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SRS tiles, r = (1/2,−1/2)
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SRS tiles, r = (9/10,−11/20)



SRS tiles, r = (−2/3)
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SRS tiles, r = (1/β, β − 1), β3 = β2 + β + 1



SRS tiles, r = (1/β, β − 1), β3 = β2 + β + 1



SRS tiles
The shift radix system (SRS) associated with r ∈ Rd is the
dynamical system (Zd , τr) defined by

τr : Zd → Zd , x = (x1, x2, . . . , xd) 7→ (x2, . . . , xd ,−brxc)

(cf. Akiyama–Borbély–Brunotte–Pethő–Thuswaldner 2005).

τr(x) = Mrx+


0
...
0
{rx}

, M(r0,...,rd−1) =


0 1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
−r0 −r1 · · · −rd−2 −rd−1


Assume %(Mr) < 1. For x ∈ Zd , the set

Tr(x) = lim
n→∞

Mn
r τ
−n
r (x)

(limit with respect to the Hausdorff metric) is called SRS tile.
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Basic properties of SRS tiles

Tr(x) is compact, {Tr(x) | x ∈ Zd} is locally finite,⋃
x∈Zd

Tr(x) = Rd .

M−1
r Tr(x) =

⋃
y∈τ−1

r (x)

Tr(y).

Tr(x) is not necessarily the closure of its interior. (Example:
Tr(x) = {0} for r =

(
9

10 ,−11
20

)
, x = (1,−1), since τ−5

r (x) = {x}.)

Conjecture

The boundary of Tr(x) has zero Lebesgue measure.
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Periodic sequences and finiteness property

Each sequence (τnr (x))n≥0 is eventually periodic.

(Zd , τr) satisfies the finiteness property if

∀ x ∈ Zd ∃ n ∈ N such that τnr (x) = 0.

0 ∈ Tr(x) iff (τnr (x))n≥0 is purely periodic.

(Zd , τr) has the finiteness property iff 0 is an
exclusive point of Tr(0), i.e., 0 6∈ ⋃x6=0 Tr(x).

Characterization of SRS with finiteness property
is complicated, see figure on the right for r ∈ R2.
(Akiyama–Brunotte–Pethő–Thuswaldner 2006,
Surer 2007)
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Weak tilings

Lemma
Let t ∈ Tr(x), then t = limn→∞Mn

r zn with τnr (zn) = x.
t is an exclusive point of Tr(x), i.e., t 6∈ ⋃y 6=0 Tr(y), iff

∃ n : τnr (zn + y) = x ∀ y ∈ Zd with ‖y‖ ≤ 2R,

where R =
∑∞

n=0

∥∥Mn
r (0, . . . , 0, 1)t

∥∥ <∞.

Theorem
Assume that one of the following conditions hold.

I r ∈ Qd ,

I (X − β)(X d + rd−1X d−1 + · · ·+ r0) ∈ Z[X ] for some β > 1,

I r0, . . . , rd−1 are algebraically independent over Q.

Then {Tr(x) | x ∈ Zd} forms a weak tiling of Rd (i.e., any two
distinct tiles have disjoint interiors) iff there exists an exclusive
point, in particular if (Zd , τr) satisfies the finiteness property.



Weak m-tilings

{Tr(x) | x ∈ Zd} forms a weak m-tiling of Rd if every point of Rd

is contained in at least m different tiles Tr(x) and no point is in the
interior of m + 1 different tiles Tr(x). (m = 1: weak tiling)

Theorem
Assume that one of the following conditions hold.

I r ∈ Qd ,

I (X − β)(X d + rd−1X d−1 + · · ·+ r0) ∈ Z[X ] for some β > 1,

I r0, . . . , rd−1 are algebraically independent over Q.

Then {Tr(x) | x ∈ Zd} forms a weak m-tiling of Rd for some m ≥ 1.

Conjecture

For any r ∈ Rd (with %(Mr) < 1), {Tr(x) | x ∈ Zd} forms a weak
m-tiling of Rd for some m ≥ 1.



Rational bases

Akiyama–Frougny–Sakarovitch 2008 considered expansions of
positive integers in rational bases p/q, with coprime integers
p > q ≥ 1, of the form

N =
1

q

∞∑
n=0

bn

(p

q

)n
(bn ∈ N = {0, . . . , p − 1}).

These number systems correspond to SRS with r = (−q/p).

Theorem
The tiling {T−2/3(N) | N ∈ Z} consists of intervals with infinitely
many different lengths.



Expanding algebraic numbers and CNS
Let β be an expanding algebraic number (i.e., all its Galois
conjugates lie outside the unit circle) with minimal polynomial
adX d + · · ·+ a1X + a0 ∈ Z[X ], a0 ≥ 2, and N = {0, . . . , a0 − 1}.
If, for each x ∈ Z[β],

x = c0 + c1β + . . .+ c`β
` (ci ∈ N ),

then we call (β,N ) a canonical number system (CNS).

Let Λβ = Z[β] ∩ β−1Z[β−1]. Λβ is a Z-module generated by
W0 = ad and Wk = βWk−1 + ad−k , 1 ≤ k < d .
If β is an algebraic integer, i.e., |ad | = 1, then Λβ = Z[β].

For every x ∈ Z[β], there exist unique c0 ∈ N , y ∈ Z[β] such that

x = c0 + βy .

If x ∈ Λβ, then y ∈ Λβ. Let x =
∑d−1

k=0 xkWk , x = (x0, . . . , xd−1),

y =
∑d−1

k=0 ykWk , y = (y0, . . . , yd−1), then

y = τr(x) with r =
(
ad
a0
,
ad−1

a0
, . . . , a1

a0

)
.

(β,N ) is a CNS iff (Zd , τr) has the finiteness property.
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Tiles associated with expanding algebraic numbers
For x ∈ Λβ = Z[β] ∩ β−1Z[β−1], x =

∑d−1
k=0 pkβ

k , define the tile

Gβ(x) = (p0, . . . , pd−1)t

+

{ ∞∑
i=1

B−i (ci , 0, . . . , 0)t
∣∣∣ ci ∈ N , βnx +

n∑
i=1

ciβ
n−i ∈ Λβ ∀n ≥ 0

}
,

where B is a companion matrix of X d +
ad−1

ad
X d−1 + · · ·+ a0

ad
.

If |ad | = 1, then Λβ = Z[β], thus

Gβ(x) = (p0, . . . , pd−1)t +

{ ∞∑
i=1

B−i (ci , 0, . . . , 0)t
∣∣∣ ci ∈ N

}
.

The tiles are only self affine if |ad | = 1.

Theorem
For any x ∈ Λβ, we have

Gβ(x) = VTr(x),

where x =
∑d−1

k=0 xkWk , x = (x0, . . . , xd−1), and V is the matrix
realizing the base change from {W0, . . . ,Wd−1} to {β0, . . . , βd−1}.
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SRS tiles associated with CNS
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Relation with p-adic tiles
Let O bet the ring of integers of Q(β), write βO = a

b with ideals
a, b in O such that (a, b) = O, and set

Kβ = Rd ×∏p|b Kp,

where Kp is the completion of Q(β) with respect to | · |p. Let

Φβ : Q(β)→ Kβ, x =
d−1∑
k=0

pkβ
k 7→ (p0, . . . , pd−1, x , . . . , x),

Fβ =

{ ∞∑
i=1

ci Φβ(β−i )
∣∣∣ ci ∈ N

}
,

G′β(x) = Φβ(x) +

{ ∞∑
i=1

ci Φβ(β−i )
∣∣∣ ci ∈ N , βnx +

n∑
i=1

ciβ
n−i ∈ Λβ ∀n ≥ 0

}
.

Theorem
For any x ∈ Λβ, we have G′β(x) = Gβ(x)×∏p|b{0}, and

Fβ =
⋃

x∈Λβ

(
G′β(x)− Φβ(x)

)
.



SRS tiles, r = (−2/3), and Fβ + Φβ(Z[β]), β = 3/2
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Tiling theorem

Theorem (St–Thuswaldner)

{Φβ(x) + Fβ | x ∈ Z[β]} forms a tiling of Kβ.

Corollary

Let r =
(
ad
a0
,
ad−1

a0
, . . . , a1

a0

)
∈ Qd be such that %(Mr) < 1 and

adX d + · · ·+ a1X + a0 ∈ Z[X ] is irreducible.
Then {Tr(x) | x ∈ Zd} contains an exclusive point,
thus it forms a weak tiling of Rd .

Therefore, the set of r ∈ Rd such that {Tr(x) | x ∈ Zd} forms
a weak tiling of Rd is dense in {r ∈ Rd | %(Mr) < 1}.



Pisot numbers and β-transformation
A Pisot number is an algebraic integer β > 1 with |βj | < 1 for
every conjugate βj of β. Write the minimal polynomial of β as

(X − β)(X d + rd−1X d−1 + · · ·+ r0X 0) ∈ Z[X ],

and let r = (r0, . . . , rd−1). Then %(Mr) < 1.

The β-transformation is defined by

Tβ : [0, 1)→ [0, 1), x 7→ {βx} = βx − bβxc.

We have
Tβ({rx}) = {rτr(x)},

and the map Zd → Z[β] ∩ [0, 1), x 7→ {rx} is a bijection.
Hence, the restriction of Tβ to Z[β] ∩ [0, 1) is conjugate to τr.

(Zd , τr) has the finiteness property iff β has the property

(F) : ∀x ∈ Z[β−1] ∩ [0, 1) ∃n ≥ 0 such thatT n
β (x) = 0.
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(Integral) β-tiles

Let β0 = β, β1, . . . , βd be the Galois conjugates of β,
β1, . . . , βr ∈ R, βr+1 = βr+s+1, . . . , βr+s = βr+2s ∈ C, d = r +2s,
x (j) be the corresponding conjugate of x ∈ Q(β), 1 ≤ j ≤ d ,

Φβ : Q(β)→ Rd , x 7→(
x (1), . . . , x (r),<

(
x (r+1)

)
,=
(
x (r+1)

)
, . . . ,<

(
x (r+s)

)
,=
(
x (r+s)

))
.

For x ∈ Z[β] ∩ [0, 1), the β-tile is the (compact) set

Rβ(x) = lim
n→∞

Φβ

(
βnT−nβ (x)

)

.

(cf. Thurston 1989, Akiyama 1999).
We have t ∈ Rβ(x) if and only if there exist ci ∈ Z with

t = Φβ(x) +
∞∑
i=0

Φβ(βici ),
cn−1

β
+ · · ·+ c0

βn
+

x

βn
∈ [0, 1) ∀n ≥ 0.
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(
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(
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For x ∈ Z[β] ∩ [0, 1), the integral β-tile is the (compact) set

Sβ(x) = lim
n→∞

Φβ

(
βn
(
T−nβ (x)∩Z[β]

))
.

(cf. Thurston 1989, Akiyama 1999).

We have t ∈ Sβ(x) if and only if there exist ci ∈ Z with

t = Φβ(x) +
∞∑
i=0

Φβ(βici ),
cn−1

β
+ · · ·+ c0

βn
+

x

βn
∈ [0, 1)∩Z[β] ∀n.



Relation between SRS tiles and integral β-tiles

Theorem
Let X d+rd−1X

d−1+···+r0=(X−βj )(X d−1+q
(j)
d−2X

d−2+···+q
(j)
0 ), 1≤j≤d,

U =



q
(1)
0 q

(j)
1 · · · q

(1)
d−2 1

...
...

...
...

q
(r)
0 q

(j)
1 · · · q

(r)
d−2 1

<(q(r+1)
0 ) <(q(r+1)

1 ) · · · <(q(r+1)
d−2 ) 1

=(q(r+1)
0 ) =(q(r+1)

1 ) · · · =(q(r+1)
d−2 ) 0

...
...

...
...

<(q(r+s)
0 ) <(q(r+s)

1 ) · · · <(q(r+s)
d−2 ) 1

=(q(r+s)
0 ) =(q(r+s)

1 ) · · · =(q(r+s)
d−2 ) 0


∈ Rd×d ,

Id be the identity matrix. For every x ∈ Zd , we have

Sβ({rx}) = U(Mr − βId)Tr(x).



SRS tiles associated with Pisot numbers

β3 = 3β2 − 1, r = (−1/β, β − 3) β3 = 2β2 + 2β + 2, r = (2/β, β − 2)

The integral β-tiles are given by Sβ({rx}) = U(Mr − βId)Tr(x),
but the “centers” of the integral β-tiles are given by
Φβ({rx}) = U(τr(x)− βx) = U(Mr − βId)x + U(0, . . . , 0, {rx})t .



Properties of β-tiles

If β is a Pisot unit (β−1 ∈ Z[β]), then

I Rβ(x) = Sβ(x) for every x ∈ Z[β] ∩ [0, 1),

I we have only finitely many tiles up to translation,

I the boundary of each tile has zero Lebesgure measure,

I each tile is the closure of its interior,

I {Sβ(x) | x ∈ Z[β] ∩ [0, 1)} forms a multiple tiling of Rd ,

I {Sβ(x) | x ∈ Z[β] ∩ [0, 1)} forms a tiling if (F) holds,

I {Sβ(x) | x ∈ Z[β] ∩ [0, 1)} forms a tiling iff (W) holds:
for every x ∈ Z[β] ∩ [0, 1) and every ε > 0, there exists some
y ∈ [0, ε) with finite β-expansion such that x + y has finite
β-expansion,

see Akiyama 1999, 2002, Berthé–Siegel 2005.



Pisot conjecture

Conjecture

If β is a Pisot unit of degree d + 1, then{
Rβ(x) | x ∈ Z[β] ∩ [0, 1)

}
forms a tiling of Rd .

Proved for several classes of Pisot units.
(Frougny–Solomyak 1992, Hollander 1996,
Akiyama–Rao–St 2004, Barge–Kwapisz 2006)

Conjecture

If %(Mr) < 1, then
{
Tr(x) | x ∈ Zd

}
forms a weak tiling of Rd .

Proved for a dense set of r, see above.



α-Shift Radix Systems
For r = (r0, . . . , rd−1) ∈ Rd , the α-SRS (Zd , τr,α) is defined by

τr,α : Zd → Zd , x = (x0, . . . , xd−1) 7→ (x1, . . . , xd−1,−brx + αc).
For every x ∈ Zd , the α-SRS tile is defined by

Tr,α(x) = lim
n→∞

Mn
r τ
−n
r,α (x).

A 1/2-SRS is also called symmetric SRS.

Theorem (St–Thuswaldner)

Let r =
(
ad
a0
,
ad−1

a0
, . . . , a1

a0

)
∈ Qd be such that %(Mr) < 1 and

adX d + · · ·+ a1X + a0 ∈ Z[X ] is irreducible.
Then {Tr,1/2(x) | x ∈ Zd} forms a weak tiling of Rd , and these r

are dense in {r ∈ Rd | %(Mr) < 1}.
Theorem (Kalle–St)

Let β be the smallest Pisot number (β3 = β + 1), r = (1/β, β),
or the Tribonacci number (β3 = β2 + β + 1), r = (1/β, β − 1),
then {Tr,1/2(x) | x ∈ Z2} forms a 2-tiling of R2.



Double tiling for a symmetric SRS

β3 = β2 + β + 1, r = (1/β, β − 1), α = 1/2



Tiling for a symmetric SRS

β3 = 2β2 − β + 1, r = (1/β, β − 2), α = 1/2


