Toward S-adic Rauzy fractals

V. Berthé

LIAFA-CNRS-Paris-France
berthe@liafa.jussieu.fr
http ://www.liafa.jussieu.fr/~berthe

KIAS Workshop

Tribonacci's substitution [Rauzy '82]

$$
\sigma: 1 \mapsto 12,2 \mapsto 13,3 \mapsto 1
$$

12131211213121213...
$\sigma^{\infty}(1)$ is the fixed point of σ generated by 1 It is called the Tribonacci word

The Tribonacci substitution

$$
\begin{gathered}
\sigma: 1 \mapsto 12,2 \mapsto 13,3 \mapsto 1 . \\
\text { The incidence matrix of } \sigma \text { is } M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
\end{gathered}
$$

It is primitive : there exists a power of M which contains only positive entries.

Its characteristic polynomial is $X^{3}-X^{2}-X-1$. It admits one positive root $\beta>1$ (the dominant eigenvalue) and two complex conjugates $\alpha, \bar{\alpha}$, with $|\alpha|<1$.
β is a Pisot number.

The Tribonacci fractal as a geometric representation of substitutive systems

Consider the Tribonacci substitution $1 \mapsto 12,2 \mapsto 3,3 \mapsto 1$.
One represents $\sigma^{\infty}(1)$ as a broken line

$$
\begin{gathered}
\mathbf{f}:\{1,2,3\}^{*} \rightarrow \mathbb{Z}^{3}, 1 \mapsto \vec{e}_{1}, 2 \mapsto \vec{e}_{2}, 3 \mapsto \vec{e}_{3} \\
\mathbf{f}(w)=|w|_{1} \vec{e}_{1}+|w|_{2} \vec{e}_{2}+|w|_{3} \vec{e}_{3}
\end{gathered}
$$

that we will be projected according to the eigenspaces of M.

Periodic and aperiodic tilings

Rauzy fractals : a geometric representation of substitutive systems

Let σ be a Pisot substitution : there exists a dominant eigenvalue α such that for every other eigenvalue λ,

$$
\alpha>1>|\lambda|>0 .
$$

Then σ is primitive.
σ is said to be a unit substitution if its incidence matrix has determinant ± 1.

Substitutive dynamical systems

Let σ be a primitive substitution over \mathcal{A}. Let u be generated by σ. Let S be the shift

$$
S\left(\left(u_{n}\right)_{n}\right)=\left(u_{n+1}\right)_{n}
$$

The symbolic dynamical system generated by σ is $\left(X_{\sigma}, S\right)$ with

$$
X_{\sigma}:=\overline{\left\{S^{n}(u) ; n \in \mathbb{N}\right\}} \subset \mathcal{A}^{\mathbb{N}}
$$

Question Under which conditions is it possible to give a geometric representation of a substitutive dynamical system as a translation on an Abelian compact group ? (discrete spectrum)
Remark Measure-theoretic discrete spectrum and topological discrete spectrum are equivalent for primitive substitutive dynamical systems [Host], see also [Cortez,Durand,Host,Maass]
Example In the Fibonacci case $\left(X_{\sigma}, S\right)$ is isomorphic to $\left(\mathbb{R} / \mathbb{Z}, R_{\frac{1+\sqrt{5}}{2}}\right)$

A geometric representation of substitutive dynamical systems

Abelianisation Let d stand for the cardinality of \mathcal{A}

$$
f: w \in \mathcal{A}^{\star} \mapsto\left(|w|_{1},|w|_{2}, \cdots,|w|_{d}\right) \in \mathbb{N}^{d}
$$

A geometric representation of substitutive dynamical systems

Abelianisation Let d stand for the cardinality of \mathcal{A}

$$
f: w \in \mathcal{A}^{\star} \mapsto\left(|w|_{1},|w|_{2}, \cdots,|w|_{d}\right) \in \mathbb{N}^{d}
$$

Let u be a periodic point of σ. Let π denote the projection onto the contracting eigenplane of σ along its expanding eigenline.

The Rauzy fractal of σ is defined as :

$$
\mathcal{R}_{\sigma}:=\overline{\left\{\pi \circ f\left(u_{0} \cdots u_{n-1}\right) ; n \in \mathbb{N}\right\}} .
$$

How to reach nonalgebraic parameters?

- We have considered so far iterations of a single substitution
- We now want to reach nonalgebraic parameters by considering convergent products of matrices
- We want to consider not only a substitution but a sequence of substitutions

How to reach nonalgebraic parameters?

- We have considered so far iterations of a single substitution
- We now want to reach nonalgebraic parameters by considering convergent products of matrices
- We want to consider not only a substitution but a sequence of substitutions
- Multidimensional continued fractions algorithms
- The S-adic conjecture : characterization/generation of symbolic flows of at most linear complexity

S-adic expansions

Theorem [Cassaigne] A symbolic flow X has at most linear complexity if and only if the first difference of the complexity $p_{X}(n+1)-p_{X}(n)$ is bounded, where $p_{X}(n)$ counts the number of factors of length n.
Theorem [Ferenczi] Let X be a minimal symbolic system on a finite alphabet \mathcal{A} such that its complexity function $p_{X}(n)$ is at most linear ; then

- there exist a finite set of substitutions \mathcal{S} over an alphabet

$$
\mathcal{D}=\{0, \ldots, d-1\}
$$

- a substitution φ from \mathcal{D}^{\star} to \mathcal{A}^{\star}
- and an infinite sequence of substitutions $\left(\sigma_{n}\right)_{n \geq 1}$ with values in \mathcal{S} such that
- $\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}(r)\right| \rightarrow+\infty$ when $n \rightarrow+\infty$, for any letter $r \in \mathcal{D}$
- and any word of the language of the system is a factor of

$$
\varphi\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right)(0)
$$

for some n

S-adic expansions

Definition

A sequence u is said S-adic if there exist

- a finite set of substitutions \mathcal{S} over an alphabet $\mathcal{D}=\{0, \ldots, d-1\}$
- a morphism φ from \mathcal{D}^{\star} to \mathcal{A}^{\star}
- an infinite sequence of substitutions $\left(\sigma_{n}\right)_{n \geq 1}$ with values in \mathcal{S} such that

$$
u=\lim _{n \rightarrow+\infty} \varphi \circ \sigma_{1} \circ \sigma_{2} \circ \cdots \circ \sigma_{n}(0)
$$

First remarks

- The fact that the lengths of the words tend to infinity, which generalizes the notion of everywhere growing substitutions, i.e., substitutions such that

$$
\forall r, \exists n \in \mathbb{N},\left|\sigma_{1} \sigma_{2} \ldots \sigma_{n}(r)\right| \geq 2
$$

is necessary to make Ferenczi's S-adic theorem nonempty

- To be S-adic is not a property of the sequence but a way to construct it

Every sequence is S-adic

Let $u=u_{0} u_{1} u_{2} \cdots \in \mathcal{A}^{\mathbb{N}}$. We define for all $n \in \mathbb{N}$ substitutions σ_{n} over the alphabet $\mathcal{A} \cup\{\ell\}$

$$
\sigma_{a}(b)=b, \forall b \in \mathcal{A}, \sigma_{a}(\ell)=\ell a
$$

One has

$$
\left|\sigma_{u_{0}} \circ \sigma_{u_{1}} \circ \cdots \circ \sigma_{u_{n}}(\ell)\right| \rightarrow \infty
$$

but for all $a \in \mathcal{A}$ and for all n

$$
\left|\sigma_{u_{0}} \circ \sigma_{u_{1}} \circ \cdots \circ \sigma_{u_{n}}(a)\right|=1
$$

We project by erasing ℓ :

$$
\varphi(a)=a, \forall a \in \mathcal{A}, \varphi(\ell)=\varepsilon
$$

One has

$$
u=\lim _{n \rightarrow+\infty} \varphi \circ \sigma_{u_{0}} \circ \sigma_{u_{1}} \circ \cdots \circ \sigma_{u_{n}}(\ell)
$$

Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]

Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]

- Numeration system. Example : Beta-expansions $\sum_{i \geq 1} b_{i} \beta^{-i}$, $T_{\beta}: x \mapsto\{\beta x\}$
- Artithmetic codings of automorphisms of the torus [Schmidt]

Arithmetic dynamics

Arithmetic dynamics [Sidorov-Vershik] arithmetic codings of dynamical systems that preserve their arithmetic structure

Numeration dynamics [Keane]
Example Let $R_{\alpha}: \mathbb{T} \rightarrow \mathbb{T}, x \mapsto x+\alpha \bmod 1$. One gets by coding trajectories according to a finite partition an isomorphism between

$$
\left(R_{\alpha}, \mathbb{T}\right) \sim\left(X_{\alpha}, T\right)
$$

where T is the shift and $X_{\alpha} \subset\{0,1\}^{\mathbb{N}}$
We also can define a further isomorphism of an arithmetic nature via an odometer

$$
\begin{array}{ccc}
\left(R_{\alpha}, \mathbb{T}\right) & \sim\left(K_{\alpha}, \mathrm{Od}\right) \\
\mathbb{R} / \mathbb{Z} & \xrightarrow{R_{\alpha}} & \mathbb{R} / \mathbb{Z} \\
\text { Ostr. } & & \bigsqcup_{\text {Ostr. }} \\
K_{\alpha} & \overrightarrow{\mathrm{Od}} & \text { K }_{\alpha}
\end{array}
$$

Ostrowski expansion of real numbers

The base is given by the sequence $\left(\theta_{n}\right)_{n \geq 0}$, where $\theta_{n}=\left(q_{n} \alpha-p_{n}\right)$.
Every real number $-\alpha \leq \beta<1-\alpha$ can be expanded uniquely in the form

$$
\beta=\sum_{k=1}^{+\infty} c_{k} \theta_{k-1}
$$

where

$$
\left\{\begin{array}{l}
0 \leq c_{1} \leq a_{1}-1 \\
0 \leq c_{k} \leq a_{k} \text { for } k \geq 2 \\
c_{k}=0 \text { if } c_{k+1}=a_{k+1} \\
c_{k} \neq a_{k} \text { for infinitely many odd integers. }
\end{array}\right.
$$

Primitivity and proper S-adic systems

- An s-adic expansion is said primitive if there exists ℓ such that for all $a, b \in \mathcal{A}$ and for all n, then b occurs in $\sigma_{i_{n}} \circ \cdots \circ \sigma_{i_{n+\ell}}(a)$
- An S-adic expansion is said to have bounded partial quotients if every substitution comes back with bounded gaps in the S-adic expansion

Primitivity and proper S-adic systems

- An s-adic expansion is said primitive if there exists ℓ such that for all $a, b \in \mathcal{A}$ and for all n, then b occurs in $\sigma_{i_{n}} \circ \cdots \circ \sigma_{i_{n+\ell}}(a)$
- An S-adic expansion is said to have bounded partial quotients if every substitution comes back with bounded gaps in the S-adic expansion
- A substitution over \mathcal{A} is said (b, e)-proper if there exist two letters $b, e \in \mathcal{A}$ such that for all $a \in A \sigma(a)$ begins with b and ends with e.
- An S-adic system is said to be proper if there exist (b, e) such that every substitution is (b, e)-proper.
- A subshift which is generated by a proper and primitive S-adic sequence/system is called a proper primitive S-adic subshift

S-adicity and complexity [Cassaigne]

There exists an S-adic sequence with an S-adic expansion having bounded partial quotients, and with each substitution being primitive, whose complexity is quadratic

S-adicity and complexity [Cassaigne]

There exists an S-adic sequence with an S-adic expansion having bounded partial quotients, and with each substitution being primitive, whose complexity is quadratic
Let

$$
f: a \mapsto a a b, b \mapsto b, g: a \mapsto b, b \mapsto a .
$$

The substitution f has quadratic complexity and the substitution $f \circ g \circ f$ is primitive
The substitutions $f \circ g$ and $g \circ f$ are primitive and appear with bounded gaps
Let us consider the sequence u defined as the limit when n tends to infinity of

$$
f \circ g \circ f^{2} \circ g \circ f^{3} \circ g \circ f^{4} \circ \cdots \circ f^{n} \circ g(b)
$$

One has

$$
u=\lim _{n \rightarrow+\infty}(f \circ g \circ f) \circ(f \circ g \circ f) \circ f \circ(f \circ g \circ f) \cdots \circ(f \circ g \circ f) \circ f^{n} \circ(f \circ g \circ f) \cdots
$$

The complexity of u is quadratic

Linear recurrence : a measure of aperiodic order

Let u be a given recurrent sequence and let W be a factor of the sequence u.

- A return word over W is a word V such that $V W$ is a factor of the sequence u, W is a prefix of $V W$ and W has exactly two occurrences in VW
- A sequence is linearly recurrent if there exists a constant $C>0$ such that for every factor W, the length of every return word V of W satisfies $|V| \leq C|W|$
- Such a sequence always has at most linear complexity [Durand-Host-Skau]
- But this condition is strictly stronger than having at most linear complexity
- A Sturmian sequence is linearly recurrent if and only if the partial quotients in the continued fraction expansion of its angle/slope are bounded

Tilings and long-range aperiodic order

Discrete planes with irrational normal vector are

- repetitive (uniform recurrence)
- aperiodic

Assume we have a "substitutive" arithmetic discrete plane
Multidimensional substitutive tilings \rightsquigarrow Local/matching rules [S. Mozes, C. Goodman-Strauss]

Can we recognize/characterize a given "substitutive" arithmetic discrete plane by local inspection?

Tilings and long-range aperiodic order

Discrete planes with irrational normal vector are

- repetitive (uniform recurrence)
- aperiodic

Assume we have a "substitutive" arithmetic discrete plane
Multidimensional substitutive tilings \rightsquigarrow Local/matching rules [S. Mozes, C. Goodman-Strauss]

Can we recognize/characterize a given "substitutive" arithmetic discrete plane by local inspection?

Yes in the Tribonacci case $\sigma: 1 \mapsto 12,2 \mapsto 13,3 \mapsto 1$
[Bressaud-Sablik-Pytheas Fogg'09]

From discrete planes to tilings via... number theory

Fact : Arithmetic discrete planes are repetitive.
Repetitivity function : Let N be the smallest integer N such that every ball of radius N in the tiling contains all configurations of radius n. We set $R(n):=N$.
Linear repetitivity : there exists C such that $R(n) \leq C n$ for all n.
Open problem : Characterize the discrete planes which have linear repetitivity.
Discrete lines: one has linear repetitivity iff and the slope of the line has bounded partial quotients in its continued fraction expansion.

LR and S-adicity

Theorem [F. Durand]

- A proper primitive S-adic subshift is a LR subshift
- LR implies primitive S-adic
- LR is equivalent with primitive and proper S-adic A primitive S-adic subshift is not necessarily an LR subshift

LR and S-adicity

Theorem [F. Durand]

- A proper primitive S-adic subshift is a LR subshift
- LR implies primitive S-adic
- LR is equivalent with primitive and proper S-adic A primitive S-adic subshift is not necessarily an LR subshift Proof

$$
\begin{aligned}
& \sigma: a \mapsto a c b, b \mapsto b a b, c \mapsto c b c \\
& \tau: a \mapsto a b c, b \mapsto a c b, c \mapsto a a c
\end{aligned}
$$

We consider the S-adic expansion

$$
v:=\lim _{n \rightarrow+\infty} \sigma \circ \tau \circ \sigma^{2} \circ \tau \circ \cdots \circ \sigma^{n} \tau(a)
$$

The sequence v is primitive S-adic, it is not $L R$, it has linear complexity
> [F. Durand, Corrigendum and Addendum to "LR Subshsifts have a finite number of non-periodic factors"]

Examples of S-adic expansions

- Arnoux-Rauzy sequences

$$
p(n)=2 n+1+\text { one special factor of each length }
$$

1	$\mapsto 1$	σ_{2}	1	$\mapsto 12$		1			13
2	$\mapsto 21$		2	$\mapsto 2$		2			23
3	$\mapsto 31$		3	$\mapsto 32$		3			$\rightarrow 3$

- Multidimensional continued fractions
- Jacobi-Perron algorithm
- Brun algorithm (=modified JP)

Examples of S-adic expansions

- Arnoux-Rauzy sequences

$$
p(n)=2 n+1+\text { one special factor of each length }
$$

Periodic Arnoux-Rauzy substitutions are Pisot [Arnoux-Ito] There exist AR sequences with unbounded partial quotients wich are not uniformly balanced [J. Cassaigne, S. Ferenczi, L. Zamboni]

- Multidimensional continued fractions
- Jacobi-Perron algorithm
- Brun algorithm (=modified JP)

Examples of S-adic expansions

- Arnoux-Rauzy sequences

$$
p(n)=2 n+1+\text { one special factor of each length }
$$

- Multidimensional continued fractions
- Jacobi-Perron algorithm
[Sh. Ito, M. Ohtsuki, Paralelogram tilings and Jacobi-Perron algorithm, Tokyo J. Math. 1994]
- Brun algorithm (=modified JP)

S-adic expansions

One considers

$$
u=\lim _{n \rightarrow+\infty} \sigma_{1} \sigma_{2} \cdots \sigma_{n}(0)
$$

S-adic expansions

One considers

$$
u=\lim _{n \rightarrow+\infty} \sigma_{1} \sigma_{2} \cdots \sigma_{n}(0)
$$

Geometrically

Let p_{k} be the perfix of u of length k. Do the $f\left(p_{k}\right)$ remain at a bounded distance of a line?

S-adic expansions

One considers

$$
u=\lim _{n \rightarrow+\infty} \sigma_{1} \sigma_{2} \cdots \sigma_{n}(0)
$$

Algebraically

Theorem of Perron-Frobenius type [Furstenberg]
One considers an infinite product of matrices

$$
E_{1} \cdots E_{k} \cdots
$$

with entries in \mathbb{N}. One assumes that there exists a matrix B with strictly positive entries s.t. there exist $i_{1}<j_{1}<\cdots<i_{k}<j_{k}$ s.t.

$$
B=E_{i_{1}} \cdots E_{j_{1}}, \cdots, B=E_{i_{k}} \cdots E_{j_{k}}, \cdots .
$$

Then, the intersection of the cones

$$
\cap_{k} E_{1} \cdots E_{k}\left(\mathbb{R}_{+}^{n}\right)
$$

is unidimensional.
Convergence speed? Type of convergence? Weak? strong?

S-adic expansions

One considers

$$
u=\lim _{n \rightarrow+\infty} \sigma_{1} \sigma_{2} \cdots \sigma_{n}(0)
$$

Combinatorially

- Frequencies with bounded remainders and balance

$$
\exists C, \forall i \in \mathcal{A}, \exists f(i) \text { t.q. } \forall N\left|\operatorname{Card}\left\{k \leq N, u_{k}=i\right\}-N f(i)\right| \leq C
$$

S-adic expansions

One considers

$$
u=\lim _{n \rightarrow+\infty} \sigma_{1} \sigma_{2} \cdots \sigma_{n}(0)
$$

Arithmetically

- Weak and strong convergence of multidimensional continued fraction algorithms
Theorem
There exists $\delta>0$ s.t. for almost every (α, β), there exists $n_{0}=n_{0}(\alpha, \beta)$ s.t. for all $n \geq n_{0}$

$$
\begin{aligned}
& \left|\alpha-p_{n} / q_{n}\right|<\frac{1}{q_{n}^{1+\delta}} \\
& \left|\beta-r_{n} / q_{n}\right|<\frac{1}{q_{n}^{1+\delta}}
\end{aligned}
$$

where p_{n}, q_{n}, r_{n} are given by Brun/Jacobi-Perron.
Brun [Ito-Fujita-Keane-Ohtsuki '93+'96] ; Jacobi-Perron [Broise-Guivarc'h '99]

Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two rational sequences $\left(p_{n} / q_{n}\right)$ et (r_{n} / q_{n}) with the same denominator that satisfy

$$
\lim p_{n} / q_{n}=\alpha, \lim r_{n} / q_{n}=\beta
$$

Geometrically

Dynamically translation on the torus : $R_{\alpha, \beta}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2},(x, y) \mapsto x+(\alpha, \beta)$

Continued fractions

- Euclid's algorithm Starting with two numbers, one subtracts the smallest to the largest
- Unimodularity

$$
\operatorname{det}\left[\begin{array}{ll}
p_{n+1} & q_{n+1} \\
p_{n} & q_{n}
\end{array}\right]= \pm 1
$$

Rem $S L(2, \mathbb{N})$ is a finitely generated free monoid. It is generated by

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

$S L(3, \mathbb{N})$ is not finitely generated. Consider the family of matrices

$$
\left(\begin{array}{lll}
1 & 0 & n \\
1 & n-1 & 0 \\
1 & 1 & n-1
\end{array}\right)
$$

These matrices are undecomposable for $n \geq 3$ [Rivat]

Multidimensional Euclid's algorithms : a zoo of algorithms

- Jacobi-Perron : we subtract the first one to the two other ones with $0 \leq x_{1}, x_{2} \leq x_{3}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{2}-\left[\frac{x_{2}}{x_{1}}\right] x_{1}, x_{3}-\left[\frac{x_{3}}{x_{1}}\right] x_{1}, x_{1}\right)
$$

- Brun : we subtract the second largest and we reorder with $x_{1} \leq x_{2} \leq x_{3}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}-x_{2}\right)
$$

- Poincaré : we subtract the previous one and we reorder with $x_{1} \leq x_{2} \leq x_{3}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}\right)
$$

- Selmer : we subtract the smallest to the largest and we reorder with $x_{1} \leq x_{2} \leq x_{2}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}-x_{1}\right)
$$

- Fully subtractive : we subtract the smallest one to all the largest ones and we reorder with $x_{1} \leq x_{2} \leq x_{3}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{1}\right)
$$

Poincaré algorithm [Nogueira'95]

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}\right), x_{1} \leq x_{2} \leq x_{3} \\
& 1 / \varphi^{2}+1 / \varphi=1 \\
& \begin{array}{lll}
1 / \varphi^{2} & 1 / \varphi & 100 \\
1 / \varphi^{3} & 1 / \varphi^{2} & 100-1 / \varphi \\
1 / \varphi^{4} & 1 / \varphi^{3} & 100-1 / \varphi-1 / \varphi^{2} \\
\cdots & \cdots & \cdots \\
1 / \varphi^{k+1} & 1 / \varphi^{k} & 100-\sum_{i<k} 1 / \varphi^{1}
\end{array}
\end{aligned}
$$

Jacobi-Perron vs. Ostrowski

Jacobi-Perron

$$
(\alpha, \beta) \mapsto(\{\beta / \alpha\},\{1 / \alpha\})
$$

Ostrowski

$$
(\alpha, \beta) \mapsto(\{1 / \alpha\},\{\beta / \alpha\})
$$

Discrete lines and continued fractions

- We apply to \vec{u} a finite sequence of steps under the action of a generalized three-dimensional Euclid's algorithm T together with a choice of Euclid's substitutions $\sigma^{(n)}$ associated with the produced matrices
- One has

$$
\vec{u}=M^{(1)} \ldots M^{(N)} \vec{u}^{(N)}
$$

where the vector $\vec{u}^{(N)} \in X_{0}$ has only two coordinates equal to 0 , and one coordinate equal to 1

- Let $i_{N} \in\{1,2,3\}$ stand for the index of the nonzero coordinate of $\vec{u}^{(N)}$
- We consider the discrete segment coded by

$$
\sigma^{(1)} \cdots \sigma^{(n)}\left(i_{N}\right)
$$

[In collaboration with S. Labbé]

Example

Take $u=[4,6,7]$ and take the fully subtractive algorithm

word: 12312323312312323312312323123233123233
Complexity $=[1,3,5,7,9,11,13,15,17,18,19,20,21,21,21,21,21,21,21,20]$
Distance of the word $=1.8626$

word: 1233123231232312331232312323123
Complexity $=[1,3,5,7,8,9,10,11,12,13,14,14,14,14,14,14,14,14,14,13]$
Distance of the word $=1.1521$

word: 1231232312312323312323123123233
Complexity $=[1,3,5,7,9,11,13,14,15,16,16,16,16,16,16,16,16,15,14,13]$
Distance of the word $=1.7997$

word: 1323132231322313231322313213223
Complexity $=[1,3,6,8,10,12,14,15,16,17,18,19,19,19,18,17,16,15,14,13]$
Distance of the word $=1.3847$

word: 1231232312312323312323123123233
Complexity $=[1,3,5,7,9,11,13,14,15,16,16,16,16,16,16,16,16,15,14,13]$
Distance of the word $=1.7997$

GIFS structure

GIFS structure

$$
\sigma(1)=112, \sigma(2)=113, \sigma(3)=1
$$

As a consequence of the GIFS structure...

Theorem Let σ be a Pisot irreducible unimodular substitution
The tiles $\mathcal{R}_{\sigma}(i)$ are solutions of the GIFS

$$
\mathcal{R}_{\sigma}(i)=\bigcup_{\substack{j \in A, i \stackrel{(p, i, s)}{ }}} h_{\sigma}\left(\mathcal{R}_{\sigma}(j)\right)+\pi_{c} \circ f(p)
$$

where

- h_{σ} is the restriction of M_{σ} on its contracting hyperplane
- π_{c} is the projection on the contracting hyperplane along the expanding line (Pisot hypothesis)

Some properties of the GIFS

The tiles $\mathcal{R}_{\sigma}(i)$ are solutions of the GIFS

$$
\mathcal{R}_{\sigma}(i)=\bigcup_{\substack{j \in A, i \xrightarrow{(p, i, s)} j}} h_{\sigma}\left(\mathcal{R}_{\sigma}(j)\right)+\pi_{c} \circ f(p)
$$

- The union $\cup_{i \in \mathcal{A}} \mathcal{R}_{\sigma}(i)$ is a disjoint union up to sets of zero measure
- The tiles $\mathcal{R}_{\sigma}(i)$ have non-emtpy interior
- The boundaries of \mathcal{R}_{σ} and $\mathcal{R}_{\sigma}(i)$ have zero measure
- The tiles $\mathcal{R}_{\sigma}(i)$ are the closure of their interior
- The subtiles that occur in each decomposition of $\mathcal{R}_{\sigma}(i)$ are disjoint in measure
- If σ satisfies the strong coincidence conditions, then the tiles $\mathcal{R}_{\sigma}(i)$ are disjoint in measure

Zooming in : Intersections of subtiles

- The tiles $\mathcal{R}_{\sigma}(i)$ are solutions of the GIFS

$$
\mathcal{R}_{\sigma}(i)=\bigcup_{\sigma(j)=p i s} h_{\sigma}\left(\mathcal{R}_{\sigma}(j)\right)+\pi_{c} \circ f(p)
$$

- They have non-empty interior (Pisot)
- The mapping h_{σ} contracts the Lebesgue measure by $1 / \beta$

$$
\forall i \in \mathcal{A}, \mu_{d-1}\left(\mathcal{R}_{\sigma}(i)\right) \leq \sum_{j \in A} 1 / \beta m_{i j} \mu_{d-1}\left(\mathcal{R}_{\sigma}(j)\right)
$$

with $M_{\sigma}=\left[m_{i j}\right]$

- We thus have

$$
M_{\sigma}\left[\mu\left(\mathcal{R}_{\sigma}(j)\right)\right] \geq \beta\left[\mu\left(\mathcal{R}_{\sigma}(j)\right)\right]
$$

- Since β is the Perron-Frobenius eigenvalue of M_{σ}, one gets the reverse inequality

Zooming in : Intersections of subtiles

- The tiles $\mathcal{R}_{\sigma}(i)$ are solutions of the GIFS

$$
\mathcal{R}_{\sigma}(i)=\bigcup_{\sigma(j)=p i s} h_{\sigma}\left(\mathcal{R}_{\sigma}(j)\right)+\pi_{c} \circ f(p)
$$

- They have non-empty interior (Pisot)
- The mapping h_{σ} contracts the Lebesgue measure by $1 / \beta$

$$
\forall i \in \mathcal{A}, \mu_{d-1}\left(\mathcal{R}_{\sigma}(i)\right) \leq \sum_{j \in A} 1 / \beta m_{i j} \mu_{d-1}\left(\mathcal{R}_{\sigma}(j)\right)
$$

with $M_{\sigma}=\left[m_{i j}\right]$

- We thus have

$$
M_{\sigma}\left[\mu\left(\mathcal{R}_{\sigma}(j)\right)\right] \geq \beta\left[\mu\left(\mathcal{R}_{\sigma}(j)\right)\right]
$$

- Since β is the Perron-Frobenius eigenvalue of M_{σ}, one gets the reverse inequality

How to propagate this information?

Strong coincidence and synchronization

- The strong coincidence condition gives

$$
\begin{gathered}
\forall j_{1}, j_{2} \in \mathcal{A}, \exists k, \exists i, \sigma^{k}\left(j_{1}\right)=p i s, \sigma^{k}\left(j_{2}\right)=p i s^{\prime} \\
\text { with } f(p)=f\left(p^{\prime}\right)
\end{gathered}
$$

- The tiles $\mathcal{R}_{\sigma}(i)$ are solutions of the k-order GIFS

$$
\mathcal{R}_{\sigma}(i)=\bigcup_{\sigma^{k}(j)=p i s} h_{\sigma}^{k}\left(\mathcal{R}_{\sigma}(j)\right)+\pi_{c} \circ f(p)
$$

- For every $\left(j_{1}, j_{2}\right)$ there exists a common letter i and $f(p)$ s.t.

$$
h_{\sigma}^{k}\left(\mathcal{R}_{\sigma}\left(j_{1}\right)\right)+\pi_{c} \circ f(p)
$$

and

$$
h_{\sigma}^{k}\left(\mathcal{R}_{\sigma}\left(j_{2}\right)\right)+\pi_{c} \circ f(p)
$$

both occur in the k-th order GIFS equation

- We use the fact that the subtiles are disjoint in measure in the k-th order iteration

