to $m_{1} \simeq m_{2} \simeq m_{3}$.

Perturbative Expansion

$$
\begin{aligned}
& \sin \theta_{13}^{T B M} \simeq \frac{m_{\tau}^{2}}{3 \sqrt{2} v^{2}}\left|\frac{m_{3}^{0}+m_{1}^{0} e^{i \rho}}{m_{3}^{0}-m_{1}^{0} e^{i \rho}}-\frac{m_{3}^{0}+m_{2}^{0} e^{i \sigma}}{m_{3}^{0}-m_{2}^{0} e^{i \sigma}}\right| I^{l o o p} \\
& \tan \theta_{23}^{T B M} \simeq\left|1-\frac{m_{\tau}^{2}}{3 v^{2}}\left[\frac{m_{3}^{0}+m_{1}^{0} e^{i \rho}}{m_{3}^{0}-m_{1}^{0} e^{i \rho}}+2 \frac{m_{3}^{0}+m_{2}^{0} e^{i \sigma}}{m_{3}^{0}-m_{2}^{0} e^{i \sigma}}\right] I^{l o o p}\right| \\
& \tan \theta_{12}^{T B M} \simeq \frac{1}{\sqrt{2}}\left|1-\frac{m_{\tau}^{2}}{2 v^{2}} \frac{m_{2}^{0} e^{i \sigma}+m_{1}^{0} e^{i \rho}}{m_{2}^{0} e^{i \sigma}-m_{1}^{0} e^{i \rho}} I^{l o o p}\right|
\end{aligned}
$$

- $I^{\text {loop }}>0 \rightarrow \theta_{12}<\theta_{12}^{0}, \quad I^{\text {loop }}<0 \rightarrow \theta_{12}>\theta_{12}^{0}$.
- NO with $I^{l o o p}>0$ and IO with $I^{l o o p}<0 \rightarrow \theta_{23}<\theta_{23}^{0}$.
- NO with $I^{l o o p}<0$ and IO with $I^{l o o p}>0 \rightarrow \theta_{23}>\theta_{23}^{0}$.

Tri-bimaximal mixing

TriBiMaximal Mixing (Normal Ordering)

TriBiMaximal Mixing (Inverted Ordering)

- θ_{13} can largely depart from 0 , but it leads to $\left|\theta_{23}-45^{\circ}\right| \gg 1$.
- $I^{\text {loop }}>0 \rightarrow \theta_{23}<45^{\circ}$ and $I^{\text {loop }}<0 \rightarrow \theta_{23}>45^{\circ}$ for NO.
- $I^{\text {loop }}<0 \rightarrow \theta_{23}<45^{\circ}$ and $I^{\text {loop }}>0 \rightarrow \theta_{23}>45^{\circ}$ for IO.

Bimaximal mixing

BiMaximal Mixing (Inverted Ordering)

- θ_{13} can largely depart from 0 , but it leads to $\left|\theta_{23}-45\right| \gg 1$.
- Because of $\theta_{12}^{B M}=45^{\circ}$, the allowed regions are limited.
- $I^{\text {loop }}<0$ results in $\theta_{12}>45^{\circ}$.

Democratic mixing

- Because of $\theta_{12}^{D C}=45^{\circ}$, the allowed regions are limited.
- $I^{\text {loop }}<0$ results in $\theta_{12}>45^{\circ}$.
- The IO with $I^{l o o p}>0$ results in $\theta_{23}>54.7^{\circ}$.

New mixing

In summary

- It is possible to account for $\theta_{13}^{T 2 K} \simeq 10^{\circ}$, but it is accompanied with a large deviation of θ_{23} from θ_{23}^{0}.

$$
\Delta \theta_{23} \simeq \Delta \theta_{13} \simeq 10^{\circ}
$$

- θ_{12} cannot drastically deviate from θ_{12}^{0}.

$$
\theta_{12}^{0} \simeq \theta_{12}^{e x p} \simeq 34^{\circ}
$$

We invent a new mixing

$$
V_{\text {new }}^{0}=\frac{1}{3}\left(\begin{array}{ccc}
\sqrt{6} & \sqrt{3} & 0 \\
-1 & \sqrt{2} & -\sqrt{6} \\
-\sqrt{2} & 2 & \sqrt{3}
\end{array}\right) P_{\nu} \quad \square \quad \begin{aligned}
& \theta_{23}^{0}=54.7^{\circ} \\
& \theta_{12}^{0} \simeq 35.3^{\circ} \\
& \theta_{13}^{0}=0^{\circ}
\end{aligned}
$$

New mixing

New Mixing (Normal Ordering)

New mixing

$J_{C P} \simeq \frac{m_{\tau}^{2}}{9 v^{2}}\left[\frac{m_{2} m_{3} \sin \sigma}{m_{2}^{2}+m_{3}^{2}-2 m_{2} m_{3} \cos \sigma}-\frac{m_{1} m_{3} \sin \rho}{m_{1}^{2}+m_{3}^{2}-2 m_{1} m_{3} \cos \rho}\right] I^{\mathrm{loop}}$
New Mixing (Normal Ordering)

Possible Model

	Q_{L}	d_{R}	u_{R}	L_{L}	ℓ_{R}	H_{u}	H_{d}	Δ
$S U(2)_{L}$	2	1	1	2	1	2	2	3
$U(1)_{Y}$	$1 / 3$	$-2 / 3$	$4 / 3$	-1	-2	1	1	2
Z_{4}	0	1	1	0	1	1	3	0

Consider a SM extension by $2 \mathrm{HDs}+1 \mathrm{HT}$ with Z_{4}.

$$
\begin{aligned}
\mathcal{L}_{y}= & Y_{d} \\
\bar{Q}_{L} H_{d} d_{R}+Y_{u} \bar{Q}_{L}\left(i \sigma_{2} H_{u}^{*}\right) u_{R} & \begin{array}{c}
\text { Same a } \\
\text { No F }
\end{array} \\
& +Y_{\ell} \bar{L}_{L} H_{d} \ell_{R}+Y_{\Delta} L_{L}^{T} C\left(i \sigma_{2} \Delta\right) L_{L}+h . c . \\
V= & n_{u}^{2} H_{u}^{\dagger} H_{u}+n_{d}^{2} H_{d}^{\dagger} H_{d}+n_{\Delta}^{2} \operatorname{Tr}\left[\Delta \Delta^{\dagger}\right] \\
& +\mu\left[H_{u}^{T}\left(i \sigma_{2} \Delta^{\dagger}\right) H_{d}+h . c .\right]+\lambda_{3}\left[\left(H_{u}^{\dagger} H_{d}\right)^{2}+h . c .\right]
\end{aligned}
$$

Possible Model

- A tree-level mass term is induced from a VEV of the triplet(type-II):

$$
M_{\nu}^{0}=Y_{\Delta} v_{\Delta}=Y_{\Delta} \frac{\mu v_{u} v_{d}}{2 n_{\Delta}^{2}}
$$

- Moreover, from a 1-loop diagram

$$
\begin{aligned}
& \delta M_{\nu} \simeq \frac{M_{\nu}^{0} D_{e}^{2}+D_{e}^{2} M_{\nu}^{0}}{v^{2}} \\
& \frac{\tan ^{2} \beta}{16 \pi^{2}} \frac{1}{1-M_{h_{d}^{ \pm}}^{2} / M_{\Delta^{ \pm}}^{2}} \ln \frac{M_{\Delta \pm \pm}^{2}}{M_{h_{d}^{ \pm}}^{2}} \\
& I^{\text {loop }}
\end{aligned}
$$

$M_{h_{d}^{ \pm}}=10^{2} \mathrm{GeV}, M_{\Delta^{ \pm}}=10^{5} \mathrm{GeV}$ and $\tan \beta=38 \rightarrow I^{\text {loop }}=125$.

Summary

- We have proposed a new mechanism which naturally generates a small correction term based on finite quantum effects.
- Once a tree-level mixing is given, a specific correction term is automatically obtained (up to an overall factor).
- Unfortunately, the mechanism does not work well with the TBM, BM and DC mixings.
- Instead, we have proposed a new mixing pattern.
- We have shown a simple realization of the finite quantum corrections.

Comments

A conclusion and results depend a model.

$$
\begin{array}{r}
V_{T B M}^{0}, V_{B M}^{0}, V_{D C}^{0}, \\
\\
\delta M_{i}, \delta M_{j}, \delta M_{k}, \\
\cdots
\end{array}
$$

Many combinations

- Once a tree-level mixing is given, we obtain a specific correction term (upto $I^{\text {loop }}$). Very predictive!!
- Such (finite quantum) correction terms indeed appear in some simple new physics models.

Perturbative Expansion

$$
V^{0}=\left(\begin{array}{ccr}
c_{12}^{0} & s_{12}^{0} & 0 \\
-c_{23}^{0} s_{12}^{0} & c_{23}^{0} c_{12}^{0} & -s_{23}^{0} \\
-s_{23}^{0} s_{12}^{0} & s_{23}^{0} c_{12}^{0} & c_{23}^{0}
\end{array}\right)
$$

$$
\sin \theta_{13} \simeq\left|2 s_{23}^{0} c_{23}^{0} s_{12}^{0} c_{12}^{0} \frac{m_{\tau}^{2}}{v^{2}}\left\{\frac{\lambda_{3}^{2}\left[\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2} \cos (\rho-\sigma)\right]}{\left[\lambda_{1}^{2}+\lambda_{3}^{2}-2 \lambda_{1} \lambda_{3} \cos \rho\right]\left[\lambda_{2}^{2}+\lambda_{3}^{2}-2 \lambda_{2} \lambda_{3} \cos \sigma\right]}\right\}^{\frac{1}{2}} I^{\text {loop }}\right|
$$

$$
\tan \theta_{12} \simeq t_{12}^{0}\left[1+\left(s_{23}^{0}\right)^{2} \frac{m_{\tau}^{2}}{v^{2}} \frac{\lambda_{1}^{2}-\lambda_{2}^{2}}{\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2} \cos (\rho-\sigma)} I^{\text {loop }}\right]
$$

$$
\tan \theta_{23} \simeq t_{23}^{0}\left\{1+\frac{m_{\tau}^{2}}{v^{2}}\left[\frac{\left(s_{12}^{0}\right)^{2}\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)}{\lambda_{1}^{2}+\lambda_{3}^{2}-2 \lambda_{1} \lambda_{3} \cos \rho}+\frac{\left(c_{12}^{0}\right)^{2}\left(\lambda_{2}^{2}-\lambda_{3}^{2}\right)}{\lambda_{2}^{2}+\lambda_{3}^{2}-2 \lambda_{2} \lambda_{3} \cos \sigma}\right] I^{\text {loop }}\right\}
$$

$$
J_{\mathrm{CP}} \simeq 2\left(s_{23}^{0} c_{23}^{0} s_{12}^{0} c_{12}^{0}\right)^{2} \frac{m_{\tau}^{2}}{v^{2}}\left[\frac{\lambda_{2} \lambda_{3} \sin \sigma}{\lambda_{2}^{2}+\lambda_{3}^{2}-2 \lambda_{2} \lambda_{3} \cos \sigma}-\frac{\lambda_{1} \lambda_{3} \sin \rho}{\lambda_{1}^{2}+\lambda_{3}^{2}-2 \lambda_{1} \lambda_{3} \cos \rho}\right] I^{\text {loop }}
$$

Small $I^{\wedge}\{l o o p\}$ case

For $\left|I^{\text {loop }}\right|<0.5$, only $\left|\tan ^{2} \theta_{12}-0.5\right|$ is appreciable.

Conditions

$$
\begin{gathered}
m_{e}=0.486 \mathrm{MeV} \\
m_{\mu}=102.718 \mathrm{MeV} \\
m_{\tau}=1746.24 \mathrm{MeV} \\
m_{1}+m_{2}+m_{3}<1.19 \mathrm{eV} \\
\Delta m_{31}^{2}=(2.46 \pm 0.12) 10^{-3} \mathrm{eV}^{2} \\
\Delta m_{21}^{2}=(7.59 \pm 0.20) 10^{-5} \mathrm{eV}^{2}
\end{gathered}
$$

Deviations of the other mixing angles are very small:

$$
\left|\tan ^{2} \theta_{23}-1\right|<\mathcal{O}\left(10^{-3}\right) \text { and } \sin ^{2} \theta_{13}<\mathcal{O}\left(10^{-6}\right)
$$

