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Tribonacci’s substitution [Rauzy '82]

c:1—12,2— 13, 3~ 1
12131211213121213 - - -

(1) is the fixed point of o generated by 1
It is called the Tribonacci word



The Tribonacci substitution

c:1—12,2— 13, 3— 1.

11 1
1 0 0 {.
010

It is primitive : there exists a power of M which contains only positive
entries.

The incidence matrix of o is M =

Its characteristic polynomial is X2 — X? — X — 1. It admits one
positive root 5 > 1 (the dominant eigenvalue) and two complex
conjugates «, @, with |o| < 1.

B is a Pisot number.



The Tribonacci fractal as a geometric representation of

substitutive systems
Consider the Tribonacci substitution 1 +— 12, 2+ 3, 3 +— 1.
One represents c°°(1) as a broken line

f:{1,2,3)* 573 1 &, 2 &, 3 &,
f(w) = |w| € + |w|262 + |W|3é;,

that we will be projected according to the eigenspaces of M.

—
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Periodic and aperiodic tilings




Rauzy fractals : a geometric representation of
substitutive systems

Let o be a Pisot substitution : there exists a dominant eigenvalue «
such that for every other eigenvalue A,

a>1>|\>0.

Then o is primitive.
o is said to be a unit substitution if its incidence matrix has
determinant £1.



Substitutive dynamical systems

Let o be a substitution over A. Let u be generated by o. Let
S be the

S((un)n) = (Uny1)n
The generated by o is (X, S) with

X, :={S"(u); ne N} c AN

Question Under which conditions is it possible to give a geometric
representation of a substitutive dynamical system as a translation on
an Abelian compact group ? (discrete spectrum)

Remark Measure-theoretic discrete spectrum and topological
discrete spectrum are equivalent for primitive substitutive dynamical
systems [Host], see also [Cortez,Durand,Host,Maass]

Example In the Fibonacci case (X,, S) is isomorphic to



A geometric representation of substitutive dynamical
systems

Abelianisation Let d stand for the cardinality of A

frwe A = (|, |wla, -, |w|g) € N




A geometric representation of substitutive dynamical
systems

Abelianisation Let d stand for the cardinality of .A
f:we A" (Iwly, Wiz, -, |w|g) € N

Let u be a periodic point of o. Let = denote the projection onto the
contracting eigenplane of o along its expanding eigenline.
The Rauzy fractal of o is defined as :

Ro:={mof(Up---Un_1); n€ N}




How to reach nonalgebraic parameters ?

@ We have considered so far iterations of a single substitution
@ We now want to reach nonalgebraic parameters by considering
convergent products of matrices

@ We want to consider not only a substitution but a sequence of
substitutions



How to reach nonalgebraic parameters ?

@ We have considered so far iterations of a single substitution

@ We now want to reach nonalgebraic parameters by considering
convergent products of matrices

@ We want to consider not only a substitution but a sequence of
substitutions

e Multidimensional continued fractions algorithms

e The S-adic conjecture : characterization/generation of symbolic
flows of at most linear complexity



S-adic expansions

Theorem [Cassaigne] A symbolic flow X has at most linear complexity
if and only if the first difference of the complexity px(n+ 1) — px(n) is
bounded, where px(n) counts the number of factors of length n.

Theorem [Ferenczi] Let X be a minimal symbolic system on a finite
alphabet A such that its complexity function px(n) is at most linear;
then

@ there exist a finite set of substitutions S over an alphabet
D={0,..,d -1}
@ a substitution © from D* to A*
@ and an infinite sequence of substitutions (o,)n>1 with values in S
such that
@ |0102...05(r)| = +00 when n — +oo, for any letter r € D
@ and any word of the language of the system is a factor of

w(o102...00)(0)

for some n



S-adic expansions

Definition

A sequence u is said S-adic if there exist
@ a finite set of substitutions S over an alphabet D = {0,...,d — 1}
@ a morphism ¢ from D* to A*
@ an infinite sequence of substitutions (o,),>1 with values in S

such that

u= lim ogiocgo0---00n(0
n~>+oo<p 1 2 n()



First remarks

@ The fact that the lengths of the words tend to infinity, which

generalizes the notion of everywhere growing substitutions, i.e.,
substitutions such that

Vr, An €N, |oy02...0n(r)| > 2,

is necessary to make Ferenczi’s S-adic theorem nonempty

@ To be S-adic is not a property of the sequence but a way to
construct it



Every sequence is S-adic

Let u = upuy s - - - € AN. We define for all n € N substitutions ¢, over
the alphabet A U {¢}

One has
|ouy 0 0yy 000y, ()| = o0

but for all a € A and for all n

loy 0 oy 000y, (a) =1
We project by erasing ¢ :

p(a)=aVac A, p(f)=c¢.

One has

u:nﬂr_poo<pOUUOOUU1 o---oay(f)



Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of
dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]



Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of
dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]
@ Numeration system. Example : Beta-expansions ;- b3,
Tg: x — {Bx}
@ Artithmetic codings of automorphisms of the torus [Schmidt]



Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of
dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]
Example Let R,: T — T, x — x + o mod 1. One gets by coding
trajectories according to a finite partition an isomorphism between

(Ra,T) ~ (X, T)

where T is the shift and X, c {0,1}"
We also can define a further isomorphism of an arithmetic nature via
an odometer

(Ry, T) ~ (K., 0d)

R/Z o R/Z

Ostr.l lOstr.
K. — K,
Od



Ostrowski expansion of real numbers

The base is given by the sequence (6,),>0, Where 6, = (gha — pp).

Every real number —a < § < 1 — « can be expanded uniquely in the

form
+oo
B=Y ckbk1,
k=1

where
0<c <a -1
O0<cy<agfork>2
ck=0if Ck4+1 = aAk+1
cx # ax for infinitely many odd integers.



Primitivity and proper S-adic systems

@ An s-adic expansion is said primitive if there exists ¢ such that for
all a,b € Aand for all n, then b occurs ing;, o---00;,,(a)
@ An S-adic expansion is said to have bounded partial quotients if

every substitution comes back with bounded gaps in the S-adic
expansion



Primitivity and proper S-adic systems

@ An s-adic expansion is said primitive if there exists ¢ such that for
all a,b € Aand for all n, then b occurs ing;, o---00;,,(a)

@ An S-adic expansion is said to have bounded partial quotients if
every substitution comes back with bounded gaps in the S-adic
expansion

@ A substitution over A is said (b, e)-proper if there exist two
letters b, e € A such that for all a € A o(a) begins with b and
ends with e.

@ An S-adic system is said to be proper if there exist (b, e) such
that every substitution is (b, e)-proper.

@ A subshift which is generated by a proper and primitive S-adic
sequence/system is called a proper primitive S-adic subshift



S-adicity and complexity [Cassaigne]

There exists an S-adic sequence with an S-adic expansion having
bounded partial quotients, and with each substitution being primitive,
whose complexity is quadratic



S-adicity and complexity [Cassaigne]

There exists an S-adic sequence with an S-adic expansion having
bounded partial quotients, and with each substitution being primitive,
whose complexity is quadratic
Let

f. arraab, b—b, g: a— b, b— a.

The substitution f has quadratic complexity and the substitution
fogofis primitive
The substitutions f o g and g o f are primitive and appear with
bounded gaps
Let us consider the sequence u defined as the limit when n tends to
infinity of

fogof20g0f3ogof4o~-~ofnog(b)

One has

u= |iT (fogof)o(fogof)ofo(fogof)---o(fogof)ofo(fogof)---
N—+00

The complexity of u is quadratic



Linear recurrence : a measure of aperiodic order

Let u be a given recurrent sequence and let W be a factor of the
sequence u.

@ A return word over W is a word V such that VIV is a factor of the
sequence u, W is a prefix of VW and W has exactly two
occurrences in VW

@ A sequence is linearly recurrent if there exists a constant C > 0
such that for every factor W, the length of every return word V of
W satisfies |V| < C|W/|

@ Such a sequence always has at most linear complexity
[Durand-Host-Skau]

@ But this condition is strictly stronger than having at most linear
complexity

@ A Sturmian sequence is linearly recurrent if and only if the partial
quotients in the continued fraction expansion of its angle/slope
are bounded



Tilings and long-range aperiodic order

Discrete planes with irrational normal vector are
@ repetitive (uniform recurrence)
@ aperiodic
Assume we have a "substitutive" arithmetic discrete plane

Multidimensional substitutive tilings ~~ Local/matching rules
[S. Mozes, C. Goodman-Strauss]

Can we recognize/characterize a given "substitutive" arithmetic
discrete plane by local inspection ?



Tilings and long-range aperiodic order

Discrete planes with irrational normal vector are
@ repetitive (uniform recurrence)
@ aperiodic
Assume we have a "substitutive" arithmetic discrete plane

Multidimensional substitutive tilings ~~ Local/matching rules
[S. Mozes, C. Goodman-Strauss]

Can we recognize/characterize a given "substitutive" arithmetic
discrete plane by local inspection ?

Yes in the Tribonaccicase o :1+— 12, 2+~ 13, 3— 1
[Bressaud-Sablik-Pytheas Fogg'09]



From discrete planes to tilings via... number theory

Fact : Arithmetic discrete planes are repetitive.

Repetitivity function : Let N be the smallest integer N such that every
ball of radius N in the tiling contains all configurations of radius n. We
set R(n) := N.

Linear repetitivity : there exists C such that R(n) < Cn for all n.

Open problem : Characterize the discrete planes which have linear
repetitivity.

Discrete lines : one has linear repetitivity iff and the slope of the line
has bounded partial quotients in its continued fraction expansion.



LR and S-adicity
Theorem [F. Durand]
@ A proper primitive S-adic subshift is a LR subshift
@ LR implies primitive S-adic
@ LR is equivalent with primitive and proper S-adic
A primitive S-adic subshift is not necessarily an LR subshift



LR and S-adicity
Theorem [F. Durand]
@ A proper primitive S-adic subshift is a LR subshift
@ LR implies primitive S-adic
@ LR is equivalent with primitive and proper S-adic
A primitive S-adic subshift is not necessarily an LR subshift

Proof
o: aw—» acb, b+— bab, c+— cbc

T:aw— abc, b— acb, ¢ — aac

We consider the S-adic expansion

vi= lim coroo?oro---00"r(a)
n—-+o0

The sequence v is primitive S-adic, it is not LR, it has linear
complexity

[F. Durand, Corrigendum and Addendum to “LR Subshsifts have a
finite number of non-periodic factors”]



Examples of S-adic expansions

@ Arnoux-Rauzy sequences
p(n) =2n+ 1 + one special factor of each length

oy 1 =1 oz 1 —12 o3: 1 —13
2 —21 2 =2 2 —23
3 — 31 3 —32 3 —3

@ Multidimensional continued fractions
e Jacobi-Perron algorithm

e Brun algorithm (=modified JP)



Examples of S-adic expansions

@ Arnoux-Rauzy sequences
p(n) = 2n+ 1 + one special factor of each length

o1: 1 =1 oo: 1 —12 o3: 1 —13
2 —21 2 =2 2 —23
3 — 31 3 —32 3 —3

Periodic Arnoux-Rauzy substitutions are Pisot [Arnoux-Ito]
There exist AR sequences with unbounded partial quotients wich
are not uniformly balanced [J. Cassaigne, S. Ferenczi, L.
Zamboni]

@ Multidimensional continued fractions
e Jacobi-Perron algorithm
e Brun algorithm (=modified JP)



Examples of S-adic expansions

@ Arnoux-Rauzy sequences
p(n) = 2n+ 1 + one special factor of each length

o1 1 —1 o2 1 —12 o3: 1 —13
2 —21 2 =2 2 —23
3 — 31 3 —32 3 —3

@ Multidimensional continued fractions

e Jacobi-Perron algorithm

[Sh. lto, M. Ohtsuki, Paralelogram tilings and Jacobi-Perron
algorithm, Tokyo J. Math. 1994]

e Brun algorithm (=modified JP)



S-adic expansions

One considers

u= lim oyo0---0,(0)
n—+oo



S-adic expansions

One considers

u= lim oyoo---0,(0)
n—-+oo

Geometrically

“=
=
=
=
\Z‘J/

Let px be the perfix of u of length k. Do the f(px) remain at a bounded
distance of a line ?



S-adic expansions

One considers

u= lim oo2---0,(0)
n—-+oo

Algebraically
Theorem of Perron—Frobenius type [Furstenberg]
One considers an infinite product of matrices

Ei- - Ef---

with entries in N. One assumes that there exists a matrix B with
strictly positive entries s.t. there exist iy < j1 < -+ < ix < jk S.1.

B=E, --E,,-- ,B=E,---E,-
Then, the intersection of the cones
Nk E1 -+ Ex(RY)

is unidimensional.
Convergence speed ? Type of convergence ? Weak ? strong ?



S-adic expansions

One considers

u= lim oyoo---0,(0)
n—+oo

Combinatorially

e Frequencies with bounded remainders and balance

3C, Vi € A, 3f(i) t.a. YN [Card{k < N, ux = i} — Nf(i)] < C



S-adic expansions
One considers

u= lim oyoo---0,(0)
n—-+o0

Arithmetically

e Weak and strong convergence of multidimensional continued
fraction algorithms

Theorem

There exists § > 0 s.t. for almost every («a, ), there exists
ny = no(c, 8) s.t. forall n > ng

”
la = Pn/Gn| < =75
Qn

"
1B = rn/Qnl < F,

where p,, gn, I, are given by Brun/Jacobi-Perron.

Brun [lto-Fujita-Keane-Ohtsuki '93+'96] ; Jacobi-Perron
[Broise-Guivarc’h '99]



Multidimensional continued fractions

If we start with two parameters («, 3), one looks for two rational
sequences (pn/qn) et (ra/qn) with the same denominator that satisfy

limpn/gn = a,limr,/q, = B.

Geometrically

Dynamically

translation on the torus : R, 5: T2 — T2, (x,¥) ~ X + (a, B)



Continued fractions

@ Euclid’s algorithm Starting with two numbers, one subtracts the
smallest to the largest

@ Unimodularity

det[ Pn+1 Qnt1 } — 1
Pn an

Rem SL(2,N) is a finitely generated free monoid. It is generated

by
10 11
[1 1}a”d[o 1}

SL(3,N) is not finitely generated. Consider the family of matrices

10 n
1 n—-1 0
1 1 n—1

These matrices are undecomposable for n > 3 [Rivat]



Multidimensional Euclid’s algorithms : a zoo of

algorithms
@ Jacobi-Perron : we subtract the first one to the two other ones
with 0 < x1, X% < X3

Xo X3
(X1,X2,X3) = (X2 — [=]x1, X3 — [=]X1, Xq)
X1 Xq

@ Brun : we subtract the second largest and we reorder with
X1 < X2 < X3
(X1, X2, X3) = (X1, X2, X3 — X2)
@ Poincaré : we subtract the previous one and we reorder with
X1 < X2 < X3

(X1, X2, X3) — (X1, X2 — Xy, X3 — X2)

@ Selmer : we subtract the smallest to the largest and we reorder
with x; < X < X

(X1, X2, X3) = (X1, X2, X3 — Xq)

@ Fully subtractive : we subtract the smallest one to all the largest
ones and we reorder with x; < X < x3

(X1, X2, X3) — (X1, X2 — Xy, X3 — Xq)



Poincaré algorithm [Nogueira’95]

(X1, X2, X3) = (X1, X2 — X1, X3 — X2), X1 < Xo < X3

1/ +1/p =1
1/02 1/¢ 100
1/<p3 1/02 100 —1/¢p
1/¢* 1/@ 100*1/%9*1/@2

1/@"“ 1/@ 100 - ik /¢!



Jacobi-Perron vs. Ostrowski

Jacobi-Perron
(o, B) = ({B/a},{1/a})
Ostrowski

(. B) = ({1/a}, {B/a})



Discrete lines and continued fractions

@ We apply to u a finite sequence of steps under the action of a
generalized three-dimensional Euclid’s algorithm T together with
a choice of Euclid’s substitutions (") associated with the
produced matrices

@ One has
g=MD... N GN)
where the vector d(") € X, has only two coordinates equal to 0,
and one coordinate equal to 1
@ Let iy € {1,2,3} stand for the index of the nonzero coordinate of
g

@ We consider the discrete segment coded by

)

oM. oM ()

[In collaboration with S. Labbé]



Example

Take u = [4, 6, 7] and take the fully subtractive algorithm

(4,6,7)

(0,0,0)



Vecteur (8,13,17)

Algorithm poincare

P Under: ‘ Over: ‘
Ef(0)(p)

word: 12312323312312323312312323123233123233

Complexity = [1,3,5,7,9,11,13,15,17, 18,19, 20,21, 21, 21,21, 21,21, 21, 20]
Distance of the word = 1.8626



Vecteur (7,11,13)
Algorithm| jacobi perron

p Under: ‘ Over: ‘

Ei(o)(p)

word: 1233123231232312331232312323123
Complexity = [1,3,5,7,8,9,10,11,12,13,14, 14, 14, 14, 14, 14, 14,14, 14, 13]
Distance of the word = 1.1521



Vecteur (7,11,13)
Algorithm brun

P Under: ‘ Over: ‘

Ef(o)(p)

word: 1231232312312323312323123123233
Complexity = [1,3,5,7,9,11,13,14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 15, 14, 13]
Distance of the word = 1.7997



Vecteur (7,11,13)
Algorithm selmer

p Under: ‘ Over: .

7
E(0)(p) ’

word: 1323132231322313231322313213223
Complexity = [1,3,6,8,10,12,14,15,16,17,18,19,19, 19,18, 17,16, 15, 14, 13]
Distance of the word = 1.3847



Vecteur (7,11,13)
Algorithm|fully subtractive

p Under: ‘ Over: ‘

Ei(o)(p)

word: 1231232312312323312323123123233
Complexity = [1,3,5,7,9,11,13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 15, 14, 13]
Distance of the word = 1.7997



GIFS structure

o(1)=112,0(2) =113,0(3) =1



GIFS structure

112,0(2) = 113,0(3) = 1

a(1)




As a consequence of the GIFS structure...

Theorem Let o be a
substitution
The tiles R, (i) are solutions of the GIFS

Ro(i) = U hs(Rs(f)) + 7e o f(p)
jEA,
; (p,i,s) j
where
e h, is the restriction of M, on its contracting hyperplane

e 7. is the projection on the contracting hyperplane
along the expanding line



Some properties of the GIFS

The tiles R, (i) are solutions of the GIFS

U h,( )) + mc o f(p)

JEA,

i (psi,s) i

@ The union Ujc 4R, (i) is a disjoint union up to sets of zero
measure

@ The tiles R, () have non-emtpy interior

@ The boundaries of R, and R, (/) have zero measure

@ The tiles R,(/) are the closure of their interior

@ The subtiles that occur in each decomposition of R, (i) are
disjoint in measure

@ If o satisfies the strong coincidence conditions, then the tiles
R (i) are disjoint in measure



Zooming in : Intersections of subtiles

@ The tiles R, (/) are solutions of the GIFS

Ro()= |J he(Ro()) +mco f(p)

o(j)=pis
@ They have non-empty interior (Pisot)
@ The mapping h, contracts the Lebesgue measure by 1/8

Vie A, pg_1(Ro(i 21/ﬁml//~5d 1(Ro()))

JEA
with M, = [my]
@ We thus have

Mo [1(Ro ()] = B [1(Ro (/)]

@ Since g is the Perron—Frobenius eigenvalue of M., one gets the
reverse inequality



Zooming in : Intersections of subtiles

@ The tiles R, (/) are solutions of the GIFS

Ro()= |J he(Ro()) +mco f(p)

o(j)=pis
@ They have non-empty interior (Pisot)
@ The mapping h, contracts the Lebesgue measure by 1/8

Vie A, pg_1(Ro(i 21/5mljﬂd 1(Ro()))

JEA
with M, = [my]
@ We thus have

Mo [1(Ro ()] = B [1(Ro (/)]

@ Since g is the Perron—Frobenius eigenvalue of M., one gets the
reverse inequality

How to propagate this information ?



Strong coincidence and synchronization

@ The strong coincidence condition gives
Vi, jo € A, 3k, 3i, o*(j1) = pis, o*(jp) = pis’

with f(p) = f(p’)
@ The tiles R, (/) are solutions of the k-order GIFS

Ro()= |J Ho(Re()) +mc0f(p)
ak(j)=pis
@ For every (ji, j») there exists a common letter j and f(p) s.t.
5 (R (j1)) + e o £(p)
and
5 (Ro(j2)) + i  f(p)

both occur in the k-th order GIFS equation

@ We use the fact that the subtiles are disjoint in measure in the
k-th order iteration
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