RANK AND DIRECTIONAL ENTROPY

E. Arthur (Robbie) Robinson (Joint work with Ayse Sahin)

The George Washington University

Talk at KIAS, Seoul, Korea.

September 27, 2010

- **2** Finite rank, \mathbb{Z} case
- **③** The formal definition
- **4** The \mathbb{Z}^2 case
- **5** Directional entropy
- 6 Directional entropy and rank 1
- 7 More. . .

- \bigcirc Finite rank, $\mathbb Z$ case
- 3 The formal definition
- (1) The \mathbb{Z}^2 case
- O DIRECTIONAL ENTROPY
- 6 Directional entropy and rank 1
- 7 More. . .

INTRODUCTION

CUTTING AND STACKING

- Elementary method to construct examples in ergodic theory.
- Classical version: invertible Lebesgue measure preserving transformation $T: [0, 1) \rightarrow [0, 1)$.
- Equivalently, a measure preserving \mathbb{Z} action (MP \mathbb{Z} A).
- Easily generalizes to \mathbb{Z}^d or \mathbb{R}^d to produce $MP\mathbb{Z}^dA$ or $MP\mathbb{R}^dA$.

• More general than substitutions.

ENTROPY

- Kolmogorov-Sinai, 1959: entropy h(T) of a measure preserving transformation T. Average "information" per time step.
- Straightforward generalization to *d*-dimensional entropy h(T) of MP $\mathbb{Z}^d A T$.
- Adler-Konheim-McAndrew, 1965: Topological entropy $h_{top}(T)$ of continuous map (or \mathbb{Z}^d action) T. Exponential growth in "complexity". $h(T) \leq h_{top}(T)$.
- Milnor, 1986: directional entropy $h_n(V,T)$ of MP $\mathbb{Z}^d A$, T. Here $V \subseteq \mathbb{R}^d$ subspace, dim(V) = n.

- **2** Finite rank, \mathbb{Z} case
- 3 The formal definition
- (1) The \mathbb{Z}^2 case
- O DIRECTIONAL ENTROPY
- \bigcirc Directional entropy and rank 1
- 7 More. . .

RANK AND DIRECTIONAL ENTROPY

Finite rank, \mathbb{Z} case

Von Neuman's "adding machine"

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへ⊙

Finite rank, \mathbb{Z} case

Illustrated as block concatination

Picture shows base step and induction step, illustrating the combinatorial data needed for the construction:

$$W_1 = 0, \quad W_{n+1} = W_n W_n.$$

The tower is turned on its side, with individual levels blurred.

RANK AND DIRECTIONAL ENTROPY

Finite rank, \mathbb{Z} case

As $T: [0,1) \to [0,1)$

Finite rank, \mathbb{Z} case

As Toeplitz sequence

Action together with partition equals process.

0 1 0 0 0 1 0 1 0 1 0 0 1 0

RANK AND DIRECTIONAL ENTROPY

FINITE RANK, Z CASE

CHACON'S TRANSFORMATION

Here the combinatorial data is $W_1 = 0$ and $W_{n+1} = W_n W_n 1 W_n$.

CHACON'S TRANSFORMATION

◆□> ◆□> ◆三> ◆三> ・三 ・のへで

Rank 1

Definition. T is rank 1 if it can be constructed by cutting and stacking with one large tower in each step.

• Left over interval called a spacer.

Theorem

Rank 1 implies (uniquely) ergodic. (Also minimal if number of adjacent spacers is bounded.)

- Adding machine has discrete spectrum. Chacon's transformation has continuous spectrum (i.e., is weakly mixing.)
- Any ergodic T with discrete spectrum is rank 1 (e.g., irrational rotation transformation).

FINITE RANK, Z CASE

RANK 1 MIXING

• (Smorodinski)-Adams (1998) version (see also Ornstein (1968)).

Recurrence relation: $W_1 = 0$, $W_{n+1} = W_n 1 W_n 1^2 \dots W_n 1^{q_n}$. Mixing provided $q_n \nearrow \infty$ sufficiently fast. RANK AND DIRECTIONAL ENTROPY

FINITE RANK, Z CASE

The Morse dynamical system

◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

Finite rank, Z case

Morse sequences

590

FINITE RANK

In this example, there are 2 towers at each step. We say T has rank \leq 2.

- A. del Junco showed this T is not rank 1. Thus T is rank 2.
- The spectrum of T is simple, and mixed (both discrete and continuous).

• Can similarly definerank \leq r, rank r, and finite rank.

THEOREM (SEE QUEFFELEC, (1987/2010))

A substitution on r letters is rank $\leq r$.

RANK AND DIRECTIONAL ENTROPY

Finite rank, \mathbb{Z} case

RANK, SPECTRUM AND ENTROPY

Theorem (Baxter, 1971)

Finite rank implies h(T) = 0.

Proof.

• Rank n implies spectral multiplicity $M_T \leq n$ (Chacon, 1970).

• Positive entropy (h(T) > 0) implies $M_T = +\infty$ (Bernoulli factor) (Sinai's Theorem).

- \bigcirc Finite rank, \mathbb{Z} case
- **③** The formal definition
- (1) The \mathbb{Z}^2 case
- DIRECTIONAL ENTROPY
- 6 Directional entropy and rank 1
- 7 More. . .

ROHLIN TOWERS

- Let $T: X \to X$ be a MPZA on a probability space (X, \mathcal{B}, μ) .
- If $B, TB, T^2B, \ldots, T^{h-1}B$ are pairwise disjoint, we call it Rohlin tower with height h and base B.
- The error is $E = \left(\bigcup_{k=0}^{h-1} T^k B \right)^c$.
- Call $\xi = \{B, TB, \dots, T^{h-1}B, E\}$ a Rohlin partition.

THEOREM (ROHLIN'S LEMMA)

If T is ergodic, then for any $h \in \mathbb{N}$ and $\epsilon > 0$, there is a height h Rohlin tower with $\mu(E) < \epsilon$.

Rank 1

Let ξ_n be a sequence of partitions. Say ξ_n separates (ξ_n → ε) if for any A ∈ B there is A_n ≤ ξ_n so that μ(AΔA_n) → 0.

DEFINITION

T is rank 1 if there is a sequence ξ_n of Rohlin towers so that $\xi_n \to \varepsilon$.

Cutting and stacking definition of Rank 1 implies this one: $\xi_n \to \varepsilon$ follows from diam $(B_n) \to 0$.

THEOREM (BAXTER, 1971)

 ξ_n may be chosen so that $\xi_n \leq \xi_{n+1}$ and $B_{n+1} \subseteq B_n$.

Thus all these T may be obtained by cutting and stacking.

"Funny" Rank 1

- Call a finite $R \subseteq \mathbb{Z}$ a shape.
- Suppose $\mu(B) > 0$ and $T^k B \cap T^\ell B = \emptyset$ for all $k, \ell \in R$, $k \neq \ell$.
- Call $\xi = \{E, T^k B : k \in R\}$ a funny Rohlin tower.
 - In rank 1, $R = \{0, 1, \dots, h-1\}.$
- Define funny rank 1 analogously.

Shape matters! Rank 1 implies "loosely Bernoulli" (Katok, 1977, Ornstein-Rudolph-Weiss 1982), but funny rank 1 does not (Ferenczi, 1985).

- 2 Finite rank, Z case
- 3 The formal definition

- 5 Directional entropy
- 6 Directional entropy and rank 1
- 7 More. . .

8 Extras

Actions of \mathbb{Z}^d

- Let (X, \mathcal{B}, μ) be a probability space.
- Let $T_1, T_2: X \to X$ be MPZAs that commute: $T_1T_2 = T_2T_1$.
- For $\mathbf{n} = (n_1, n_2) \in \mathbb{Z}^2$, define $\mathsf{MP}\mathbb{Z}^2\mathsf{A}\ T^{\mathbf{n}} = T_1^{n_1}T_2^{n_2}$.
- Similar definition for MP \mathbb{Z}^d A, (i.e., T_1, T_2, \ldots, T_d commute).
- Call a finite $R \subseteq \mathbb{Z}^d$ a shape.

Definition. A shape-*R* Rohlin tower consists of disjoint sets $T^{\mathbf{n}}B, \mathbf{n} \in R$. The partition $\xi = \{E, T^{\mathbf{n}}B : \mathbf{n} \in R\}$ is a Rohlin partition.

DEFINITION

A MP \mathbb{Z}^d A T is rank 1 if there is a sequence ξ_n of shape R_n Rohlin partitions so that $\xi_n \to \varepsilon$.

PROPOSITION $(\overline{\text{R-SAHIN}, 2010})$

Rank 1 (any shape) implies ergodic and simple spectrum.

COROLLARY

Rank 1 (any shape) implies h(T) = 0.

DEFINITION

Suppose T is A MP \mathbb{Z}^d A there are shapes R_n^j and positive measure sets B_n^j , for $j = 1, \ldots, r$ and $n \in \mathbb{N}$, so that

$$\xi_n = \{T^{\mathbf{n}} B_n^j : \mathbf{n} \in R_n^j, j = 1, \dots, n\} \cup \{X \setminus \bigcup_{j=1}^n \bigcup_{\mathbf{n} \in R_n^j} T^{\mathbf{n}} B_n^j\}$$

is a partition, and $\xi_i \to \varepsilon$. We say T is rank $\leq r$ for shapes $\{R_n^1, R_n^2, \dots, R_n^j\}$.

Rank r if rank $\leq r$ and not rank $\leq r - 1$.

PROPOSITION

Rank $\leq r$ implies $M_T \leq r$ and h(T) = 0, but not necessarily ergodic.

Følner sequences

A sequence $\mathcal{R} = \{R_k\}$ of shapes in \mathbb{Z}^2 is a *Følner sequence* (van Hove sequence) if for any $\mathbf{n} \in \mathbb{Z}^2$

$$\lim_{k \to \infty} \frac{|R_k \triangle (R_k + \mathbf{n})|}{|R_k|} = 0,$$

A natural choice is rectangles

$$R_k = [0, \dots, w_k - 1] \times [0, \dots, h_k - 1],$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○ ○

where $w_k, h_k \to \infty$.

Types of rank 1

- Rank 1: no shape restriction.
- Følner rank 1: R_n a Følner sequence.

PROPOSITION (R-SAHIN, 2010)

If Følner, can get $\xi_n \leq \xi_{n+1}$ with the same $\mathcal{R} = \{R_n\}$.

Cutting and stacking works!

- Rectangular rank 1: rectangles
- Geometric restrictions (on rectangular Rank 1):
 - Bounded eccentricity: $1/K \le w_k/h_k \le K$.
 - Subexponential eccentricity: $\log(w_k)/h_k \to 0 \ (w_k \ge h_k)$.

RANK AND DIRECTIONAL ENTROPY

The \mathbb{Z}^2 case

Chacon \mathbb{Z}^2 actions

Weak mixing, not strong mixing, & "MSJ" (R-Park, 1991).

Note. $w_n/h_n = 1$: "bounded" eccentricity.

RUDOLPH'S EXAMPLE

Nn of these blocks in a row.

RUDOLPH'S EXAMPLE (CONTINUED)

A block consisting of all possible $((\Delta w_n)(\Delta h_n))^{N_n}$ rows, in some particular order.

There are
$$\left(((\Delta w_n)(\Delta h_n))^{N_n}\right)!$$
 of these.

RUDOLPH'S EXAMPLE (CONTINUED)

• All
$$\left(((\Delta w_n)(\Delta h_n))^{N_n} \right)!$$

blocks (every possible order)
stacked.

•
$$w_{n+1} = ((\Delta w_n)(\Delta h_n))^{N_n} \times (w_n + \Delta w_n).$$

•
$$h_{n+1} = \begin{pmatrix} ((\Delta w_n)(\Delta h_n))^{N_n} \end{pmatrix}! \times \\ ((\Delta w_n)(\Delta h_n))^{N_n} \times \\ (h_n + \Delta h_n). \end{pmatrix}$$

PROPERTIES OF RUDOLPH'S EXAMPLE

- Requires appropriate choice of $\Delta w_n \to \infty$, $\Delta h_n \to \infty$ and $N_n \to \infty$.
- Side lengths

$$w_{n+1} = ((\Delta w_n)(\Delta h_n))^{N_n} (w_n + \Delta w_n), \text{ and}$$

$$h_{n+1} = \left(((\Delta w_n)(\Delta h_n))^{N_n} \right)! ((\Delta w_n)(\Delta h_n))^{N_n} (h_n + \Delta h_n).$$

Sides satisfy log(h_n)/w_n → ∞. Super exponential eccentricity.

THEOREM (RUDOLPH, 1978)

Horizontal T_1 is Bernoulli shift with arbitrary finite entropy $0 < h(T_1) < \infty$.

- 2 Finite rank, Z case
- 3 The formal definition
- (1) The \mathbb{Z}^2 case
- **5** Directional entropy
- \bigcirc Directional entropy and rank 1
- 7 More. . .

8 Extras

Review *d*-dimensional entropy

Before defining directional entropy, we briefly review the ordinary (*d*-dimensional) entropy of a MP \mathbb{Z}^d A *T*.

- Let ξ be a finite partition. The entropy of ξ is $H(\xi) = -\sum_{A \in \xi} \mu(A) \log \mu(A).$
- Define $\xi_n = \bigvee_{\mathbf{n} \in [0,...,n)^d} T^{-\mathbf{n}} \xi$
- The ξ -entropy of T is

$$h(T,\xi) = \lim_{n \to \infty} \frac{1}{n^d} H(\xi^n).$$

• The entropy of T is given by

$$h(T) = \sup_{\xi} h(T, \xi).$$

This gives usual entropy of transformation T when d = 1.

◆□ → ◆□ → ◆目 → ◆目 → ◆□ → ◆□ →

DIRECTIONAL ENTROPY

PRELIMINARIES FOR DIRECTIONAL ENTROPY

- Subspace $V \subseteq \mathbb{R}^d$, $n = \dim(V) < d$.
- $Q \subseteq V$, $Q' \subseteq V^{\perp}$ unit cubes, and
- S(V,t,m) = (tQ + mQ') (we call it a window.)

DIRECTIONAL ENTROPY (MILNOR, 1986)

Let T be a MP \mathbb{Z}^d A, with ξ a finite partition, and dim(V) = n.

•
$$\xi_{V,t,m} := \bigvee_{\mathbf{n} \in S(V,t,m)} T^{-\mathbf{n}} \xi.$$

•
$$h_n(T, V, \xi, m) := \limsup_{t \to \infty} \frac{1}{t^n} H(\xi_{V,t,m}).$$

•
$$h_n(T, V, \xi) := \sup_{m>0} h_n(T, V, \xi, m)$$

DEFINITION (MILNOR, 1986)

If $1 \leq n < d$, *n*-dimensional directional entropy in direction V is

$$h_n(T,V) = \sup_{\xi} h_n(T,\xi,V).$$

If n = d, then $h_d(T, V) = h(T)$, (where $V = \mathbb{R}^d$).

DIRECTIONAL ENTROPY (\mathbb{Z}^2 CASE)

- $h_1(V,T) < \infty$ for some V, implies $h_2(T) = 0$.
 - Ledrappier's \mathbb{Z}^2 shift T has $h_1(T, V) > 0$ for all V.
 - K. Park (unpublished, c 1987) Chacon MP \mathbb{Z}^2 A T has $h_1(T,V) = 0$ for all V.
- $h_1(T,V) = ||(p,q)||^{-1}h(T^{(q,p)}), V = (p,q)\mathbb{R}, p/q \in \mathbb{Q}.$ • Rudolph rank 1 \mathbb{Z}^2 has $h_1(V,T) > 0$ where $V = \mathbf{e}_1\mathbb{R}$.
- (K. Park, 1999) If $V = \mathbf{v}\mathbb{R}$, $||\mathbf{v}|| = 1$, then $h_1(T, V) = h(F^{t\mathbf{v}})$ for the unit \mathbb{R}^2 suspension F^t of T.
- (K. Park, 1999) The function $h(\mathbf{v}) = h(T, \mathbf{v}\mathbb{R})$, $||\mathbf{v}|| = 1$, is upper semicontinuous, and $\{\mathbf{v} : h(\mathbf{v}) = 0\}$ is G_{δ} .

- **INTRODUCTION**
- 2 Finite rank, Z case
- 3 The formal definition
- (1) The \mathbb{Z}^2 case
- 5 Directional entropy
- 6 Directional entropy and rank 1
- 🕜 More. . .

8 Extras

THEOREMS

The first result has no assumptions beyond rectangular rank 1.

Theorem 1. (R-Sahin, 2010)

Let T be a rectangular rank-1 $MP\mathbb{Z}^dA$. Then there is a 1-dimensional subspace $V \subseteq \mathbb{R}^d$ so that $h_1(T, V) = 0$.

With addition hypotheses on the eccentricity, we can say more.

Theorem 2. (R-SAHIN, 2010)

Let T be a rectangular rank-1 $MP\mathbb{Z}^dA$ with subexponential eccentricity. If $V \subseteq \mathbb{R}^d$ is an n-dimensional subspace, $1 \le n \le d$, then $h_n(T, V) = 0$.

Two lammas

LEMMA (MILNOR, 1988)

The formulas that define directional entropy simplify to

$$h_n(T,V,\xi,m) = \lim_{t
ightarrow\infty} rac{1}{t^n} H(\xi_{V,t,m})$$
 , and

$$h_n(T, V, \xi) = \lim_{m \to \infty} h_n(T, V, \xi, m).$$

THEOREM (BOYLE-LIND, 1997)

If $\xi_k \leq \xi_{k+1}$ and $\xi_k \rightarrow \epsilon$ then

$$h_n(T,V) = \lim_{k \to \infty} h_n(T,V,\xi_k).$$

Directional entropy and rank 1

ZERO-ENTROPY LEMMA

Lemma

Suppose $\xi_k \leq \xi_{k+1}$ and $\xi_k \rightarrow \varepsilon$. If $t_j \rightarrow \infty$, and

$$\lim_{j \to \infty} \frac{1}{(t_j)^n} H((\xi_k)_{V, t_j, m}) = 0,$$

for all k and all m > 0, then $h_n(T, V) = 0$.

We will use this lemma in the proofs of both theorems.

PROOFS (SET-UP)

We do the case d = 2.

Let $V \subseteq \mathbb{R}^2$ be a 1-dimensional subspace (to be specified later for Theorem 1), and let ξ_k be a sequence of shape- R_k Rohlin towers for T.

Assume WOLOG:

• $\xi_k \leq \xi_{k+1}$ (Baxter's Theorem),

• R_k is $w_k \times h_k$ where $h_k \le w_k$ for all k.

Note. There are **no** eccentricity assumptions in Theorem 1.

Let $t_j \to \infty$ be a slowly increasing sequence, to be specified later.

Ultimate Goal. For fixed m, k, show that $H((\xi_k)_{V,t_j,m})/t_j \to 0$.

Directional entropy and rank 1

PROOFS (LABELS)

- Let *j* > *k*.
- Call a level $T^{\mathbf{n}}B_j$ in ξ_j good if $S(V, t_j, m) \subseteq R_j \mathbf{n}$.

- Let $G_j \subseteq \mathbb{Z}^2$ be the set of good levels.
- Let $F_j = (\bigcup_{\mathbf{n} \in G_j} T^{\mathbf{n}} B_j)^c$.
- And, recall $E_j = (\cup_{\mathbf{n} \in R_j} T^{\mathbf{n}} B_j)^c$.

RANK AND DIRECTIONAL ENTROPY

Directional entropy and rank 1

PROOFS (GOOD LEVELS)

PROOFS (NEW PARTITIONS)

- $\xi_j^* := \{T^{\mathbf{n}}B_j : \mathbf{n} \in G_j\} \cup \{F_j\}.$
- $\eta_j := (\xi_k)_{T,t_j,m} \vee \xi_j^*.$
- Note that $(\xi_k)_{T,t_j,m} \leq \eta_j$.
- Thus $H((\xi_k)_{T,t_j,m}) \leq H(\eta_j).$
- So it suffices to show $H(\eta_j)/t_j \to 0$.
- (This will achieve our Ultimate Goal.)

PROOFS (RELATIONS AMONG PARTITIONS)

Key observation: Each of the sets $T^{\mathbf{n}}B_j$ for $\mathbf{n} \in G_j$ belong to the partition η_j .

"Goodness" insures the partition $(\xi_k)_{V,t_j,m}$ is "constant" on levels $T^{\mathbf{n}}B_j$, for $\mathbf{n} \in G_j$. In other words, each $T^{\mathbf{n}}B_j$ is a subset of some $A \in (\xi_k)_{V,t_j,m}$.

$$\begin{aligned} H(\eta_j)/t_j &= -\frac{1}{t_j} \sum_{A \in \eta_j} \mu(A) \log \mu(A) \\ &= -\frac{1}{t_j} \left(\sum_{\mathbf{n} \in G_j} \mu(T^{\mathbf{n}} B_j) \log \mu(T^{\mathbf{n}} B_j) + \sum_{A \in \eta'_j} \mu(A) \log \mu(A) \right) \\ &= -\frac{1}{t_j} \left(|G_j| \mu(B_j) \log \mu(B_j) - \sum_{A \in \eta'_j} \mu(A) \log \mu(A) \right). \end{aligned}$$

PROOFS (LEFT TERM GOAL)

$$\begin{aligned} -\frac{1}{t_j} |G_j| \mu(B_j) \log \mu(B_j) &\leq -\frac{1}{t_j} |R_j| \mu(B_j) \log \mu(B_j) \\ &= -\left(\frac{w_j h_j}{t_j}\right) \left(\frac{1-\epsilon_j}{w_j h_j}\right) \log \left(\frac{1-\epsilon_j}{w_j h_j}\right) \\ &\leq \frac{\log(w_j h_j) - \log(1-\epsilon_j)}{t_j}, \end{aligned}$$

where $\epsilon_j = \mu(E_j)$.

Left Term Goal. Show $\log(w_j h_j)/t_j \rightarrow 0$. (Insubstantial entropy from (uniformly covered) good set)

・ロト ・ 「 ・ モ ト ・ モ ・ う へ () ~

LOCAL ENTROPY LEMMA

THEOREM (SHIELDS, 1996)

Suppose ξ is a partition, $\xi' \subseteq \xi$ and $\beta = \mu(\cup_{A \in \xi'} A)$. Then

$$-\sum_{A\in\xi'}\mu(A)\log\mu(A)\leq\beta\log|\xi'|-\beta\log\beta.$$

◆□ → ◆□ → ◆ = → ◆ = → のへで

Directional entropy and rank 1

PROOFS (RIGHT TERM)

•
$$|\xi'_j| \le (|R_k| + 1)^{|S(V, t_j, m)|}$$
.

• $\log |\xi'_j| = |S(V, t_j, m)| \log(|R_k| + 1) \le 2|S(V, t_j, m)| \log |R_k|.$

•
$$|S(V,t_j,m)| \le 2t_j m.$$

• $\log |R_k| = K.$

Thus

$$\log |\xi_j'| \le 2K t_j m.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

PROOFS (RIGHT TERM GOAL)

Also

$$\beta = \mu(F_j) = |B_j \setminus G_j| \mu(B_j) + \mu(E_j) \le \frac{|B_j \setminus G_j|}{w_j h_j} + \epsilon_j.$$

So by the local entropy lemma

$$-\frac{1}{t_j}\sum_{A\in\xi'}\mu(A)\log\mu(A) \le 2Km\left(\frac{|B_j\backslash G_j|}{w_jh_j} + \epsilon_j\right) - \frac{\beta\log\beta}{t_j}.$$

 $(t_j/t_j \text{ cancels in the first term})$. Since $\beta < 1$, $(\beta \log \beta)/t_j \rightarrow 0$.

Right Term Goal. $\frac{|B_j \setminus G_j|}{w_j h_j} \to 0$. (This is essentially that measure of bad part, $\beta \to 0$.)

PROOF OF THEOREM 1 (LEFT TERM GOAL)

• Assume
$$w_j \ge h_j$$
 for all j .

• Take
$$V = \mathbf{e}_1 \mathbb{R}$$
.

• We want
$$t_j \to \infty$$
 so that $\frac{\log(w_j)}{t_j} \to 0$ and $\frac{t_j}{w_j} \to 0$.

Define
$$t_j = \sqrt{w_j \log w_j}$$
.

 $\frac{\log(w_j h_j)}{t_j} \le \frac{2\log(w_j)}{t_j} \to 0.$ Left Term Goal Achieved.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

PROOF OF THEOREM 1 (RIGHT TERM GOAL)

We have, $|R_j \setminus G_j| \le h_j t_j + m w_j$.

$$\frac{|R_j \setminus G_j|}{w_j h_j} = \frac{t_j}{w_j} + \frac{m}{h_j} \to 0,$$

since $\frac{t_j}{w_j} = \frac{\sqrt{w_j \log w_j}}{w_j} = \sqrt{\frac{\log w_j}{w_j}} \to 0.$ Right Term Goal
Achieved.

Directional entropy and rank 1

PROOF OF THEOREM 2 (LEFT TERM GOAL)

• Take $V \subseteq \mathbb{R}^2$, $\dim(V) = 1$.

• Assume $w_j \ge h_j$ and define $t_j = \sqrt{h_j \log w_j}$.

•
$$\frac{\log w_j}{t_j} = \frac{\log w_j}{\sqrt{w_j \log(w_j)}} = \sqrt{\frac{\log w_j}{w_j}} \to 0$$

• $\frac{t_j}{h_j} = \frac{\sqrt{h_j \log w_j}}{h_j} = \sqrt{\frac{\log w_j}{h_j}} \to 0$
(by subexponential eccentricity).

$$\frac{\log(w_j h_j)}{t_j} \le \frac{2\log(w_j)}{t_j} \to 0.$$

J

Left Term Goal achieved.

PROOF OF THEOREM 2 (RIGHT TERM GOAL)

We have, $|R_j \setminus G_j| \le h_j(t_j + m) \cos \theta + w_j(t_j + m) \sin \theta$.

$$\frac{|R_j \setminus G_j|}{w_j h_j} = \frac{t_j + m}{w_j} \cos \theta + \frac{t_j + m}{h_j} \sin \theta \to 0,$$

since $\frac{t_j}{h_j} \to 0$, (and $\frac{t_j}{w_j}, \frac{m}{h_j}, \frac{m}{w_j} \to 0.$) Right Term Goal achieved.

- 1 Introduction
- 2 Finite rank, Z case
- 3 The formal definition
- (1) The \mathbb{Z}^2 case
- O DIRECTIONAL ENTROPY
- 6 Directional entropy and rank 1

Rank r

Here is what we can prove in rank r. For simplicity, we discuss only the case T is an ergodic rectangular rank $\leq 2 \text{ MP}\mathbb{Z}^2 A$. Let R_n^1 be $w_n^1 \times h_n^1$ and R_n^2 be $w_n^2 \times h_n^2$.

Theorem A. If $w_n^1 \ge h_n^1$ and $w_n^2 \ge h_n^2$ for infinitely many n then there exists V so that $h_1(T, V) = 0$ (i.e., $h(T_1) = 0$).

Theorem B. Under the same hypotheses as above, if $\log(w_n^1)/h_n^1 \to 0$, and $\log(w_n^2)/h_n^2 \to 0$, then $h_1(T,V) = 0$ for all 1-dimensional V.

Theorem C. If $w_n^1 \ge h_n^1$ and $w_n^2 \le h_n^2$ for all n, and $\log(w_n^1)/h_n^1 \to 0$, and $\log(h_n^2)/w_n^2 \to 0$, then $h_1(T,V) = 0$ for all 1-dimensional V.

EXAMPLES FROM APERIODIC ORDER

- As mentioned before, a substitution on r letters has rank ≤ r. This is also true for a substitution tiling with r distinct prototiles. The eccentricity is bounded. This implies a substitution tiling system has all directional entropies zero.
- Another way to prove this is to note that the complexity of a substitution tiling satisfies $c(n) \leq Kn^e$ (where e = d in the self similar case).
- A. Julien (2009) proved $c(n) \leq Kn^e$ for a cut and project tiling where the acceptance domain is polyhedral and "almost canonical". This implies all directional entropies zero.
- More generally a model set with a topologically and measure theoretically regular acceptance domain has discrete spectrum, so is rank 1. This implies all directional entropies zero.

OTHER EXAMPLES

- Ledrappier's shift has $c(n) = Ke^{2n}$ (exponential complexity in smaller dimension). It has positive directional entropy in every direction.
- Radin showed that any uniquely ergodic \mathbb{Z}^2 SFT has $c(n) \leq Ke^{\ell n}$. Can it have positive directional entropy.
- Not for the examples that come from substitutions and model sets!

LOOSELY BERNOULLI

Say MP $\mathbb{Z}^d A T$ with $h_d(T) = 0$ is entropy zero loosely Bernoulli (LB) if a suspension of T (to a MP $\mathbb{R}^d A$) can be time changed to a suspension of some R discrete spectrum (action by rotations on a compact group).

THEOREM (JOHNSON-SAHIN, 1998)

A rectangular rank 1 $MP\mathbb{Z}^2AT$ with bounded eccentricity is loosely Bernoulli.

- This T can be chosen to have T_1 be non LB.
- Johnson-Sahin (1998) prove that the same result holds for rank r > 1 provided towers have uniformly bounded eccentricity.

More...

LOOSELY BERNOULLI

THEOREM (R-SAHIN 2011?)

If T is a loosely Bernoulli $MP\mathbb{Z}^dA$ with $h_d(T) = 0$ then $h_n(T, V) = 0$ for all V.

Implications:

• Ledrappier's shift is not loosely LB (a "folk theorem").

• Rudolph's rank 1 is not LB.

- **1** INTRODUCTION
- 2 Finite rank, Z case
- 3 The formal definition
- (1) The \mathbb{Z}^2 case
- O DIRECTIONAL ENTROPY
- 6 Directional entropy and rank 1
- 7 More. .

Extras

\mathbb{Z}^d Rohlin Lemma

- Say the Rohlin lemma holds for a shape $R \subseteq \mathbb{Z}^d$ if for any ergodic \mathbb{Z}^d action T, and $\epsilon > 0$, there exists $B \in \mathcal{B}$ so that X is partitioned by $\xi = \{E, T^{\mathbf{n}}B : \mathbf{n} \in R\}$ and $\mu(\cup_{\mathbf{n} \in R}T^{\mathbf{n}}B) > 1 \epsilon$.
- A shape R tiles \mathbb{Z}^d if there exists $C \subseteq \mathbb{Z}^d$ so that $\{T^{\mathbf{n}}R : \mathbf{n} \in C\}$ is a partition of \mathbb{Z}^n .

THEOREM (ORNSTEIN-WEISS, 1980)

A Rohlin lemma holds for a shape R if and only if R tiles \mathbb{Z}^d .