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Motivation
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Fig. 3. - We show, respectively, the IDOS of the Octonacei chain (up) and the IDOS of the labyrinth,
for a) r = 0.8 (no gap, finite measure), b) r = 0.6 (some gaps and finite measure) and ¢) r = 0.3 (infinity
of gaps and zero measure). The energy varies between —2 and 2, since r<1.
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Motivation

Figure 1: A sample of the icosahedral quasicrystal AIPdMn
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Motivation

DoS't for alloys with
close composition

(A) Approximant 1/1 -
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Motivation

e For periodic crystals, the Wannier transform leads to band spec-
trum calculation (Bloch theory)

e The Wannier transform uses the translation invariance of the
crystal

e s it possible to extend it to aperiodic solids ?
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[ - An example: Fibonacci




The Fibonacci Sequence

The Fibonacci sequence is an infinite word generated by the substi-
tution

O : a—> ab, b—a

Iterating gives

a — ab — abla — abalab — abaablaba — abaababalabaab
ag a1 dr=0a14( A3=0d>01 a,=0a3a- a5=04073

It can be represented by a 1D-tiling it

a— [0,1] b — [0,0] 0= ~ .618



The Fibonacci Sequence



The Fibonacci Sequence

cut-and-project version of
the Fibonacci sequence
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The Fibonacci Sequence

cut-and-project version of
the Fibonacci sequence
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The Fibonacci Sequence

cut-and-project version of
the Fibonacci sequence
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The Fibonacci Sequence

cut-and-project version of
the Fibonacci sequence
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The Fibonacci Sequence
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- Collared tiles in the Fibonacci tiling -



The Fibonacci Sequence
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- The Anderson-Putnam complex for the Fibonacci tiling -



The Fibonacci Sequence

- The substitution map -



The Fibonacci Sequence

Let £, C Xj; be the set of tile endpoints (0-cells). The sequence of
complexes (Xy),cN together with the maps f; : X,,,1 — X;; gives
rise to inverse limits

liin(xn/ fn) =Q li(in(En/ fn) =E

e The space Q) is compact and is called the Hull.

e It is endowed with an action of R generated by infinitesimal
translation on the X;;’s

e The space = is a Cantor set and is called the transversal

e &= parametrizes a the set of all tilings sharing the same words
as the Fibonacci sequence with one tile endpoint at the origin.

e There is a two-to one correspondence between = and the win-
dow.



The Fibonacci Sequence

Moving the strip to £
in the window gives
another tiling
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The Fibonacci Sequence
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The Fibonacci Sequence

window-=
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The Fibonacci Sequence

The tiling ‘£E origin of LE
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The Fibonacci Sequence

Z2-action
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The Fibonacci Sequence

Z2-action
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The Fibonacci Sequence
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The Fibonacci Sequence: Groupoid

'z is the set of pairs (¢,a) with & € Eand a € L.

It is a locally compact groupoid when endowed with the following
structure

e Units: =,

e Range and Source maps: 7(&,a) = &, s(,a) = 1%E
e Composition: (&,a) o (17%&,b) = (§,a + b)

o Inverse: (&,a)"! = (17%&, —a)

e Topology: induced by = X R



[I - Wannier Transform
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Wanniet Transform: Periodic Case

If Z C R is a one dimensional lattice the Wannier transform is
defined for a function f € C:(R) by

o(s; k) =W f(s; k) = Z F(s +a) ek
aes.
Here k belongs to the dual group of Z, called Brillouin zone

B~T=IR/2rnZ

e Bloch boundary conditions: ¢(s + a; k) = ¢(s; k)™ whenever a € Z.

1 dk e >
fodsfjrzn 1g(s; k)| —‘f]Rdx |f ()]

e Unitarity: 7 : L*(R) — L*([0, 1]) ® L*(T) is a unitary operator.

e Plancherel’s formula:



Wanniet Transform: Definition

In the case of the Fibonacci sequence: ¢ € E, L being the corre-
sponding Delone set, v = ¢"(w) the n-th substitute of a collared tile.
Denote by B ~ T? the dual group of Z~.

Then, for s € R and k € B the Wannier transform of a function
f (S Cc(R) 1S

Vifsh= Y, S+ aet
ae L (0)




Wannier Transtorm: Properties

e Smoothness: if f is smooth, then
ARG Z
W ( d"f ) f

dxk B Jsk

e Covariance: if ¢ = # f then

ge(v, s+ b k) = gTbé(v, s; k) e be L;
e Inversion: if dk denotes the normalized Haar measure on IB

f(s+a)= f dkge(v,s; k) T a€LgseR
B



Wannier Transtorm: Momentum Space

Let &¢(v) C L%(BB) be the closed subspace generated by
{ea:keBHe_lk'“;aeLg}
e &5(v) = (85(0)) fem is a continuous field of Hilbert spaces.
o If Wy(E,a) : &1—ag(v) = Eg(v) is defined by

Wo(&, a)ep = e;hp

then the family (Wv()/))yerw defines a strongly continuous unitary
representation of the groupoid I's.



Wannier Transtorm: Momentum Space

o Define Hy = P, L*(v) ® Eg(v) € L*(Xy) ® L*(B)
where v varies among the d-cells of the Anderson-Putnam com-
plex.

o Letlls: L*(X,,) @ L4(B) — H. ¢ be the corresponding orthogonal
projection.

o H = (?{5) tem is a continuous field of Hilbert spaces.

e Similarly U(y) = €D, 1o ® Wy()) defines a strongly continuous
unitary representation of the groupoid I's on H.



Wannier Transform: Plancherel

e The Wannier transform is a strongly continuous field of unitary
operators defined on the constant field L(R) with values in H

fR i 1fof = Y f s fB 0K W f (0,55 )P

e The Wannier transform is covariant:

U(E,8) Wag = Wi Ureg(a)

where U, is the usual action of the translation group R in
L%(R).



[II - Schrodinger’s Operator
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The Schrodinger Operator: Model

As an example let an atomic nucleus be placed is each tile, namely
sites in L. The atomic species are labeling the tiles. The corre-
sponding atomic potential has compact support small enough to
be contained in one tile

Ve(x) = Z Z vgf)(x —a)
U aeLg(v)

The Schrodinger operator describing the electronic motion is then a
covariant family

HE(X) = -A+ ch



The Schrodinger Operator: Form

If f € CL(R) then, like in the Bloch Theory for periodic potentials

Qe(f, ) = fIHe o

= vadsfﬂgdk (‘Vs%f(v,s;k)‘z+Ugf)(5)‘7/5f(7)/5?k)'2)

= ﬁg dk Oy ((%f)kr (%f)k)

with

(g8)= Y, [ ds(Vigto OF + 0)ste,9F)



The Schrodinger Operator: Form

A function ¢ belongs to the form domain of Q if and only if

1. both ¢(v,s) and its derivative are in L%(v) for all (d = 1)-cell v

2. ¢ satisfies the following cohomological equation:
at each ({d — 1} = 0)-cell u of the Anderson-Putnam complex

Z g(U, u)elk-ﬂﬁ—w — Z g(w, u)elk-a@_)w
v:0dgU=u w:d10=u

where ay sy is the translation vector sending the initial point of
v the initial point of w, and 9 is one tile touching u.



The Schrodinger Operator: Form

A : g5(s=0) = g4(s=1) e

B : g4(5=0)+ g,(s=0) = gy(s=0)ek;

C 1 go(s=0) = (gx(s=1)+ gs(s=1)) e
-g"j(s)*vi(s) gj(s) = E(k) gj(s)

A:gy(s=0)=gi(s=1)e’  °

B :g'4(s=0) = g',(s=0) = g’y(s=0)e-k
C 1 g'y(s=0) = g',(s=1) E'i!'H
= giy(s=1)) e

°>



The Schrodinger Operator: Bands

The form Qj generates a selfadjoint operator H;. defined by
(8IH) $ixy = Qk(8, 8)

On each d-cell v, A} = —Ag + vgf), with k-dependent boundary condi-
tions.

Since a cell is compact it follows that Hj is elliptic, thus it has
compact resolvent. In particular its spectrum is discrete with finite
multiplicity, namely its eigenvalues are

Eolk) <Eq(k) <--- < Ep(k) <---

with each E;(k) a smooth function of k € B.



The Schrodinger Operator: Bands
What is the connection with the original operator ?

Theorem The Schridinger operator H is given by
@ A
Hg = Hgf dk Hj Ilg
B
if I1¢ is the orthogonal projection from L%(Xy) ® L*(B) onto H £
The restriction to the subspace H; is NoT INNOCENT and reduces

the band spectrum to produce a Cantor spectrum in the one-
dimensional cases.



[V -To Conclude




. The Fibonacci sequence can be replaced by aperiodic, repeti-

tive tilings on RY with finite local complexity. The Hull and the
transversal are well-defined.

. The Lagarias group IL plays the role of Z? in general. Itis always
free with finite rank. Then B is the group dual to L.

. The definition of the Wannier transform can be extended to this
case

. The sequence of Anderson-Putnam complexes (Xyu),enN can be
defined in this general case as well.

. The Wannier transform identifies wave functions in LZ(]Rd ) with
a proper subspace of L*(X;;) ® L*(IB)

. The Schrodinger operator can be written in terms of this new
representation as the compression ot a Bloch-type operator ex-
hibiting band spectrum.



