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Motivation

Figure 1: A sample of the icosahedral quasicrystal AlPdMn
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Motivation

• For periodic crystals, the Wannier transform leads to band spec-
trum calculation (Bloch theory)

• The Wannier transform uses the translation invariance of the
crystal

• Is it possible to extend it to aperiodic solids ?
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I - An example: Fibonacci
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The Fibonacci Sequence
The Fibonacci sequence is an infinite word generated by the substi-
tution

σ̂ : a −→ ab , b −→ a

Iterating gives

a︸︷︷︸
a0

→ ab︸︷︷︸
a1

→ ab|a︸︷︷︸
a2=a1a0

→ aba|ab︸︷︷︸
a3=a2a1

→ abaab|aba︸    ︷︷    ︸
a4=a3a2

→ abaababa|abaab︸           ︷︷           ︸
a5=a4a3

It can be represented by a 1D-tiling if

a→ [0, 1] b→ [0, σ] σ =

√
5 − 1
2

∼ .618
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The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence

- Collared tiles in the Fibonacci tiling -
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The Fibonacci Sequence

- The Anderson-Putnam complex for the Fibonacci tiling -
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The Fibonacci Sequence

- The substitution map -
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The Fibonacci Sequence
Let Ξn ⊂ Xn be the set of tile endpoints (0-cells). The sequence of
complexes (Xn)n∈N together with the maps fn : Xn+1 7→ Xn gives
rise to inverse limits

lim
←

(Xn, fn) = Ω lim
←

(Ξn, fn) = Ξ

• The space Ω is compact and is called the Hull.
• It is endowed with an action of R generated by infinitesimal

translation on the Xn’s

• The space Ξ is a Cantor set and is called the transversal
• Ξ parametrizes a the set of all tilings sharing the same words

as the Fibonacci sequence with one tile endpoint at the origin.

• There is a two-to one correspondence between Ξ and the win-
dow.
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The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence

23



The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence
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The Fibonacci Sequence: Groupoid
ΓΞ is the set of pairs (ξ, a) with ξ ∈ Ξ and a ∈ Lξ.

It is a locally compact groupoid when endowed with the following
structure

• Units: Ξ,

• Range and Source maps: r(ξ, a) = ξ, s(ξ, a) = −aξ

• Composition: (ξ, a) ◦ (−aξ, b) = (ξ, a + b)

• Inverse: (ξ, a)−1 = (−aξ,−a)

• Topology: induced by Ξ ×R
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II - Wannier Transform

J. B, G. D N, V. M,
Wannier transform for aperiodic tilings,

in preparation, (2010)
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Wannier Transform: Periodic Case
If Z ⊂ R is a one dimensional lattice the Wannier transform is
defined for a function f ∈ Cc(R) by

g(s; k) = W f (s; k) =
∑
a∈Z

f (s + a) e−ık·a

Here k belongs to the dual group of Z, called Brillouin zone

B ∼ T = R/2πZ

• Bloch boundary conditions: g(s + a; k) = g(s; k)eık·a whenever a ∈ Z.

• Plancherel’s formula: ∫ 1

0
ds
∫
T

dk
2π
|g(s; k)|2 =

∫
R

dx | f (x)|2

.

• Unitarity: W : L2(R) 7→ L2([0, 1]) ⊗ L2(T) is a unitary operator.
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Wannier Transform: Definition
In the case of the Fibonacci sequence: ξ ∈ Ξ, Lξ being the corre-
sponding Delone set, v = σ̂n(w) the n-th substitute of a collared tile.
Denote by B ' T2 the dual group of Z2.

Then, for s ∈ R and k ∈ B the Wannier transform of a function
f ∈ Cc(R) is

Wξ f (v, s; k) =
∑

a∈Lξ(v)

f (s + a)e−ık·a
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Wannier Transform: Properties

• Smoothness: if f is smooth, then

Wξ

dk f

dxk

 = ∂kWξ f

∂sk

• Covariance: if g = W f then

gξ(v, s + b; k) = g
bξ(v, s; k) eık·b b ∈ Lξ

• Inversion: if dk denotes the normalized Haar measure on B

f (s + a) =
∫
B

dkgξ(v, s; k) eık·a a ∈ Lξ, s ∈ R
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Wannier Transform: Momentum Space

Let Eξ(v) ⊂ L2(B) be the closed subspace generated by

{ea : k ∈ B 7→ e−ık·a ; a ∈ Lξ}

• E(v) =
(
Eξ(v)

)
ξ∈Ξ

is a continuous field of Hilbert spaces.

• If Wv(ξ, a) : E−aξ(v) 7→ Eξ(v) is defined by

Wv(ξ, a)eb = ea+b

then the family
(
Wv(γ)

)
γ∈ΓΞ

defines a strongly continuous unitary
representation of the groupoid ΓΞ.
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Wannier Transform: Momentum Space

• DefineHξ =
⊕

v L2(v) ⊗ Eξ(v) ⊂ L2(Xn) ⊗ L2(B)
where v varies among the d-cells of the Anderson-Putnam com-
plex.

• Let Πξ : L2(Xn) ⊗ L2(B) 7→ Hξ be the corresponding orthogonal
projection.

• H =
(
Hξ

)
ξ∈Ξ

is a continuous field of Hilbert spaces.

• Similarly U(γ) =
⊕

v 1v ⊗Wv(γ) defines a strongly continuous
unitary representation of the groupoid ΓΞ onH .
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Wannier Transform: Plancherel

• The Wannier transform is a strongly continuous field of unitary
operators defined on the constant field L2(R) with values inH∫

R
dx | f (x)|2 =

∑
v

∫
v

ds
∫
B

dk |Wξ f (v, s; k)|2

• The Wannier transform is covariant:

U(ξ, a) W−aξ = WξUreg(a)

where Ureg is the usual action of the translation group R in
L2(R).
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III - Schrödinger’s Operator

J. B, G. D N, V. M,
Wannier transform for aperiodic tilings,

in preparation, (2010)
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The Schrödinger Operator: Model
As an example let an atomic nucleus be placed is each tile, namely
sites in Lξ. The atomic species are labeling the tiles. The corre-
sponding atomic potential has compact support small enough to
be contained in one tile

Vξ(x) =
∑

v

∑
a∈Lξ(v)

v(v)
at (x − a)

The Schrödinger operator describing the electronic motion is then a
covariant family

Hξ(x) = −∆ + Vξ
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The Schrödinger Operator: Form

If f ∈ C1
c(R) then, like in the Bloch Theory for periodic potentials

Qξ( f , f ) = 〈 f |Hξ f 〉L2(R)

=
∑

v

∫
v

ds
∫
B

dk
(∣∣∣∇sWξ f (v, s; k)

∣∣∣2 + v(v)
at (s)

∣∣∣Wξ f (v, s; k)
∣∣∣2)

=

∫
B

dk Q̂k
(
(Wξ f )k, (Wξ f )k

)
with

Q̂k
(
g, g
)
=
∑

v

∫
v

ds
(
|∇sg(v, s)|2 + v(v)

at(s)|g(v, s)|2
)
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The Schrödinger Operator: Form

A function g belongs to the form domain of Q̂k if and only if

1. both g(v, s) and its derivative are in L2(v) for all (d = 1)-cell v

2. g satisfies the following cohomological equation:
at each ({d − 1} = 0)-cell u of the Anderson-Putnam complex∑

v:∂0v=u

g(v,u)eık·av̂→v =
∑

w:∂1v=u

g(w,u)eık·av̂→w

where av→w is the translation vector sending the initial point of
v the initial point of w, and v̂ is one tile touching u.
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The Schrödinger Operator: Form
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The Schrödinger Operator: Bands

The form Q̂k generates a selfadjoint operator Ĥk defined by

〈g|Ĥk g〉L2(Xn) = Q̂k(g, g)

On each d-cell v, Ĥk = −∆s + v(v)
at , with k-dependent boundary condi-

tions.

Since a cell is compact it follows that Ĥk is elliptic, thus it has
compact resolvent. In particular its spectrum is discrete with finite
multiplicity, namely its eigenvalues are

E0(k) ≤ E1(k) ≤ · · · ≤ Er(k) ≤ · · ·

with each Er(k) a smooth function of k ∈ B.
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The Schrödinger Operator: Bands
What is the connection with the original operator ?

Theorem The Schrödinger operator Hξ is given by

Hξ = Πξ

∫
⊕

B
dk Ĥk Πξ

if Πξ is the orthogonal projection from L2(Xn) ⊗ L2(B) ontoHξ.

The restriction to the subspace Hξ is   and reduces
the band spectrum to produce a Cantor spectrum in the one-
dimensional cases.
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IV - To Conclude
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1. The Fibonacci sequence can be replaced by aperiodic, repeti-
tive tilings on Rd with finite local complexity. The Hull and the
transversal are well-defined.

2. The Lagarias groupL plays the role ofZ2 in general. It is always
free with finite rank. Then B is the group dual to L.

3. The definition of the Wannier transform can be extended to this
case

4. The sequence of Anderson-Putnam complexes (Xn)n∈N can be
defined in this general case as well.

5. The Wannier transform identifies wave functions in L2(Rd) with
a proper subspace of L2(Xn) ⊗ L2(B)

6. The Schrödinger operator can be written in terms of this new
representation as the compression of a Bloch-type operator ex-
hibiting band spectrum.
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