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Tribonacci’s substitution [Rauzy ’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

12131211213121213 · · ·

σ∞(1) is the fixed point of σ generated by 1
It is called the Tribonacci word



The Tribonacci substitution

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1.

The incidence matrix of σ is M =

 1 1 1
1 0 0
0 1 0

 .
It is primitive : there exists a power of M which contains only positive

entries.

Its characteristic polynomial is X 3 − X 2 − X − 1. It admits one
positive root β > 1 (the dominant eigenvalue) and two complex
conjugates α, α, with |α| < 1.

β is a Pisot number.



The Tribonacci fractal as a geometric representation of
substitutive systems

Consider the Tribonacci substitution 1 7→ 12, 2 7→ 3, 3 7→ 1.
One represents σ∞(1) as a broken line

f : {1,2,3}∗ → Z3, 1 7→ ~e1, 2 7→ ~e2, 3 7→ ~e3,

f(w) = |w |1~e1 + |w |2~e2 + |w |3~e3,

that we will be projected according to the eigenspaces of M.



Periodic and aperiodic tilings



Rauzy fractals : a geometric representation of
substitutive systems

Let σ be a Pisot substitution : there exists a dominant eigenvalue α
such that for every other eigenvalue λ,

α > 1 > |λ| > 0.

Then σ is primitive.
σ is said to be a unit substitution if its incidence matrix has
determinant ±1.



Substitutive dynamical systems

Let σ be a primitive substitution over A. Let u be generated by σ. Let
S be the shift

S((un)n) = (un+1)n

The symbolic dynamical system generated by σ is (Xσ,S) with

Xσ := {Sn(u); n ∈ N} ⊂ AN

Question Under which conditions is it possible to give a geometric
representation of a substitutive dynamical system as a translation on
an Abelian compact group ? (discrete spectrum)

Remark Measure-theoretic discrete spectrum and topological
discrete spectrum are equivalent for primitive substitutive dynamical
systems [Host], see also [Cortez,Durand,Host,Maass]

Example In the Fibonacci case (Xσ,S) is isomorphic to
(R/Z,R 1+

√
5

2
)



A geometric representation of substitutive dynamical
systems

Abelianisation Let d stand for the cardinality of A

f : w ∈ A? 7→ (|w |1, |w |2, · · · , |w |d ) ∈ Nd



A geometric representation of substitutive dynamical
systems

Abelianisation Let d stand for the cardinality of A

f : w ∈ A? 7→ (|w |1, |w |2, · · · , |w |d ) ∈ Nd

Let u be a periodic point of σ. Let π denote the projection onto the
contracting eigenplane of σ along its expanding eigenline.

The Rauzy fractal of σ is defined as :

Rσ := {π ◦ f (u0 · · · un−1); n ∈ N}.



How to reach nonalgebraic parameters ?

We have considered so far iterations of a single substitution
We now want to reach nonalgebraic parameters by considering
convergent products of matrices
We want to consider not only a substitution but a sequence of
substitutions

• Multidimensional continued fractions algorithms
• The S-adic conjecture : characterization/generation of symbolic

flows of at most linear complexity
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S-adic expansions
Theorem [Cassaigne] A symbolic flow X has at most linear complexity
if and only if the first difference of the complexity pX (n + 1)− pX (n) is
bounded, where pX (n) counts the number of factors of length n.

Theorem [Ferenczi] Let X be a minimal symbolic system on a finite
alphabet A such that its complexity function pX (n) is at most linear ;
then

there exist a finite set of substitutions S over an alphabet
D = {0, ...,d − 1}
a substitution ϕ from D? to A?
and an infinite sequence of substitutions (σn)n≥1 with values in S

such that

|σ1σ2...σn(r)| → +∞ when n→ +∞, for any letter r ∈ D
and any word of the language of the system is a factor of

ϕ(σ1σ2...σn)(0)

for some n



S-adic expansions

Definition
A sequence u is said S-adic if there exist

a finite set of substitutions S over an alphabet D = {0, ...,d − 1}
a morphism ϕ from D? to A?
an infinite sequence of substitutions (σn)n≥1 with values in S

such that
u = lim

n→+∞
ϕ ◦ σ1 ◦ σ2 ◦ · · · ◦ σn(0)



First remarks

The fact that the lengths of the words tend to infinity, which
generalizes the notion of everywhere growing substitutions, i.e.,
substitutions such that

∀r , ∃n ∈ N, |σ1σ2...σn(r)| ≥ 2,

is necessary to make Ferenczi’s S-adic theorem nonempty
To be S-adic is not a property of the sequence but a way to
construct it



Every sequence is S-adic

Let u = u0u1u2 · · · ∈ AN. We define for all n ∈ N substitutions σn over
the alphabet A ∪ {`}

σa(b) = b,∀b ∈ A, σa(`) = `a

One has
|σu0 ◦ σu1 ◦ · · · ◦ σun(`)| → ∞

but for all a ∈ A and for all n

|σu0 ◦ σu1 ◦ · · · ◦ σun(a)| = 1

We project by erasing ` :

ϕ(a) = a,∀a ∈ A, ϕ(`) = ε.

One has
u = lim

n→+∞
ϕ ◦ σu0 ◦ σu1 ◦ · · · ◦ σun(`)



Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of
dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]



Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of
dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]
Numeration system. Example : Beta-expansions

∑
i≥1 biβ

−i ,
Tβ : x 7→ {βx}
Artithmetic codings of automorphisms of the torus [Schmidt]



Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of
dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]
Example Let Rα : T→ T, x 7→ x + α mod 1. One gets by coding
trajectories according to a finite partition an isomorphism between

(Rα,T) ∼ (Xα,T )

where T is the shift and Xα ⊂ {0,1}N
We also can define a further isomorphism of an arithmetic nature via
an odometer

(Rα,T) ∼ (Kα,Od)

R/Z Rα−→ R/Z
Ostr.

y yOstr.
Kα −→

Od
Kα



Ostrowski expansion of real numbers

The base is given by the sequence (θn)n≥0, where θn = (qnα− pn).

Every real number −α ≤ β < 1− α can be expanded uniquely in the
form

β =
+∞∑
k=1

ckθk−1,

where 
0 ≤ c1 ≤ a1 − 1
0 ≤ ck ≤ ak for k ≥ 2
ck = 0 if ck+1 = ak+1
ck 6= ak for infinitely many odd integers.



Primitivity and proper S-adic systems

An s-adic expansion is said primitive if there exists ` such that for
all a,b ∈ A and for all n, then b occurs in σin ◦ · · · ◦ σin+`(a)
An S-adic expansion is said to have bounded partial quotients if
every substitution comes back with bounded gaps in the S-adic
expansion

A substitution over A is said (b,e)-proper if there exist two
letters b,e ∈ A such that for all a ∈ A σ(a) begins with b and
ends with e.
An S-adic system is said to be proper if there exist (b,e) such
that every substitution is (b,e)-proper.
A subshift which is generated by a proper and primitive S-adic
sequence/system is called a proper primitive S-adic subshift
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S-adicity and complexity [Cassaigne]
There exists an S-adic sequence with an S-adic expansion having
bounded partial quotients, and with each substitution being primitive,
whose complexity is quadratic

Let
f : a 7→ aab, b 7→ b, g : a 7→ b, b 7→ a.

The substitution f has quadratic complexity and the substitution
f ◦ g ◦ f is primitive
The substitutions f ◦ g and g ◦ f are primitive and appear with
bounded gaps

Let us consider the sequence u defined as the limit when n tends to
infinity of

f ◦ g ◦ f 2 ◦ g ◦ f 3 ◦ g ◦ f 4 ◦ · · · ◦ f n ◦ g(b)

One has

u = lim
n→+∞

(f ◦g◦ f )◦(f ◦g◦ f )◦ f ◦(f ◦g◦ f ) · · ·◦(f ◦g◦ f )◦ f n ◦(f ◦g◦ f ) · · ·

The complexity of u is quadratic
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Linear recurrence : a measure of aperiodic order

Let u be a given recurrent sequence and let W be a factor of the
sequence u.

A return word over W is a word V such that VW is a factor of the
sequence u, W is a prefix of VW and W has exactly two
occurrences in VW
A sequence is linearly recurrent if there exists a constant C > 0
such that for every factor W , the length of every return word V of
W satisfies |V | ≤ C|W |
Such a sequence always has at most linear complexity
[Durand-Host-Skau]
But this condition is strictly stronger than having at most linear
complexity
A Sturmian sequence is linearly recurrent if and only if the partial
quotients in the continued fraction expansion of its angle/slope
are bounded



Tilings and long-range aperiodic order

Discrete planes with irrational normal vector are
repetitive (uniform recurrence)
aperiodic

Assume we have a "substitutive" arithmetic discrete plane

Multidimensional substitutive tilings  Local/matching rules
[S. Mozes, C. Goodman-Strauss]

Can we recognize/characterize a given "substitutive" arithmetic
discrete plane by local inspection ?

Yes in the Tribonacci case σ : 1 7→ 12, 2 7→ 13, 3 7→ 1
[Bressaud-Sablik-Pytheas Fogg’09]
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From discrete planes to tilings via... number theory

Fact : Arithmetic discrete planes are repetitive.

Repetitivity function : Let N be the smallest integer N such that every
ball of radius N in the tiling contains all configurations of radius n. We
set R(n) := N.

Linear repetitivity : there exists C such that R(n) ≤ Cn for all n.

Open problem : Characterize the discrete planes which have linear
repetitivity.

Discrete lines : one has linear repetitivity iff and the slope of the line
has bounded partial quotients in its continued fraction expansion.



LR and S-adicity
Theorem [F. Durand]

A proper primitive S-adic subshift is a LR subshift
LR implies primitive S-adic
LR is equivalent with primitive and proper S-adic

A primitive S-adic subshift is not necessarily an LR subshift

Proof
σ : a 7→ acb, b 7→ bab, c 7→ cbc

τ : a 7→ abc, b 7→ acb, c 7→ aac

We consider the S-adic expansion

v := lim
n→+∞

σ ◦ τ ◦ σ2 ◦ τ ◦ · · · ◦ σnτ(a)

The sequence v is primitive S-adic, it is not LR, it has linear
complexity

[F. Durand, Corrigendum and Addendum to “LR Subshsifts have a
finite number of non-periodic factors”]
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Examples of S-adic expansions

Arnoux-Rauzy sequences
p(n) = 2n + 1 + one special factor of each length

σ1 : 1 7→ 1
2 7→ 21
3 7→ 31

σ2 : 1 7→ 12
2 7→ 2
3 7→ 32

σ3 : 1 7→ 13
2 7→ 23
3 7→ 3

Multidimensional continued fractions

• Jacobi-Perron algorithm

• Brun algorithm (=modified JP)
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Periodic Arnoux-Rauzy substitutions are Pisot [Arnoux-Ito]
There exist AR sequences with unbounded partial quotients wich
are not uniformly balanced [J. Cassaigne, S. Ferenczi, L.
Zamboni]
Multidimensional continued fractions

• Jacobi-Perron algorithm

• Brun algorithm (=modified JP)



Examples of S-adic expansions

Arnoux-Rauzy sequences
p(n) = 2n + 1 + one special factor of each length

σ1 : 1 7→ 1
2 7→ 21
3 7→ 31

σ2 : 1 7→ 12
2 7→ 2
3 7→ 32

σ3 : 1 7→ 13
2 7→ 23
3 7→ 3

Multidimensional continued fractions

• Jacobi-Perron algorithm
[Sh. Ito, M. Ohtsuki, Paralelogram tilings and Jacobi-Perron

algorithm, Tokyo J. Math. 1994]

• Brun algorithm (=modified JP)



S-adic expansions

One considers
u = lim

n→+∞
σ1σ2 · · ·σn(0)



S-adic expansions

One considers
u = lim

n→+∞
σ1σ2 · · ·σn(0)

Geometrically

Let pk be the perfix of u of length k . Do the f (pk ) remain at a bounded
distance of a line ?



S-adic expansions
One considers

u = lim
n→+∞

σ1σ2 · · ·σn(0)

Algebraically
Theorem of Perron–Frobenius type [Furstenberg]
One considers an infinite product of matrices

E1 · · ·Ek · · ·

with entries in N. One assumes that there exists a matrix B with
strictly positive entries s.t. there exist i1 < j1 < · · · < ik < jk s.t.

B = Ei1 · · ·Ej1 , · · · ,B = Eik · · ·Ejk , · · · .

Then, the intersection of the cones

∩k E1 · · ·Ek (Rn
+)

is unidimensional.
Convergence speed ? Type of convergence ? Weak ? strong ?



S-adic expansions

One considers
u = lim

n→+∞
σ1σ2 · · ·σn(0)

Combinatorially

• Frequencies with bounded remainders and balance

∃C, ∀i ∈ A, ∃f (i) t.q. ∀N |Card{k ≤ N, uk = i} − Nf (i)| ≤ C



S-adic expansions
One considers

u = lim
n→+∞

σ1σ2 · · ·σn(0)

Arithmetically

•Weak and strong convergence of multidimensional continued
fraction algorithms

Theorem
There exists δ > 0 s.t. for almost every (α, β), there exists
n0 = n0(α, β) s.t. for all n ≥ n0

|α− pn/qn| <
1

q1+δ
n

|β − rn/qn| <
1

q1+δ
n

,

where pn,qn, rn are given by Brun/Jacobi-Perron.

Brun [Ito-Fujita-Keane-Ohtsuki ’93+’96] ; Jacobi-Perron
[Broise-Guivarc’h ’99]



Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two rational
sequences (pn/qn) et (rn/qn) with the same denominator that satisfy

lim pn/qn = α, lim rn/qn = β.

Geometrically

Dynamically

translation on the torus : Rα,β : T2 → T2, (x , y) 7→ x + (α, β)



Continued fractions

Euclid’s algorithm Starting with two numbers, one subtracts the
smallest to the largest
Unimodularity

det
[

pn+1 qn+1
pn qn

]
= ±1

Rem SL(2,N) is a finitely generated free monoid. It is generated
by [

1 0
1 1

]
and

[
1 1
0 1

]
SL(3,N) is not finitely generated. Consider the family of matrices 1 0 n

1 n − 1 0
1 1 n − 1


These matrices are undecomposable for n ≥ 3 [Rivat]



Multidimensional Euclid’s algorithms : a zoo of
algorithms

Jacobi-Perron : we subtract the first one to the two other ones
with 0 ≤ x1, x2 ≤ x3

(x1, x2, x3) 7→ (x2 − [
x2

x1
]x1, x3 − [

x3

x1
]x1, x1)

Brun : we subtract the second largest and we reorder with
x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2, x3 − x2)

Poincaré : we subtract the previous one and we reorder with
x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x2)

Selmer : we subtract the smallest to the largest and we reorder
with x1 ≤ x2 ≤ x2

(x1, x2, x3) 7→ (x1, x2, x3 − x1)

Fully subtractive : we subtract the smallest one to all the largest
ones and we reorder with x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x1)



Poincaré algorithm [Nogueira’95]

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x2), x1 ≤ x2 ≤ x3

1/ϕ2 + 1/ϕ = 1

1/ϕ2 1/ϕ 100
1/ϕ3 1/ϕ2 100− 1/ϕ
1/ϕ4 1/ϕ3 100− 1/ϕ− 1/ϕ2

· · · · · · · · ·
1/ϕk+1 1/ϕk 100−∑i<k 1/ϕi



Jacobi-Perron vs. Ostrowski

Jacobi-Perron
(α, β) 7→ ({β/α}, {1/α})

Ostrowski
(α, β) 7→ ({1/α}, {β/α})



Discrete lines and continued fractions

We apply to ~u a finite sequence of steps under the action of a
generalized three-dimensional Euclid’s algorithm T together with
a choice of Euclid’s substitutions σ(n) associated with the
produced matrices
One has

~u = M(1) · · ·M(N)~u(N),

where the vector ~u(N) ∈ X0 has only two coordinates equal to 0,
and one coordinate equal to 1
Let iN ∈ {1,2,3} stand for the index of the nonzero coordinate of
~u(N)

We consider the discrete segment coded by

σ(1) · · ·σ(n)(iN)

[In collaboration with S. Labbé]



Example

Take u = [4,6,7] and take the fully subtractive algorithm

(0, 0, 0)

(4, 6, 7)

x

y

z

4 A dual viewpoint

In order to study the quality of approximation of the vector line directed by
u provided by the associated discrete segment, we introduce a transverse plane
that does not contain vector u. Such a plane can be described by its normal
vector v that we chose with positive entries and not collinear with u. The vector
having all entries equal to 1 is denoted by 1. We chose for v

v := tM (1...N)1 = tM (N) · · · tM (1)1.

Note that v has positive entries and is not collinear to u. We furthermore
write σ(1···N)(iN ) = z1 · · · z|σ(1···N)(iN )| where the letters zi ∈ {1, 2, 3}. The ver-
tices of the discrete segment are thus of the form l(z1 · · · zk), for 1 ≤ k ≤
|σ(1···N)(iN )|. The choice of vector v is motivated by the following relation that
we will use below

〈l(z1 · · · zk),1〉 = 〈(tM (1...N))−1l(z1 · · · zk), M (1...N)1〉
= 〈(tM (1···N))−1l(z1 · · · zk), v〉. (1)

The aim of this section is to relate vertices of the discrete segment to faces
of a finite pattern of the discrete plane with normal vector v via the mapping
(tM (1···N))−1, and to interpret the coding word wu in terms of a coding of the
orbit of a point under a dynamical system acting on this discrete plane with
normal vector v. For that purpose, we introduce in Section 4.2 a dual notion of
substitution acting on faces of discrete planes.

4.1 Discrete planes

Let w be a nonzero vector in Z3 with nonnegative entries. According to [15],
we recall that the arithmetic standard plane discrete plane of normal vector
w = (w1, w2, w3) is defined as

{x ∈ Z3 | 0 < 〈x, w〉 ≤ ||w||1 = w1 + w2 + w3}.



Vecteur (7, 11, 13)
Algorithm fully subtractive as possible

p Under: Over:

E∗
1 (σ)(p)

word: 1231231232312323312312323123233

Complexity = [1, 3, 5, 7, 9, 11, 13, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 14, 13]
Distance of the word = 1.7997

Vecteur (8, 13, 17)
Algorithm poincare

p Under: Over:

E∗
1 (σ)(p)

word: 12312323312312323312312323123233123233

Complexity = [1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 20]
Distance of the word = 1.8626



study of discrete lines. Note that the use of generalized substitutions (see Section
2.2) associated with multidimensional continued fraction algorithms has also al-
ready proved its efficiency in discrete geometry for the generation of discrete
planes, see [?,?]. We now aim at starting a thorough investigation and compari-
son of the generation properties of the most classical three-dimensional Euclid’s
algorithm. Among the algorithms that have been considered here, Jacobi-Perron
algorithm seems to behave in a particularly efficient way for the generation of
discrete lines.

6 Annex

We present here experimental results obtained thanks to the software Sage.

Vecteur (7, 11, 13)
Algorithm jacobi perron

p Under: Over:

E∗
1 (σ)(p)

word: 1233123231232312331232312323123

Complexity = [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13]
Distance of the word = 1.1521

Vecteur (7, 11, 13)
Algorithm brun

p Under: Over:

E∗
1 (σ)(p)

word: 1231232312312323312323123123233

Complexity = [1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 15, 14, 13]
Distance of the word = 1.7997



study of discrete lines. Note that the use of generalized substitutions (see Section
2.2) associated with multidimensional continued fraction algorithms has also al-
ready proved its efficiency in discrete geometry for the generation of discrete
planes, see [?,?]. We now aim at starting a thorough investigation and compari-
son of the generation properties of the most classical three-dimensional Euclid’s
algorithm. Among the algorithms that have been considered here, Jacobi-Perron
algorithm seems to behave in a particularly efficient way for the generation of
discrete lines.

6 Annex

We present here experimental results obtained thanks to the software Sage.

Vecteur (7, 11, 13)
Algorithm jacobi perron

p Under: Over:

E∗
1 (σ)(p)

word: 1233123231232312331232312323123

Complexity = [1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13]
Distance of the word = 1.1521

Vecteur (7, 11, 13)
Algorithm brun

p Under: Over:

E∗
1 (σ)(p)

word: 1231232312312323312323123123233

Complexity = [1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 15, 14, 13]
Distance of the word = 1.7997



Vecteur (7, 11, 13)
Algorithm selmer

p Under: Over:

E∗
1 (σ)(p)

word: 1323132231322313231322313213223

Complexity = [1, 3, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 19, 19, 18, 17, 16, 15, 14, 13]
Distance of the word = 1.3847
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Distance of the word = 1.7997
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Complexity = [1, 3, 5, 7, 9, 11, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 15, 14, 13]
Distance of the word = 1.7997



GIFS structure

σ(1) = 112, σ(2) = 113, σ(3) = 1
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As a consequence of the GIFS structure...

Theorem Let σ be a Pisot irreducible unimodular
substitution
The tiles Rσ(i) are solutions of the GIFS

Rσ(i) =
⋃
j∈A,

i
(p,i,s)−−−→j

hσ(Rσ(j)) + πc ◦ f (p)

where
hσ is the restriction of Mσ on its contracting hyperplane
πc is the projection on the contracting hyperplane
along the expanding line (Pisot hypothesis)



Some properties of the GIFS

The tiles Rσ(i) are solutions of the GIFS

Rσ(i) =
⋃
j∈A,

i
(p,i,s)−−−−→j

hσ(Rσ(j)) + πc ◦ f (p)

The union ∪i∈ARσ(i) is a disjoint union up to sets of zero
measure
The tiles Rσ(i) have non-emtpy interior
The boundaries of Rσ and Rσ(i) have zero measure
The tiles Rσ(i) are the closure of their interior
The subtiles that occur in each decomposition of Rσ(i) are
disjoint in measure
If σ satisfies the strong coincidence conditions, then the tiles
Rσ(i) are disjoint in measure



Zooming in : Intersections of subtiles

The tiles Rσ(i) are solutions of the GIFS

Rσ(i) =
⋃

σ(j)=pis

hσ(Rσ(j)) + πc ◦ f (p)

They have non-empty interior (Pisot)
The mapping hσ contracts the Lebesgue measure by 1/β

∀ i ∈ A, µd−1(Rσ(i)) ≤
∑
j∈A

1/βmij µd−1(Rσ(j))

with Mσ = [mij ]

We thus have
Mσ [µ(Rσ(j))] ≥ β [µ(Rσ(j))]

Since β is the Perron–Frobenius eigenvalue of Mσ, one gets the
reverse inequality

How to propagate this information ?



Zooming in : Intersections of subtiles

The tiles Rσ(i) are solutions of the GIFS

Rσ(i) =
⋃

σ(j)=pis

hσ(Rσ(j)) + πc ◦ f (p)

They have non-empty interior (Pisot)
The mapping hσ contracts the Lebesgue measure by 1/β

∀ i ∈ A, µd−1(Rσ(i)) ≤
∑
j∈A

1/βmij µd−1(Rσ(j))

with Mσ = [mij ]

We thus have
Mσ [µ(Rσ(j))] ≥ β [µ(Rσ(j))]

Since β is the Perron–Frobenius eigenvalue of Mσ, one gets the
reverse inequality

How to propagate this information ?



Strong coincidence and synchronization
The strong coincidence condition gives

∀j1, j2 ∈ A, ∃k , ∃i , σk (j1) = pis, σk (j2) = pis′

with f (p) = f (p′)

The tiles Rσ(i) are solutions of the k -order GIFS

Rσ(i) =
⋃

σk (j)=pis

hk
σ(Rσ(j)) + πc ◦ f (p)

For every (j1, j2) there exists a common letter i and f (p) s.t.

hk
σ(Rσ(j1)) + πc ◦ f (p)

and
hk
σ(Rσ(j2)) + πc ◦ f (p)

both occur in the k -th order GIFS equation
We use the fact that the subtiles are disjoint in measure in the
k -th order iteration
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