Bimagic baseline and optimization of a LENF

Srubabati Goswami

Physical Research Laboratory, Ahmedabad, India

KIAS Workshop on Theoretical Issues in Neutrino Physics 13 - 16, November, 2011 Korea Institute for Advanced Study

All About Neutrino Oscillation Parameters: 2011

3-flavour oscillation parameters TS, Tortola, Valle, 1108.1376

	best fit $\pm 1\sigma$	3σ range	prec@3 σ		
$\frac{\Delta m_{21}^2}{10^{-5} \text{eV}^2}$	$7.59^{+0.20}_{-0.18}$	7.09–8.19	7%	KamLAND	
$\frac{\Delta m_{31}^2}{10^{-3} \text{eV}^2}$	$\begin{array}{c} 2.50\substack{+0.09\\-0.16}\\-(2.40\substack{+0.08\\-0.09})\end{array}$	2.14 – 2.76 –(2.13 – 2.67)	12%	MINOS	Double CHOOZ : $\sin^2 2\theta_{13}$
$\sin^2 \theta_{12}$	$0.312\substack{+0.017\\-0.015}$	0.27–0.36	14%	SNO	$= 0.085 \pm 0.029 \pm 0.042$
$\sin^2 \theta_{23}$	$\begin{array}{c} 0.52^{+0.06}_{-0.07} \\ 0.52\pm0.06 \end{array}$	0.39–0.64	24%	SuperK	LowNU 2011, Seoul
$\sin^2 \theta_{13}$	$\begin{array}{c} 0.013\substack{+0.007\\-0.005}\\ 0.016\substack{+0.008\\-0.006}\end{array}$	0.001–0.035 0.001–0.039	120%	T2K + global data	
δ	$\left \begin{array}{c} \left(-0.61^{+0.75}_{-0.65}\right)\pi\\ \left(-0.41^{+0.65}_{-0.70}\right)\pi\end{array}\right.$	$0-2\pi$	_		

upper: normal hierarchy, lower: inverted hierarchy

Also Fogli et al. arXiv:1106.6028 [hep-ph]

15 / 31

T. Schwetz ((MPIK)
--------------	--------

Mumbai, 25 Aug 2011

Three Amigos

- The third leptonic mixing-angle θ_{13} (100% uncertainty at 3σ)
- The sign of Δm_{31}^2 or the mass hierarchy
- The CP phase in neutrino sector

I Aim at ...

STOC

www.shutterstock.com - :61722490

The Bi-Magic baseline

Determination of θ_{13} , mass hierachy and δ_{CP} using a Low Energy Neutrino Factory at the bi-magic baseline

Baseline Optimization of a LENF

Energy Optimization of a LENF

A. Dighe, S. Goswami and S. Ray, Phys. Rev. Lett. **105**: 261802, 2010. arXiv:1110.3289 [hep-ph].

Discovery at Reactor and Superbeam Experimen

Can probe $\sin^2 2\theta_{13}$ down to 0.002 - 0.006 \Longrightarrow can confirm the current non-zero θ_{13} value

- Mass hierarchy can only be distunguished for < 40-50 % values of δ_{cp} and only if $\sin^2 2\theta_{13} > 0.02$
- CP violation may be discovered for less than 20% of all possible values of δ_{CP} only if $\sin^2 2\theta_{13} > 0.02$

Huber, Lindner, Schwetz, Winter, 2009

The Channel with the Golden Gun

$$\mathsf{P}_{e\mu} = |\cos\theta_{23}A_S e^{i\delta} + \sin\theta_{23}A_A|^2$$

- $A_S \rightarrow Solar$ amplitude depends on Δm^2_{21} and θ_{12}
- $A_A \rightarrow \text{atmospheric}$ amplitude depends on Δm^2_{31} and θ_{13}
- CP violation arises from the interference term
- Absence of CP violation requires either $A_S = 0$ or $A_A = 0$.

A.Yu. Smirnov, hep/ph 0610198

The Channel with the Golden Gun

$$\begin{split} P_{e\mu} &\simeq \sin^2 \theta_{23} \, \sin^2 2\theta_{13} \, \frac{\sin^2 (1-\hat{A})\Delta}{(1-\hat{A})^2} \\ &+ \, \alpha \, \sin 2\theta_{13} \, \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta - \delta_{\rm CP}) \, \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin(1-\hat{A})\Delta}{(1-\hat{A})} \\ &+ \, \alpha^2 \, \cos^2 \theta_{23} \sin^2 2\theta_{12} \, \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \end{split}$$

- $\alpha = \Delta m_{31}^2 / \Delta m_{31}^2 \approx 0.04 \quad \sin^2 \theta_{13} \sim 0.01$
- $\hat{A} \equiv 2\sqrt{2}G_F n_e E_{\nu} / \Delta m_{31}^2 , \quad \Delta \equiv \Delta m_{31}^2 L / (4E_{\nu}) ,$

Expanded in small parameters α and $\sin^2 \theta_{13}$ (contant matter density)

Attack of the Clones

• δ_{CP} can vary from (0 to 2π) and creates the problem of Parameter Degeneracies

• Give rise to multiple solutions \rightarrow Eightfold degeneracy

The Phantom Menace

Ghost (Degenerate) Solutions in $(\delta - \theta_{13})$ plane

Unambiguous determination of parameters difficult

Mena and Parke, 2005

A New Hope: Magic Baseline

• If
$$\frac{\sin(\hat{A}\Delta)}{\hat{A}} = 0$$

 $\implies P_{e\mu}$ independent of δ_{CP}

A New Hope: Magic Baseline

A New Hope: Magic Baseline

$$\begin{split} P_{e\mu} &\simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2 (1-\hat{A})\Delta}{(1-\hat{A})^2} \\ &+ \frac{\alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta - \delta_{\rm CP})}{\hat{A}} \frac{\sin(\hat{A}\Delta) \sin(1-\hat{A})\Delta}{(1-\hat{A})} \\ &+ \frac{\alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12}}{\hat{A}^2} \end{split}$$

•
$$\sin(\hat{A}\Delta) \simeq 0 \Rightarrow \frac{1}{\sqrt{2}} G_F n_e L = \pi \Rightarrow L_{magic} \simeq 7690 \text{ km}$$

- Independent of neutrino parameters and energy
- True for both NH and IH

Barger, Marfatia, Whisnant, hep-ph/0112119 Huber, Winter, hep-ph/0301257 Smirnov, hep-ph/0610198

$P_{e\mu}$ for NH and IH at long baselines

- At ~ 7500 km δ_{CP} dependence negligible
- $[\delta_{CP}, sgn(\Delta m_{atm}^2))$ degeneracies vanish
- Clean measurement of $sgn(\Delta m^2_{\rm atm})$

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

$P_{e\mu}$ for different θ_{13} at long baselines

- At ~ 7500 km δ_{CP} dependence negligible
- (δ_{CP}, θ_{13}) degeneracies vanish
- Clean measurement of θ_{13}

Agarwalla, Choubey, Raychaudhuri, hep-ph/0610333

The Magic baseline: Absence of CP sensitivity

- Recommendation of International Design Study of Neutrino Factory Group: another experiment at 4000 km for δ_{CP} with $E_{\mu} = 25$ GeV
- Requires high acceleration of the muons, also $1/r^2$ fall in flux
- Can there be a single experiment at a shorter baseline and lower energy that can determine all the three parameters ?

Enters The Bi-Magic baseline

$$\begin{split} P_{e\mu} &\simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2 (1-\hat{A})\Delta}{(1-\hat{A})^2} \\ &+ \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos(\Delta - \delta_{\rm CP}) \frac{\sin(\hat{A}\Delta) \sin(1-\hat{A})\Delta}{\hat{A}} \\ &+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \end{split}$$

- The condition $\sin(\hat{A}\Delta) \simeq 0$ is valid for both NH and IH
- If we instead make $\sin[(1 \hat{A})\Delta] = 0$ the δ_{CP} dependent term can vanish.
- In that case $P_{e\mu} \approx \mathcal{O}(\alpha^2) \rightarrow \text{small}$
- But this condition depends on hierarchy

Enters The Bi-Magic baseline

9 For IH
$$\hat{A} = -\hat{A}$$
, $\Delta = -\Delta$

Magic condition depends on hierarchy

IH-NoCPNH-NoCP $(1 + |\hat{A}|) \cdot |\Delta| = n\pi, n > 0$ $(1 - |\hat{A}|) \cdot |\Delta| = n\pi, n \neq 0$

Demand: Maximum hierarchy sensitivity

NH-maxIH-max
$$(1 - |\hat{A}|) \cdot |\Delta| = (m - \frac{1}{2})\pi$$
 $(1 + |\hat{A}|) \cdot |\Delta| = (m - \frac{1}{2})\pi$

The Bi-Magic baseline

The Bi-Magic baseline

- Lowest Bi-magic Baseline ~ 2540 km
- If Higher n,m \Rightarrow Lower E_{ν} to satisfy no CP condition low flux, low efficiency
- More bimagics 6172 km, 8950 km, 106900 km

Baselines close Bi-Magic baseline

- CERN PhyÃsalmi : 2288 km (LAGUNA)
- CERN GranCanaria: 2780 km
- BNL- Homestake : 2540 km
- Fermilab-Icicle Creek : 2610 km
- Fermilab SanJacinto: 2610 km

For a compilation of baselines from different accelerator facilites and underground laboratories see Agarwalla et. al. arXiv:1012.1872 [hep-ph]

$P_{e\mu}$ at the Bi-Magic baseline

E_{IH} = 1.9 GeV

- NH probability independent of δ_{CP} and θ_{13} but δ_{CP} band in IH large
- θ_{13} sensitivity for IH δ_{CP} sensitivity for IH

E_{IH} = 3.3 GeV

- IH probability independent of δ_{CP} and θ_{13} and non-overlapping with NH
- θ_{13} sensitivity for NH δ_{CP} sensitivity for NH

The Return of the CP sensitivity

 $P_{e\mu}$ largest at $\delta_{CP} = 3\pi/4$, lowest at $\delta_{CP} = 7\pi/4$.

The Expanded Magic Bins

• The statistical error bars indicate hierarchy, θ_{13} and CP sensitivity for $\sin^2 \theta_{13} > 10^{-4}$ for NH (near 3.3 GeV) and $\sin^2 \theta_{13} > 10^{-3}$ for IH (near 1.9 GeV)

Neutrino Factory in a nutshell

- Muons are accelerated and injected into a storage ring
- Muons decay as

 $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ $\mu^- \to e^- \bar{\nu}_e \nu_\mu$

- Wrong sign Muons $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ $\nu_e \rightarrow \nu_\mu \rightarrow \mu^-$
- Right Sign Muons

 $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ $\bar{\nu}_\mu \to \bar{\nu}_\mu \to \mu^+$

Detector with charge identification capabilities suitable

Low Energy Neutrino Factory

. For $E_{\mu} = 5 \text{ GeV} E_{\nu}$ (ν_e) peaks at $\sim 3 \text{ GeV}$

The Detector

- Magentized totally active scintillating detector (TASD)
- When a neutrino strikes an atom in the liquid scintillator, it releases a burst of charged particles. As these particles come to rest in the detector, they release energy which is collected by photo-detectors
- Using the pattern of light seen by the photo-detectors one can detect the neutrino and measure its energy.
- Can detect both electron and muon and their charge

The set-up

- For the LENF beam we assume
 - \checkmark $1.4 \times 10^{21} \mu^+$ decay per year
 - 2.5 years running
- For the TASD we assume
 - Detector fiducial mass 20 kton
 - \checkmark μ^{\pm} detection efficiency of 94 %
 - Sector Background of 10^{-3} on the $\bar{\nu_{\mu}}$ appearance and disapperance channels
 - Energy Resolution, $dE/E \sim 10\%$
- For the χ^2 analysis we assume
 - \checkmark 4% error on Δm^2_{21} , $heta_{12}$
 - \checkmark 5% error on $|\Delta m^2_{31}|$ and $heta_{23}$
 - 20% error on θ_{13}
- We use GLoBES software for the analysis

Hierarchy Sensitivity

- Solution Results for 2.5 years run with μ^+ beam Dighe, Goswami, Ray, 2010
 - Hierarchy sensitivity for sin² $\theta_{13} \sim 3 \times 10^{-5}$ (depending on δ_{CP}) if true hierarchy is NH and for sin² $\theta_{13} \sim 10^{-4}$ if true hierarchy is IH

θ_{13} Discovery

- $\theta_{13} \text{ discovery} \Longrightarrow \text{ how far a true non-zero } \theta_{13} \text{ is different from } \theta_{13} = 0$
- If NH is true hierarchy then it is possible to discover $\sin^2 \theta_{13} \sim 3 \times 10^{-5}$ (depends on δ_{CP})
- If IH is true hierarchy then it is possible to discover $\sin^2 \theta_{13} \sim 7 \times 10^{-4}$ (not very sensitive to δ_{CP})

Dighe, Goswami, Ray, 2010

δ_{CP} Discovery

• δ_{CP} discovery \Longrightarrow at what σ a true non-zero δ_{CP} is different from $\delta_{CP} = 0$

Possible to discover δ_{CP} for low values of θ_{13}

Dighe, Goswami, Ray, 2010

Summary of a LENF experiment at 2540 km

- Exceptional sensitivity to hierarchy
- Also can probe low values of θ_{13}
- Can discover δ_{CP} for very low values of θ_{13}
- For the currrent best-fit θ_{13} can discover all the three unknowns at 3σ
- One can be more ambitious and aim for a 5σ discovery
- Is this The Optimal Baseline ?
- Baseline optimization of a LENF
- Energy optimization of a LENF

Baseline Wars: Optimization over L

- Episode I : Hieararchy
- **D** Episode II : θ_{13}
- Episode III : δ_{CP}
- Cast and Crew
 - True Values: $\Delta m_{21}^2 = 7.65 \times 10^{-5} \text{ eV}^2$, $\sin^2 \theta_{12} = 0.30, |\Delta m_{31}^2| = 2.4 \times 10^{-3} \text{ eV}^2 \sin^2 \theta_{23} = 0.5$,
 - Undisplayed parameters marginalized over
 - 4% error on solar parameters, 5% error on atmospheric parameters
 - 2% error on matter density profile
- Next generation experiment $\rightarrow 5\sigma$ discovery essential

$P_{e\mu}$ at different baselines

- NH-max and IH-noCP shifts towards high E_{ν}
- $E_{max}^{NH} = E_{noCP}^{IH}$ not satisfied exactly
- $P_{e\mu}^{NH}$ increases and $P_{e\mu}^{IH}$ decreases with E_{ν}
- Integrated effect \rightarrow at higher E_{μ} better hierarchy sensitivity at higher L,

Optimal Baseline for Hierarchy

- The band denotes δ_{CP} variation over $0-2\pi$
- **D** The upper (lower) limit \rightarrow worst (best) sensitivity
- Knowledge of true value of δ_{CP} crucial
- If or $E_{\mu} = 5$ GeV, $L \sim 2500$ km, the best possible reach is at $\delta_{CP} = 3\pi/4$
- $I igher E_{\mu} \rightarrow L \sim 3000 \text{ km}$
- **9** 7.5 10 GeV no significant change in sensitivity \rightarrow saturation
- Depend to some extent on the true value of δ_{CP}

Optimal Baseline for Hierarchy: $\delta_{CP} - L$ **plots**

- Shows for which exact values of δ_{CP} sensitivity is possible \rightarrow information missing in plots showing CP fraction
- \blacksquare $\sin^2 heta_{13} = 0.056, \rightarrow L \gtrsim 700 \text{ km}$
- $\sin^2 \theta_{13} = 0.01$, \rightarrow L \gtrsim 1000 km if $\delta_{CP} \geq 3\pi/2$
- $\sin^2 \theta_{13} = 0.001$ If $\delta_{CP} \sim \pi/2 \rightarrow \mathsf{L} \sim 1300 \text{ km}$
 - Larger fraction of δ_{CP} for L \sim 1800 2500 km
 - CP fraction Increases with E_{μ}
 - No determination possible for $\delta_{CP} \sim 3\pi/2$
 - Complimentarity with higher baselines and energy

Optimal Baseline for Hierarchy: $\delta_{CP} - L$ **plots**

- If the CP fraction for which 5σ discovery is possible ($\sin^2 \theta_{13} = 0.001$)
- $L \sim 1300 \text{ km} \rightarrow 40.6\% 33.7\% (E_{\mu} = 5-10 \text{ GeV})$
- $L \sim 2540 \text{ km} \rightarrow 86.4\%$ 88.4 % (E_{μ} = 5 10 GeV)

Hierarchy at 5 σ for larger CP fraction at $L \sim 2540$ km

Optimal Baseline for θ_{13}

- The best sensitivity
 - E_{μ} = 5 GeV, L \sim 800-1600 km
 - E_{μ} = 7.5 10 GeV, L \sim 1500 2500 km
- For the worst case true value of δ_{CP} , L ~ 2000 km
- **Saturation** effect from 7.5 GeV \rightarrow 10 GeV present
- Sensitvity depends crucially on true δ_{CP}

Optimal Baseline for θ_{13} **:** $\delta_{CP} - L$ **plots**

■ $\sin^2 \theta_{13} = 0.01 \rightarrow \theta_{13}$ can be discovered at 5 σ in the whole plane

- sin² θ₁₃ = 0.001 → L ≤ 2100 km
- $\sin^2 \theta_{13} = 0.0001 \rightarrow \text{smaller L} \lesssim 2500 2700 \text{ km}$ preferred
- With increasing E_{μ} increased sensitivity at higher baselines

Optimal Baseline for 5 σ discovery of δ_{CP}

- Sensitivity depends strongly on true δ_{CP}
- Solution Best sensitivity (lowest reach in θ_{13}) for true $\delta_{CP} = \pi/2, 3\pi/2 \rightarrow CP$ violation maximum
- **J** $L \lesssim 2000$ km more efficient
- Saturation effect present

Optimal Baseline for 5 σ discovery of δ_{CP}

■ $\sin^2 \theta_{13} > 0.01, \rightarrow \delta_{CP} = (0.3 - 0.7)\pi, (1.3 - 1.7)\pi \rightarrow L \lesssim 2500 \text{ km}$

● 0.001 $\lesssim \sin^2 \theta_{13} \lesssim 0.01 \rightarrow \mathsf{L} \lesssim 2100 \text{ km}$

Optimal Energy for Hierarchy

- Sensitivity increases with E_{μ} and then saturates
- E_{μ}^{sat} increases with L: \sim 5 GeV for 1500 km, \sim 7 GeV for 2500 km, \sim 10 GeV for 3500 km
- Sest hierarchy reach is at L = 3500 km, $E_{\mu} \sim 10 GeV$
- Strong dependence on true value of δ_{CP}

Optimal Energy for θ_{13}

Optimal energy at a particular baseline also depends on true value of δ_{CP}

- L = 1500km, $E_{\mu} > 6$ GeV, L = 2500 km , $E_{\mu} > 6$ GeV, L = 3500km, $E_{\mu} > 10$ GeV
- Lowest θ_{13} reach at L = 3500 km and $E_{\mu} \sim 14$ GeV

Optimal Energy for δ_{CP}

The optimal energy for each baseline depends on true δ_{CP}

- In general the discovery potential improves with energy till $E_{\mu_{sat}}$
- $ho_{
 m o}\sim 6~{
 m GeV}$ for 1500 km, $\sim 8~{
 m GeV}$ for 2500 km, $\sim 12~{
 m GeV}$ for 3500 km
- Best sensitivity for $\delta_{CP} = \pi/2, 3\pi/2 \rightarrow \text{maximum CP}$ violation
- $\sim 2500 \, \text{km} \sim 8 \, \text{GeV}$ best though for $\delta_{CP} = \pi/2 \, 3500 \, \text{km}$ can have a lower reach in θ_{13}
- But for majority of $\delta_{CP} \sim 1500 \text{ km}$, $\sim 6 \text{ GeV}$ best

Estimation of optimal E_{μ}

Quality factor:

$$\mathsf{Q} = \frac{\int \Phi_{\nu_{e}} \mathsf{P}_{e\mu} \sigma_{\nu_{\mu}} \mathsf{d} \mathsf{E}_{\nu_{e}}}{\int \Phi_{\nu_{e}} \sigma_{\nu_{\mu}} \mathsf{d} \mathsf{E}_{\nu_{e}}}$$

- For each L and E_{μ} find Q
- Maximum of Q gives the optimal E_{μ}
- Depends on mixing parameters
- Matches with that obtained from numerical analysis
- Beyond this $E_{\mu_{sat}}$ no significant improvement in performence

If θ_{13} is Large

• T2K + MINOS: $\sin^2 \theta_{13} = 0.021^{+0.007}_{-0.008}$ (

Global : $\sin^2 \theta_{13} = 0.013^{+.007}_{-.005}$

- Hierarchy for $L \gtrsim 1000$ km for all δ_{CP}
- θ₁₃: 500 5000 km
- $\delta_{CP} = (0.3 0.7)\pi$ and $(1.3 1.7)\pi$: (500 2500) km

If θ_{13} is Large

The results shown are obtained with

- $m Im S imes 10^{21}$ useful muon decays
- 2.5 year run with each polarity,
- 25 kt detector
- Can we be more ambitious ?
- Minimum exposure needed for 5 σ discovery ?
- Optimization with respect to exposure

If θ_{13} is Large

- Hierarchy : L ~ 2540 km, $E_{\mu} \sim 7.5$ GeV, useful muon decays ~ 1/10
- δ_{CP} : ~ 1300 km, E_{μ} ~ 7.5 GeV optimal for most true values of δ_{CP}
- **2540 km** needs ~ 1.5 times exposure
- **Solution** Exposure required for δ_{CP} is 10 times that required for hierarchy

Conclusion

- Bi-Magic baseline \rightarrow 2540 km \rightarrow a shorter baseline with magical properties
- The magic condition depends on hierarchy, energy
- Remarkable sensitivity to hierarchy as well as sensitivity to θ_{13} and δ_{CP}
- Results with a low energy neutrino factory and TASD detector promising .
- Is it the optimal baseline ?
- **Optimal** baseline depend on true δ_{CP} and true θ_{13}
- For each baseline there is a saturation energy
- For a given L best sensitivity at optimal energy

Conclusion

- There is evidence of large θ_{13} reported by T2K, MINOS and Double-CHOOZ
- What is the optimal baseline for a LENF for 5σ discovery of hierarchy and δ_{CP} in view of this ?
- Optimization with respect to exposure
- Hierarchy : L ~ 2540 km, $E_{\mu} \sim 7.5$ GeV, useful muon decays ~ 1.5×10^{20}
- δ_{CP} : ~ 1300 km, E_{μ} ~ 7.5 GeV optimal for most true values of δ_{CP}
- **9** 2540 km needs ~ 1.5 times exposure
- **Solution** Exposure required for δ_{CP} is 10 times that required for hierarchy
- For each baseline there is a saturation energy
- For a given L best sensitvity at optimal energy