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Let (X,T) be a dynamical system.

1. How do we measure randomness, complexity or chaoticity?

(1) Topological entropy of (X,U , T )

ht(T,U) = lim
n→∞

1

n
logN(

n−1∨
i=0

T−iU)

where U is an open cover and

N(U)=minimum number of open sets of U
necessary to cover X.
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(2) Entropy of (X,P, µ, T )

hµ(T,P) = lim
n→∞

1

n
H(

n−1∨
i=0

T−iP)

= lim
n→∞

1

n
H(

∑
A∈

∨n−1
i=0 T

−iP
−µAlogµA)

= lim
n→∞H(P|

n−1∨
i=1

T−iP)

where P is a partition of X.

When hµ(T,P) > 0 or ht(T,U) > 0,then partitions or open covers

are exponentially splitting.

(partitions or open covers have ”independence”).
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(3) Examples

(i) hµ(T ) > 0 : chaotic systems

• geodesic flows

• billiards with enough dispersing boundaries

• a coin flipping

(ii)hµ(T ) = 0 : deterministic systems

• irrational rotations, interval exchange maps

• horocycle flows

• many examples of Z2 ( Zn) -actions.
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2. Properties of positive entropy.

(1) Bernoulli factor

(2) Shannon-McMillan-Breiman Theorem.

µ(Pn−1
0 (x)) ∼ 2−nh

(3) Ornstein-Weiss return time property(a.e. convergence)

1

n
logRn(x)→ h

where Rn(x) = min{k : x0x1...xn−1 = xkxk+1...xk+n−1}.

(4) Joinings : If a system has the property of completely positive

entropy, then it is disjoint from entropy zero systems.
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3. Why Zero Entropy?

(1) Property of zero entropy systems are not much known.

(2) Growth rate of orbits

(i) exponential → positive entropy

·
(ii) subexponential growth → zero entropy

·
·
·

(iii) polynomial → zero entropy

(rotations, Toeplitz systems, billiards on polygons,...)

5



(3) General group action (X,σ) of zero entropy
has many interesting subdynamics

There exists a Z2-action (X,σ) where h(σ) = 0 with the property
that

(3a) (i) h(σ(1,0)) > 0

(ii) the action σ(1,0) is mixing.

(iii) For Rn = [0, n)× [0, n),

lim
n→∞

1

n
H(

∨
(i,j)∈Rn

σ−(i,j)P) > 0
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(3b)(Katok and Thouvenot)

(i) h(σ(p,q)) = 0 for ∀(p, q) ∈ Z2

(ii) For any given 0 < α < 2,

lim
1

nα
H(

∨
(i,j)∈Rn

σ−(i,j)P) > 0

(3c) (i) 0 < h(σ(p,q)) <∞

(ii) Directional entropy is continuous.

(iii)

lim
n→∞

1

n
H(

∨
(i,j)∈Rn

σ−(i,j)P) > 0
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(3d) (i) h(σ(p,q)) = 0 for ∀(p, q) ∈ Z2

(ii)

lim
n→∞

1

n
H(

∨
(i,j)∈Rn

σ−(i,j)P) > 0

(3e) (i) h(σ(1,0)) > 0

(ii) h(σ(p,q)) = 0 for ∀(p, q) 6= (n,0).

(iii)

lim
1

n
H(

∨
σ−(i,j)P) > 0

They have complexity and some independence
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(4) Weakly(intermittent) chaotic systems(Manneville-Pomeau Maps)

f(x) = x+ xt (mod 1), t ≥ 2.

Note that f ′(0) = 1.

• Sticky island examples.
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•Properties

(i) A typical point(w.r.t. Lebesgue measure)

x = 1101 00. .0. . . .0︸ ︷︷ ︸101 00. .0. . . .0︸ ︷︷ ︸
(ii)There exists no finite invariant measure � Lebesgue.

(iii)With respect to the infinite invariant measure it has positive

entropy.

(iv) O(x) = {0,1}Z

(v) Complexity ↔ Algorithmic Information Contents

(vi) The point ”0” is called neutrally unstable fixed point.
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4. Complexity of zero entropy system

(1) Low complexity case

(i) sequence entropy(Kushnirenko, Goodman(topological))

(ii) maximal pattern complexity(Kamae and Zamboni)

(iii) maximal pattern entropy(Hwang and Ye)

(2) Intermediate complexity case

Remark. Question by Milnor : Does there exist a finitely gener-

ated group of intermediate growth rate.

Answer by Grigorchuk, ’80.(Recently by Grigorchuk and I.Pak)
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Definition. Entropy dimension.

(i) topological entropy dimension

D(T,U) = inf{β : lim
logN(

∨n−1
i=0 T

−iU)

nβ
= 0}

D(T ) = sup{D(T,U) : U open covers}

D(T,U) = inf{β : lim
logN(

∨n−1
i=0 T

−iU)

nβ
= 0}

D(T ) = sup{D(T,U) : U open covers}

If D = D = α, then we say (X,U , T ) has entropy dimension α.

• Topological entropy dimension is conjugacy invariant.
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(ii)Metric entropy dimension has been defined analogously.

Dµ(T,P) = inf{β : lim
H(

∨n−1
i=0 T

−iP)

nβ
= 0}

In the metric entropy dimension, Dµ(T,P) and Dµ(T,P) are not
isomorphism invariant.

Modification of the definition.

Given ε > 0, let

B(x, n, ε) = {y ∈ X : d(P[0,n)(x),P[0,n)(y)) < ε}

Let K(n, ε) be the smallest number of balls necessary to cover a
subset of X of measure at least 1− ε.
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D(P, ε) = inf{β : lim
1

nβ
logK(n, ε) = 0}

D(P) = lim
ε→0

D(P, ε)

D = sup
P
D(P)

We define D likewise.

If D = D, then we call α = D the entropy dimension of T

Remark. D(T × S) = max{D(T ), D(S)}
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Theorem. (Ferenczi and Park) For each 0 < α < 1, there exists

a dynamical system of entropy dimension α.

(3) Examples

(i) measurable case

(ia) Ferenczi and Park : constructive example

(ib) Aaronson and Park : a skew product of a rotation with a

Bernoulli flow having metric entropy dimension ≤ 1/2.

(ic) Ahn, Dou and Park : metric entropy dimension 0 with

nontrivial topological entropy dimension
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(ii) topological case

(iia) Park : constructive examples of any dimension 0 < α < 1

Idea.

Bn+1 = BnBn...Bn︸ ︷︷ ︸
bn+1

00. . .0. . . .00︸ ︷︷ ︸
zn+1

BnBn...Bn︸ ︷︷ ︸
bn+1

(iib) Cassaigne : examples with minimality of any dimension

0 < α < 1

(iic) Dou, Huang and Park : minimal, weakly mixing ...
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5. What are the properties?

(1) Dimension Set

Definition. We define the subset D(X,T ) = {α : There exists an

open cover U such that D(X,U , T ) = α} ⊂ [0,1] as the dimension

set of (X,T ).

Lemma. If (X,T )→ (Y, S), then D(X,T ) ≥ D(Y, S)

Corollary. The dimension set D(X,T ) is homeomorphism invari-

ant.

• D(X,T ) is not necessarily a closed subset.

• If D(X,T ) ⊂ (0,1], then (X,T ) is weakly mixing.
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(2) Uniform dimension(Dou, Huang and Park)

Definition. We say (X,T) topologically K iff every nontrivial

open cover has positive entropy.

Definition. We say (X,T) is of uniform dimension iff every factor

has the same dimension. That is, D(X,T ) = α ( Every non trivial

open cover has entropy dimension α

• Given α, there exists a mimimal topological example of uniform

dimension α.

(This property corresponds to K-mixing in the case of positive

entropy.)

• (X,T) topologically K iff D(X,T ) = 1
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(3) Joining

Definition. We say (X̂, T × S) is a joining of (X,T) and (Y,S) if

(a) X̂ is a closed invariant subset of X×Y

(b) πX(X̂, T × S) ∼= (X,T ) and πY (X̂, T × S) ∼= (Y, S)

Theorem(Dou, Hwang and P.) Let (X,T) be a TDS and (Y,S)

be minimal. Suppose D(Y, S) < D(X,T ). Then (X,T ) and (Y, S)

are disjoint, that is (X × Y , T × S) is the only joining.
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• If (X,T) is of uniformly positive entropy, then (X,T) is disjoint

from the minimal zero entropy systems.

• If (X,T) has entropy dimension 0 and minimal, then it is dis-

joint from all positive entropy dimension systems.

• For any nontrivial minimal system (X,T), there exists a tran-

sitive system (Y,S) with D(S) = 0 such that (X,T) and (Y,S)

are not disjoint. (Minimality of the system of lower entropy is

required.)
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(4) Variational principle of entropy dimension? (Ahn, Dou and

P.)

Dtop(T ) = supµDµ(T )?

(It is clear from the definition that Dµ(T ) ≤ Dtop(T ).)

No!

For any given α, there exists an uniquely ergodic example Dtop(T ) =

α, but Dµ(T ) = 0.

21



(5) Independence

Definition. Let S = {s1 < s2 < ...} be an increasing sequence of

integers. We define

D(S) = inf{β ≥ 0 : lim sup
n→∞

n

(sn)β
= 0}

the upper dimension of the sequence S. Similarly, we define

D(S) = inf{β ≥ 0 : lim inf
n→∞

n

(sn)β
= 0}

the lower dimension of the sequence S.

When D(S) = D(S) = α, we say the sequence S has dimen-

sion α and denote it by D(S).
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Example. If S = {n2}, then D(S) = 1
2.

If S has positive density, then D(S) = 1.

Definition. We say an in increasing sequence of integers S =

{s1 < s2 < ...} is an entropy generating sequence of U if

lim inf
n→∞

1

n
logN(

n∨
i=0

T−siU) > 0.

Remark. If S is an entropy generating sequence for (X,T,U) and

(X,T,U) and (Y, S,V) are conjugate, then it is also an entropy

generating sequence for (Y, S,V).

23



Definition. We say an open cover U = {U1, ...Uk} is independent

along W if for any s ∈ {1, ..., k}W , we have
⋂
w∈W T−wUs(w) 6= ∅.

Lemma. Let (X,T ) be a TDS and U be a finite open cover.

For any τ ∈ (0,1] and 0 < η < τ and finite c, there exists

N ∈ N(depending on τ , η, c) such that if a finite subset B of

Z+ with |B| ≥ N and N (
∨
i∈B T

−iU) ≥ ec|B|
τ
, then there exists

W ⊂ B such that |W | ≥ |B|η and U is independent along W

(A generalization of the result by Kerr and Li)

Theorem. Let U be a finite generating (diam(
⋂
i T
−iU)=0) open

cover such that D(T,U) > 0. There exists an entropy generating

sequence F ⊂ Z such that D(F ) = D(T,U).
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Sketch of the proof.

Assume D(T,U) > 0 and let {τj} ⊂ (0, D(T,U)) be an increasing

sequence such that limj→∞ τj = D(T,U). We choose a > 0 so

that

lim sup
n→+∞

1

nτj
logN (

n∨
i=1

T−iU) > a for j ∈ N.

Let τj−1 < ηj < τj for j ∈ N . By the above Lemma , there

exists Nj ∈ N such that for every finite set B with |B| ≥ Nj and

N (
∨
i∈B T

−iU) ≥ e
a
2|B|

τj
,
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we can find W ⊆ B with |W | ≥ |B|ηj and {A1, A2, · · · , Ak} is

independent along W . Take 1 = n1 < n2 < · · ·
such that (nj+1 − nj)ηj ≥ jnj +Nj and

N (

nj+1∨
i=nj+1

T−iU) ≥ e
a
2(nj+1−nj)

τj

for each j ∈ N. For each j ∈ N, there exist Wj ⊆ {nj + 1, nj +

2, · · · , nj+1} with |Wj| ≥ (nj+1 − nj)ηj and {A1, A2, · · · , Ak} is

independent along Wj. For any nonempty set B ⊆ Wj and s =

(s(z))z∈B ∈ {1,2, · · · , k}B, we can find xs ∈
⋂
z∈B T

−zAs(z).
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Let XB = {xs : s ∈ {1,2, · · · , k}B}. It is clear that for any
t ∈ {1,2, · · · , k}B, we have

|
⋂
z∈B

T−zAct(z) ∩XB| ≤ (k − 1)|B|.

Combining this fact with |XB| = k|B|, we get

N (
∨
z∈B

T−zU) ≥
k|B|

(k − 1)|B|
for any B ⊆Wj.

Put F =
⋃∞
i=1Wj and write F = {t1 < t2 < · · · }.

Theorem. D(X,T ) = supF{D(F ): F is an entropy generating
sequence for U }. If it has a finite generating open cover, then
D(X,T ) = D(F ) for some F.
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Let (X,F , µ, T ) be a measurable dynamical system.

Definition. Given a partition P, we define

Dµ(T,P) =

sup{D(F )} F is an entropy generating sequence

0 if there is no entropy generating sequence

We define Dµ(X,T ) = supP Dµ(T,P)

Properties

• Dµ(X,T ) is an isomorphism invariant.

• If P is a generating partition, then Dµ(X,T ) = Dµ(T,P).

• Dµ(X,T ) = Dµ(X,T k) for any k.
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Definition. Dimension set for T is

D(X,T ) = {α : There exists a partition P such that D(T,P) =

α} ⊂ [0,1]

We say (X,T ) has a uniform dimension, D(X,T ) = {α}, iff every

nontrivial partition has entropy dimension α.

Theorem If D(X,T ) ≥ D(Y, S), then (X,T ) and (Y, S) are dis-

joint.

Corollary An α-uniform dimension ergodic system is disjoint

from β-uniform dimension ergodic system.
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Questions

Aaronson and Park’s example : entropy dimension is ≤ 1/2.

−
1
√
n

logµ(Pn−1
0 (x))

converges in distribution.

We do not have Shannon-McMillan-Breiman Theorem.

1. What kind of ”regularity” do we have in the size of atoms?
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2. Suppose (X,F , µ, T ) has entropy dimension 0 < α < 1. Does

the Equipartition Property imply the Return Time Property?

limn→∞
logRn(x)

nα exists ?, Rn = min{m ≥ 1 : xn1 = xm+n
m+1}

3.Do we have smooth models for entropy dimension 0 < α < 1 ?

4. Does there exist an example satisfying Dtop(T ) = supµDµ(T )?

5. What can we say about the dimension set, D ?
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6. α-entropy.

lim
n→+∞

1

nα
logN (

n∨
i=1

T−iU)

exists?

If (X,F , µ, T ) has positive α-entropy, then does it have a factor

of smaller α-entropy?

7. Definition of α-Bernoulli? α- K?
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Thank You!!
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