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A Quantum Particle in a Discrete World

The state of the quantum system is described by a normalized
element ψ of

`2(Zd) =
{
ψ : Zd → C :

∑
n∈Zd

|ψ(n)|2 <∞
}

The interpretation is as follows:

Prob ( particle is in A ) =
∑
n∈A

|ψ(n)|2
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A Quantum Particle in a Discrete World

The state changes with time according to the Schrödinger
equation:

i∂tψ = Hψ

Here, H is the Schrödinger operator H = ∆ + V , that is,

[Hψ](n) =
∑
‖e‖1=1

ψ(n + e) + V (n)ψ(n)

where the potential V : Zd → R models the environment the
quantum particle is exposed to.
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A Quantum Particle in a Discrete World

The Schrödinger operator is self-adjoint:

〈φ,Hψ〉 = 〈Hφ, ψ〉

The “allowed energies” are given by the spectrum of H:

σ(H) = {E ∈ R : (H − E · I )−1 does not exist}

Moreover, for every ψ ∈ `2(Zd), there is a so-called spectral
measure dµψ so that

〈ψ, g(H)ψ〉 =

∫
σ(H)

g(E ) dµψ(E )
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A Quantum Particle in a Discrete World

Spectral measures are important because they are related to the
long time behavior of the solutions to the Schrödinger equation.

Indeed, if ψ(t) solves i∂tψ = Hψ and dµ is the spectral measure
of ψ(0), then

the particle “travels freely” if dµ is absolutely continuous

the particle “travels somewhat” if dµ is singular continuous

the particle “does not travel” if dµ is pure point



Outline Introduction Aperiodic Order in 1D The Fibonacci Hamiltonian The Square Fibonacci Hamiltonian

Aperiodic Order in 1D

Suppose V : Z→ R is an aperiodically ordered potential and
consider the associated Schrödinger operator H = ∆ + V in `2(Z).

There is a strong tendency for the following phenomena to occur:

The spectrum of H is a Cantor set of zero Lebesgue measure.

All spectral measures are purely singular continuous.

In this talk we will focus on the structure of the spectrum. Let us
explain why it has a tendency to be a Cantor set of zero Lebesgue
measure.
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Lyapunov Exponents and Kotani’s Theorem

The key to the zero measure result is that there is a specific subset
of the spectrum that has zero Lebesgue measure by general
principles and that turns out to be equal to the spectrum in
aperiodically ordered situations.

To define this set, we need to recall the concept of a Lyapunov
exponent. For E ∈ R and n ≥ 1, consider the transfer matrix

M(n,E ) =

(
E − V (n) −1

1 0

)
× · · · ×

(
E − V (1) −1

1 0

)
and the Lyapunov exponent

L(E ) = lim sup
n→∞

1

n
log ‖M(n,E )‖.

Then, the set
Z = {E ∈ R : L(E ) = 0}

is contained in the spectrum of H.
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Lyapunov Exponents and Kotani’s Theorem

Theorem (Kotani 1989)

If V takes finitely many values and is repetitive and aperiodic, then
Z has zero Lebesgue measure.

To show that Z is actually equal to the spectrum of H, there are
two approaches:

analysis of induced trace maps

uniformity of locally constant cocycles

Trace maps exist in substitutive (or at least S-adic) situations and
have been studied since the early 1980’s. The other approach is
more general but provides less detailed information.
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Lyapunov Exponents and Kotani’s Theorem

The net result is that the spectrum is a zero-measure Cantor set in
many situations, including the following:

Fibonacci sequence

all Sturmian sequences

all (aperiodic) primitive substitution sequences

all (aperiodic) linearly recurrent sequences

all (aperiodic) sequences satisfying Boshernitzan’s condition

Naturally, once zero Lebesgue measure has been established, the
next step is a study of the fractal dimension of the spectrum. Let
us recall the relevant notions.
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Cantor Subsets of R and Fractal Dimensions

Let us consider a bounded Cantor subset of R, that is, a set
C ⊂ R that is compact, and which has empty interior and no
isolated points.

Thus, C is “larger” than a point (a zero-dimensional object) and
“smaller” than an interval (a one-dimensional object). To study
the size of C more closely, various fractal dimensions are commonly
considered.

The Hausdorff dimension of C is defined as follows. Consider

hα(C ) = lim
ε↓0

inf
ε−covers

∞∑
n=1

|In|α

and let
dimH(C ) = inf{α > 0 : hα(C ) = 0}.
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Cantor Subsets of R and Fractal Dimensions

The upper and lower box counting dimensions of C are defined as
follows. Consider

NC (ε) = #{j ∈ Z : [jε, (j + 1)ε) ∩ C 6= ∅}

and let

dim+
B (C ) = lim sup

ε↓0

log NC (ε)

log 1
ε

and

dim−B (C ) = lim inf
ε↓0

log NC (ε)

log 1
ε

These dimensions obey the inequalities

dimH(C ) ≤ dim−B (C ) ≤ dim+
B (C ).
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The Fibonacci Hamiltonian

The Fibonacci Hamiltonian in `2(Z) is given by

[Hλ,ωψ](n) = ψ(n + 1) +ψ(n−1) +λχ[1−α,1)(nα+ω mod 1)ψ(n),

where λ > 0, α =
√

5−1
2 , and ω ∈ T = R/Z. The spectrum

σ(Hλ,ω) is independent of ω and will be denoted by Σλ.

The set {(E , λ) : E ∈ Σλ, 0 ≤ λ ≤ 2}.



Outline Introduction Aperiodic Order in 1D The Fibonacci Hamiltonian The Square Fibonacci Hamiltonian

The Fibonacci Hamiltonian

Theorem (D-Embree-Gorodetski-Tcheremchantsev 2008)

For λ > 16, we have

dimH(Σλ) = dim−B (Σλ) = dim+
B (Σλ)

and
lim
λ→∞

dim(Σλ) · log λ = log(1 +
√

2)
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The Square Fibonacci Hamiltonian

The square Fibonacci Hamiltonian in `2(Z2) is the Schrödinger
operator

[H
(2)
λ ψ](n) =

∑
‖e‖1=1

ψ(n + e) + V (n)ψ(n)

where V (n) = V (n1, n2) is given by

λ
(
χ[1−α,1)(n1α mod 1) + χ[1−α,1)(n2α mod 1)

)
with λ > 0 and α =

√
5−1
2 as above.

The theory of tensor products of Hilbert spaces and operators

implies that σ(H
(2)
λ ) = Σλ + Σλ.
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Numerical Results of Even-Dar Mandel and Lifshitz

The structure of σ(H
(2)
λ ) = Σλ + Σλ undergoes a number of

transitions as λ runs from zero to infinity. One can identify the
following regimes:

0 < λ < λ1: The spectrum has no gaps.

λ1 < λ < λ2: The spectrum has finitely many gaps.

λ2 < λ < λ3: The spectrum has infinitely many gaps, but
does contain intervals.

λ3 < λ < λ4: The spectrum contains no intervals, but has
positive measure.

λ4 < λ <∞: The spectrum is a zero-measure Cantor set.
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Arithmetic Sums of Cantor Sets

Lemma

Suppose C1,C2 ⊂ R are Cantor sets with

dim+
B (C1) + dim+

B (C2) < 1.

Then, C1 + C2 is a Cantor set of zero Lebesgue measure.

Proof.
Choose d ′j > dim+

B (Cj) with d ′1 + d ′2 < 1. For ε > 0 small enough,

Cj can be covered by ε−d ′
j intervals of length ε. Thus, C1 + C2 is

contained in ε−d ′
1 · ε−d ′

2 intervals of length 2ε. Its Lebesgue
measure is therefore bounded from above by 2ε1−d ′

1−d ′
2 and hence

it must be zero. In particular, the set C1 + C2 has empty interior.
On the other hand, it is clear that C1 + C2 is compact and has no
isolated points.
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Square Fibonacci Hamiltonian at Large Coupling

Corollary

For λ sufficiently large, σ(H
(2)
λ ) = Σλ + Σλ is a Cantor set of zero

Lebesgue measure.

Proof. By [D-Embree-Gorodetski-Tcheremchantsev 2008], there is
λ0 > 0 such that for every λ > λ0,

dim+
B (Σλ) <

1

2
,

and therefore
dim+

B (Σλ) + dim+
B (Σλ) < 1.

By the previous lemma, Σλ + Σλ is a Cantor set of zero Lebesgue
measure.
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The Newhouse Gap Lemma

Given a Cantor set C ⊂ R, its thickness τ = τ(C ) is defined as
follows. Consider a bounded gap G of C and one of its boundary
points b ∈ ∂G . Form the interval B from b through C all the way
to the next gap of C that is longer than G . Let

τ(C ) = inf
b

|B|
|G |

.

Gap Lemma (Newhouse 1979)

Let C1,C2 ⊂ R be Cantor sets with thickness τ1, τ2, respectively. If
τ1 · τ2 > 1, then we have one of the following:

(i) C1 is contained in a gap of C2,

(ii) C2 is contained in a gap of C1,

(iii) C1 ∩ C2 6= ∅.
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A Consequence of the Newhouse Gap Lemma

Corollary

Suppose C ⊂ R is a Cantor set with thickness τ(C ) > 1. Then,
C + C is an interval.

Proof. Denote min C = c1 and max C = c2. We claim that

C + C = [c1 + c1, c2 + c2].

The inclusion “⊆” is obvious, so let us prove the inclusion “⊇.”

Take an arbitrary point x ∈ [c1 + c1, c2 + c2]. Then, x ∈ C + C if
and only if 0 ∈ C + C − x = C − (x − C ). Therefore,

x ∈ C + C ⇔ C ∩ (x − C ) 6= ∅.
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A Consequence of the Newhouse Gap Lemma

Since τ(C ) · τ(x − C ) = τ(C ) · τ(C ) > 1, the Gap Lemma implies
that a priori there are only four possibilities:

1 the intervals [c1, c2] and [x − c2, x − c1] are disjoint;

2 the set C is contained in a finite gap of the set (x − C );

3 the set (x − C ) is contained in a finite gap of the set C ;

4 C ∩ (x − C ) 6= ∅.

But the case (1) contradicts the assumption x ∈ [c1 + c1, c2 + c2],
and the cases (2) and (3) are clearly impossible. Therefore, we
must have C ∩ (x − C ) 6= ∅ and hence x ∈ C + C .
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Square Fibonacci Hamiltonian at Small Coupling

Theorem (D.-Gorodetski)

For λ > 0 sufficiently small, we have λ−1 . τ(Σλ) . λ−1

and
λ . 1− dim Σλ . λ.

Corollary (D.-Gorodetski)

For λ > 0 sufficiently small, σ(H
(2)
λ ) = Σλ + Σλ is an interval.



Outline Introduction Aperiodic Order in 1D The Fibonacci Hamiltonian The Square Fibonacci Hamiltonian

Square Fibonacci Hamiltonian at Small Coupling
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