Tilings associated with shift radix systems

Wolfgang Steiner

(joint work with V. Berthé, A. Siegel, P. Surer and J. Thuswaldner)

LIAFA, CNRS, Université Paris Diderot - Paris 7

KIAS, September 30, 2010

SRS tiles, $\mathbf{r} = (1/2, -1/2)$

SRS tiles, $\mathbf{r} = (9/10, -11/20)$

SRS tiles, ${\bf r} = (-2/3)$

SRS tiles, $\mathbf{r} = (-2/3)$

SRS tiles, $\mathbf{r}=(1/\beta,\beta-1)$, $\beta^3=\beta^2+\beta+1$

SRS tiles, $\mathbf{r}=(1/\beta,\beta-1)$, $\beta^3=\beta^2+\beta+1$

SRS tiles

The shift radix system (SRS) associated with $\mathbf{r} \in \mathbb{R}^d$ is the dynamical system $(\mathbb{Z}^d, \tau_\mathbf{r})$ defined by

$$au_{\mathbf{r}}: \ \mathbb{Z}^d o \mathbb{Z}^d, \ \mathbf{x} = (x_1, x_2, \dots, x_d) \mapsto (x_2, \dots, x_d, -\lfloor \mathbf{r} \mathbf{x} \rfloor)$$

(cf. Akiyama–Borbély–Brunotte–Pethő–Thuswaldner 2005).

SRS tiles

The shift radix system (SRS) associated with $\mathbf{r} \in \mathbb{R}^d$ is the dynamical system $(\mathbb{Z}^d, \tau_{\mathbf{r}})$ defined by

$$au_{\mathbf{r}}: \ \mathbb{Z}^d o \mathbb{Z}^d, \ \mathbf{x} = (x_1, x_2, \dots, x_d) \mapsto (x_2, \dots, x_d, -\lfloor \mathbf{r} \mathbf{x} \rfloor)$$

(cf. Akiyama–Borbély–Brunotte–Pethő–Thuswaldner 2005).

$$\tau_{\mathbf{r}}(\mathbf{x}) = M_{\mathbf{r}}\mathbf{x} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \{\mathbf{r}\mathbf{x}\} \end{pmatrix}, \ M_{(r_0, \dots, r_{d-1})} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -r_0 & -r_1 & \cdots & -r_{d-2} & -r_{d-1} \end{pmatrix}$$

SRS tiles

The shift radix system (SRS) associated with $\mathbf{r} \in \mathbb{R}^d$ is the dynamical system (\mathbb{Z}^d, τ_r) defined by

$$au_{\mathbf{r}}: \ \mathbb{Z}^d o \mathbb{Z}^d, \ \mathbf{x} = (x_1, x_2, \dots, x_d) \mapsto (x_2, \dots, x_d, -\lfloor \mathbf{r} \mathbf{x} \rfloor)$$

(cf. Akiyama–Borbély–Brunotte–Pethő–Thuswaldner 2005).

$$\tau_{\mathbf{r}}(\mathbf{x}) = M_{\mathbf{r}}\mathbf{x} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \{\mathbf{r}\mathbf{x}\} \end{pmatrix}, \ M_{(r_0, \dots, r_{d-1})} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -r_0 & -r_1 & \cdots & -r_{d-2} & -r_{d-1} \end{pmatrix}$$

Assume $\varrho(M_{\mathbf{r}}) < 1$. For $\mathbf{x} \in \mathbb{Z}^d$, the set

$$\mathcal{T}_{\mathbf{r}}(\mathbf{x}) = \lim_{n \to \infty} M_{\mathbf{r}}^n \tau_{\mathbf{r}}^{-n}(\mathbf{x})$$

(limit with respect to the Hausdorff metric) is called SRS tile.

Basic properties of SRS tiles

 $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is compact, $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x})\mid \mathbf{x}\in\mathbb{Z}^d\}$ is locally finite, $\bigcup~\mathcal{T}_{\mathbf{r}}(\mathbf{x})=\mathbb{R}^d.$

Basic properties of SRS tiles

 $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is compact, $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ is locally finite,

$$igcup_{\mathbf{x}\in\mathbb{Z}^d}\mathcal{T}_{\mathbf{r}}(\mathbf{x})=\mathbb{R}^d.$$

$$\textit{M}_{r}^{-1}\mathcal{T}_{r}(x) = \bigcup_{y \in \tau_{r}^{-1}(x)} \mathcal{T}_{r}(y).$$

Basic properties of SRS tiles

 $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is compact, $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ is locally finite,

$$igcup_{\mathbf{x}\in\mathbb{Z}^d}\mathcal{T}_{\mathbf{r}}(\mathbf{x})=\mathbb{R}^d.$$

$$M_{\mathbf{r}}^{-1}\mathcal{T}_{\mathbf{r}}(\mathbf{x}) = \bigcup_{\mathbf{y} \in \tau_{\mathbf{r}}^{-1}(\mathbf{x})} \mathcal{T}_{\mathbf{r}}(\mathbf{y}).$$

 $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is not necessarily the closure of its interior. (Example: $\mathcal{T}_{\mathbf{r}}(\mathbf{x}) = \{\mathbf{0}\}\$ for $\mathbf{r} = (\frac{9}{10}, -\frac{11}{20})$, $\mathbf{x} = (1, -1)$, since $\tau_{\mathbf{r}}^{-5}(\mathbf{x}) = \{\mathbf{x}\}$.)

Conjecture

The boundary of $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ has zero Lebesgue measure.

Periodic sequences and finiteness property

Each sequence $(\tau_{\mathbf{r}}^{n}(\mathbf{x}))_{n\geq 0}$ is eventually periodic. $(\mathbb{Z}^{d}, \tau_{\mathbf{r}})$ satisfies the finiteness property if $\forall \mathbf{x} \in \mathbb{Z}^{d} \ \exists \ n \in \mathbb{N} \ \text{such that} \ \tau_{\mathbf{r}}^{n}(\mathbf{x}) = \mathbf{0}.$

Periodic sequences and finiteness property

Each sequence $(\tau_{\mathbf{r}}^{n}(\mathbf{x}))_{n\geq 0}$ is eventually periodic. $(\mathbb{Z}^{d}, \tau_{\mathbf{r}})$ satisfies the finiteness property if

$$\forall \mathbf{x} \in \mathbb{Z}^d \ \exists \ n \in \mathbb{N} \ \text{such that} \ \tau^n_{\mathbf{r}}(\mathbf{x}) = \mathbf{0}.$$

 $\mathbf{0} \in \mathcal{T}_{\mathbf{r}}(\mathbf{x})$ iff $(au_{\mathbf{r}}^n(\mathbf{x}))_{n \geq 0}$ is purely periodic.

 (\mathbb{Z}^d, τ_r) has the finiteness property iff $\mathbf{0}$ is an exclusive point of $\mathcal{T}_r(\mathbf{0})$, i.e., $\mathbf{0} \not\in \bigcup_{\mathbf{x} \neq \mathbf{0}} \mathcal{T}_r(\mathbf{x})$.

Periodic sequences and finiteness property

Each sequence $(\tau_{\mathbf{r}}^{n}(\mathbf{x}))_{n\geq 0}$ is eventually periodic. $(\mathbb{Z}^{d}, \tau_{\mathbf{r}})$ satisfies the finiteness property if

$$\forall \, \mathbf{x} \in \mathbb{Z}^d \,\, \exists \, n \in \mathbb{N} \,\, \mathrm{such \,\, that} \,\, au_{\mathbf{r}}^n(\mathbf{x}) = \mathbf{0}.$$

 $\mathbf{0} \in \mathcal{T}_{\mathbf{r}}(\mathbf{x})$ iff $(\tau_{\mathbf{r}}^{n}(\mathbf{x}))_{n \geq 0}$ is purely periodic. $(\mathbb{Z}^{d}, \tau_{\mathbf{r}})$ has the finiteness property iff $\mathbf{0}$ is an

exclusive point of $\mathcal{T}_r(\mathbf{0})$, i.e., $\mathbf{0} \notin \bigcup_{\mathbf{x} \neq \mathbf{0}} \mathcal{T}_r(\mathbf{x})$.

Characterization of SRS with finiteness property is complicated, see figure on the right for $\mathbf{r} \in \mathbb{R}^2$. (Akiyama–Brunotte–Pethő–Thuswaldner 2006, Surer 2007)

Weak tilings

Lemma

Let $\mathbf{t} \in \mathcal{T}_{\mathbf{r}}(\mathbf{x})$, then $\mathbf{t} = \lim_{n \to \infty} M_{\mathbf{r}}^{n} \mathbf{z}_{n}$ with $\tau_{\mathbf{r}}^{n}(\mathbf{z}_{n}) = \mathbf{x}$. \mathbf{t} is an exclusive point of $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$, i.e., $\mathbf{t} \notin \bigcup_{\mathbf{y} \neq \mathbf{0}} \mathcal{T}_{\mathbf{r}}(\mathbf{y})$, iff

$$\exists n: \ \tau_{\mathbf{r}}^{n}(\mathbf{z}_{n}+\mathbf{y})=\mathbf{x} \quad \forall \, \mathbf{y} \in \mathbb{Z}^{d} \ \textit{with} \ \|\mathbf{y}\| \leq 2R,$$

where
$$R = \sum_{n=0}^{\infty} ||M_{\mathbf{r}}^{n}(0,\ldots,0,1)^{t}|| < \infty$$
.

Theorem

Assume that one of the following conditions hold.

- $ightharpoonup \mathbf{r} \in \mathbb{Q}^d$,
- ▶ $(X \beta)(X^d + r_{d-1}X^{d-1} + \dots + r_0) \in \mathbb{Z}[X]$ for some $\beta > 1$,
- $ightharpoonup r_0, \ldots, r_{d-1}$ are algebraically independent over \mathbb{Q} .

Then $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ forms a weak tiling of \mathbb{R}^d (i.e., any two distinct tiles have disjoint interiors) iff there exists an exclusive point, in particular if $(\mathbb{Z}^d, \tau_{\mathbf{r}})$ satisfies the finiteness property.

Weak *m*-tilings

 $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ forms a weak m-tiling of \mathbb{R}^d if every point of \mathbb{R}^d is contained in at least m different tiles $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ and no point is in the interior of m+1 different tiles $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$. (m=1): weak tiling

Theorem

Assume that one of the following conditions hold.

- $ightharpoonup \mathbf{r} \in \mathbb{Q}^d$,
- ▶ $(X \beta)(X^d + r_{d-1}X^{d-1} + \dots + r_0) \in \mathbb{Z}[X]$ for some $\beta > 1$,
- $ightharpoonup r_0, \ldots, r_{d-1}$ are algebraically independent over \mathbb{Q} .

Then $\{\mathcal{T}_r(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ forms a weak m-tiling of \mathbb{R}^d for some $m \geq 1$.

Conjecture

For any $\mathbf{r} \in \mathbb{R}^d$ (with $\varrho(M_{\mathbf{r}}) < 1$), $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ forms a weak m-tiling of \mathbb{R}^d for some $m \geq 1$.

Rational bases

Akiyama–Frougny–Sakarovitch 2008 considered expansions of positive integers in rational bases p/q, with coprime integers $p>q\geq 1$, of the form

$$N=rac{1}{q}\sum_{n=0}^{\infty}b_n\Big(rac{p}{q}\Big)^n \qquad (b_n\in\mathcal{N}=\{0,\ldots,p-1\}).$$

These number systems correspond to SRS with $\mathbf{r} = (-q/p)$.

Theorem

The tiling $\{\mathcal{T}_{-2/3}(N) \mid N \in \mathbb{Z}\}$ consists of intervals with infinitely many different lengths.

Expanding algebraic numbers and CNS

Let β be an expanding algebraic number (i.e., all its Galois conjugates lie outside the unit circle) with minimal polynomial $a_d X^d + \cdots + a_1 X + a_0 \in \mathbb{Z}[X], \ a_0 \geq 2$, and $\mathcal{N} = \{0, \ldots, a_0 - 1\}$. If, for each $x \in \mathbb{Z}[\beta]$,

$$x = c_0 + c_1 \beta + \ldots + c_\ell \beta^\ell$$
 $(c_i \in \mathcal{N}),$

then we call (β, \mathcal{N}) a canonical number system (CNS).

Expanding algebraic numbers and CNS

Let β be an expanding algebraic number (i.e., all its Galois conjugates lie outside the unit circle) with minimal polynomial $a_d X^d + \cdots + a_1 X + a_0 \in \mathbb{Z}[X], \ a_0 \geq 2, \ \text{and} \ \mathcal{N} = \{0, \dots, a_0 - 1\}.$ If, for each $x \in \mathbb{Z}[\beta]$,

$$x = c_0 + c_1 \beta + \ldots + c_\ell \beta^\ell$$
 $(c_i \in \mathcal{N}),$

then we call (β, \mathcal{N}) a canonical number system (CNS).

Let $\Lambda_{\beta} = \mathbb{Z}[\beta] \cap \beta^{-1}\mathbb{Z}[\beta^{-1}]$. Λ_{β} is a \mathbb{Z} -module generated by $W_0 = a_d$ and $W_k = \beta W_{k-1} + a_{d-k}$, $1 \le k < d$. If β is an algebraic integer, i.e., $|a_d| = 1$, then $\Lambda_{\beta} = \mathbb{Z}[\beta]$.

Expanding algebraic numbers and CNS

Let β be an expanding algebraic number (i.e., all its Galois conjugates lie outside the unit circle) with minimal polynomial $a_d X^d + \cdots + a_1 X + a_0 \in \mathbb{Z}[X], \ a_0 \geq 2, \ \text{and} \ \mathcal{N} = \{0, \dots, a_0 - 1\}.$ If, for each $x \in \mathbb{Z}[\beta]$,

$$x = c_0 + c_1 \beta + \ldots + c_\ell \beta^\ell$$
 $(c_i \in \mathcal{N}),$

then we call (β, \mathcal{N}) a canonical number system (CNS).

Let $\Lambda_{\beta} = \mathbb{Z}[\beta] \cap \beta^{-1}\mathbb{Z}[\beta^{-1}]$. Λ_{β} is a \mathbb{Z} -module generated by

 $W_0 = a_d$ and $W_k = \beta W_{k-1} + a_{d-k}$, $1 \le k \le d$.

If β is an algebraic integer, i.e., $|a_d| = 1$, then $\Lambda_{\beta} = \mathbb{Z}[\beta]$.

For every $x \in \mathbb{Z}[\beta]$, there exist unique $c_0 \in \mathcal{N}$, $y \in \mathbb{Z}[\beta]$ such that

$$x=c_0+\beta y.$$

If $x \in \Lambda_{\beta}$, then $y \in \Lambda_{\beta}$. Let $x = \sum_{k=0}^{d-1} x_k W_k$, $\mathbf{x} = (x_0, \dots, x_{d-1})$, $v = \sum_{k=0}^{d-1} y_k W_k$, $\mathbf{y} = (y_0, \dots, y_{d-1})$, then

$$\mathbf{y} = au_{\mathbf{r}}(\mathbf{x})$$
 with $\mathbf{r} = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \dots, \frac{a_1}{a_0}\right)$.

 (eta,\mathcal{N}) is a CNS iff $(\mathbb{Z}^d, au_{\mathbf{r}})$ has the finiteness property.

Tiles associated with expanding algebraic numbers

For
$$x \in \Lambda_{\beta} = \mathbb{Z}[\beta] \cap \beta^{-1}\mathbb{Z}[\beta^{-1}]$$
, $x = \sum_{k=0}^{d-1} p_k \beta^k$, define the tile
$$\mathcal{G}_{\beta}(x) = (p_0, \dots, p_{d-1})^t + \bigg\{ \sum_{i=1}^{\infty} B^{-i}(c_i, 0, \dots, 0)^t \ \bigg| \ c_i \in \mathcal{N}, \beta^n x + \sum_{i=1}^n c_i \beta^{n-i} \in \Lambda_{\beta} \ \forall n \geq 0 \bigg\},$$

where B is a companion matrix of $X^d + \frac{a_{d-1}}{a_d}X^{d-1} + \cdots + \frac{a_0}{a_d}$. If $|a_d| = 1$, then $\Lambda_\beta = \mathbb{Z}[\beta]$, thus

$$\mathcal{G}_{\beta}(x)=(p_0,\ldots,p_{d-1})^t+\bigg\{\sum_{i=1}^{\infty}B^{-i}(c_i,0,\ldots,0)^t\ \Big|\ c_i\in\mathcal{N}\bigg\}.$$

The tiles are only self affine if $|a_d| = 1$.

Tiles associated with expanding algebraic numbers

For $x \in \Lambda_{\beta} = \mathbb{Z}[\beta] \cap \beta^{-1}\mathbb{Z}[\beta^{-1}]$, $x = \sum_{k=0}^{d-1} p_k \beta^k$, define the tile $\mathcal{G}_{\beta}(x) = (p_0, \dots, p_{d-1})^t$

$$+\left\{\sum_{i=1}^{\infty}B^{-i}(c_i,0,\ldots,0)^t\mid c_i\in\mathcal{N},\beta^nx+\sum_{i=1}^nc_i\beta^{n-i}\in\Lambda_\beta\;\forall n\geq 0\right\},$$

where B is a companion matrix of $X^d + rac{a_{d-1}}{a_d}X^{d-1} + \cdots + rac{a_0}{a_d}$.

If $|a_d|=1$, then $\Lambda_{eta}=\mathbb{Z}[eta]$, thus

$$\mathcal{G}_{\beta}(x)=(p_0,\ldots,p_{d-1})^t+\bigg\{\sum_{i=1}^{\infty}B^{-i}(c_i,0,\ldots,0)^t\ \Big|\ c_i\in\mathcal{N}\bigg\}.$$

The tiles are only self affine if $|a_d| = 1$.

Theorem

For any $x \in \Lambda_{\beta}$, we have

$$\mathcal{G}_{\beta}(\mathbf{x}) = V \mathcal{T}_{\mathbf{r}}(\mathbf{x}),$$

where $x = \sum_{k=0}^{d-1} x_k W_k$, $\mathbf{x} = (x_0, \dots, x_{d-1})$, and V is the matrix realizing the base change from $\{W_0, \dots, W_{d-1}\}$ to $\{\beta^0, \dots, \beta^{d-1}\}$.

SRS tiles associated with CNS

Relation with p-adic tiles

Let \mathcal{O} bet the ring of integers of $\mathbb{Q}(\beta)$, write $\beta\mathcal{O}=\frac{\mathfrak{a}}{\mathfrak{b}}$ with ideals $\mathfrak{a},\mathfrak{b}$ in \mathcal{O} such that $(\mathfrak{a},\mathfrak{b})=\mathcal{O}$, and set

$$\mathbb{K}_{\beta} = \mathbb{R}^d \times \prod_{\mathfrak{p} \mid \mathfrak{b}} K_{\mathfrak{p}},$$

where $K_{\mathfrak{p}}$ is the completion of $\mathbb{Q}(\beta)$ with respect to $|\cdot|_{\mathfrak{p}}$. Let

$$\Phi_{\beta}: \ \mathbb{Q}(\beta) \to \mathbb{K}_{\beta}, \ x = \sum_{k=0}^{\infty} p_{k} \beta^{k} \mapsto (p_{0}, \dots, p_{d-1}, x, \dots, x),$$

$$\mathcal{F}_{\beta} = \left\{ \sum_{i=1}^{\infty} c_{i} \Phi_{\beta}(\beta^{-i}) \mid c_{i} \in \mathcal{N} \right\},$$

$$\mathcal{G}_{\beta}'(x) = \Phi_{\beta}(x) + \bigg\{ \sum_{i=1}^{\infty} c_i \, \Phi_{\beta}(\beta^{-i}) \ \Big| \ c_i \in \mathcal{N}, \beta^n x + \sum_{i=1}^n c_i \beta^{n-i} \in \Lambda_{\beta} \ \forall n \geq 0 \bigg\}.$$

Theorem

For any $x \in \Lambda_{\beta}$, we have $\mathcal{G}'_{\beta}(x) = \mathcal{G}_{\beta}(x) \times \prod_{\mathfrak{n} \mid \mathfrak{h}} \{0\}$, and

$$\mathcal{F}_{eta} = \overline{\bigcup \ \left(\mathcal{G}_{eta}'(x) - \Phi_{eta}(x)
ight)} \,.$$

SRS tiles, $\mathbf{r} = (-2/3)$, and $\mathcal{F}_{\beta} + \Phi_{\beta}(\mathbb{Z}[\beta])$, $\beta = 3/2$

Tiling theorem

Theorem (St-Thuswaldner)

$$\{\Phi_{\beta}(x) + \mathcal{F}_{\beta} \mid x \in \mathbb{Z}[\beta]\}$$
 forms a tiling of \mathbb{K}_{β} .

Corollary

Let $\mathbf{r} = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \dots, \frac{a_1}{a_0}\right) \in \mathbb{Q}^d$ be such that $\varrho(M_{\mathbf{r}}) < 1$ and $a_d X^d + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$ is irreducible. Then $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ contains an exclusive point, thus it forms a weak tiling of \mathbb{R}^d .

Therefore, the set of $\mathbf{r} \in \mathbb{R}^d$ such that $\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ forms a weak tiling of \mathbb{R}^d is dense in $\{\mathbf{r} \in \mathbb{R}^d \mid \varrho(M_{\mathbf{r}}) < 1\}$.

Pisot numbers and β -transformation

A Pisot number is an algebraic integer $\beta>1$ with $|\beta_j|<1$ for every conjugate β_j of β . Write the minimal polynomial of β as

$$(X-\beta)(X^d+r_{d-1}X^{d-1}+\cdots+r_0X^0)\in \mathbb{Z}[X],$$

and let $\mathbf{r} = (r_0, \dots, r_{d-1})$. Then $\varrho(M_{\mathbf{r}}) < 1$.

Pisot numbers and β -transformation

A Pisot number is an algebraic integer $\beta>1$ with $|\beta_j|<1$ for every conjugate β_j of β . Write the minimal polynomial of β as

$$(X - \beta)(X^d + r_{d-1}X^{d-1} + \cdots + r_0X^0) \in \mathbb{Z}[X],$$

and let $\mathbf{r} = (r_0, \dots, r_{d-1})$. Then $\varrho(M_{\mathbf{r}}) < 1$.

The β -transformation is defined by

$$T_{\beta}: [0,1) \rightarrow [0,1), x \mapsto \{\beta x\} = \beta x - \lfloor \beta x \rfloor.$$

We have

$$T_{\beta}(\{\mathbf{rx}\}) = \{\mathbf{r}\tau_{\mathbf{r}}(\mathbf{x})\},\$$

and the map $\mathbb{Z}^d \to \mathbb{Z}[\beta] \cap [0,1)$, $\mathbf{x} \mapsto \{\mathbf{r}\mathbf{x}\}$ is a bijection. Hence, the restriction of T_β to $\mathbb{Z}[\beta] \cap [0,1)$ is conjugate to $\tau_{\mathbf{r}}$.

 $(\mathbb{Z}^d, au_{\mathbf{r}})$ has the finiteness property iff eta has the property

(F):
$$\forall x \in \mathbb{Z}[\beta^{-1}] \cap [0,1) \exists n \geq 0 \text{ such that } T_{\beta}^n(x) = 0.$$

(Integral) β -tiles

Let $\beta_0 = \beta, \beta_1, \ldots, \beta_d$ be the Galois conjugates of β , $\beta_1, \ldots, \beta_r \in \mathbb{R}$, $\beta_{r+1} = \overline{\beta_{r+s+1}}, \ldots, \beta_{r+s} = \overline{\beta_{r+2s}} \in \mathbb{C}$, d = r+2s, $x^{(j)}$ be the corresponding conjugate of $x \in \mathbb{Q}(\beta)$, $1 \leq j \leq d$,

$$\Phi_{\beta}: \mathbb{Q}(\beta) \to \mathbb{R}^{d}, x \mapsto (x^{(1)}, \dots, x^{(r)}, \Re(x^{(r+1)}), \Im(x^{(r+1)}), \dots, \Re(x^{(r+s)}), \Im(x^{(r+s)})).$$

For $x \in \mathbb{Z}[\beta] \cap [0,1)$, the β -tile is the (compact) set

$$\mathcal{R}_{\beta}(x) = \lim_{n \to \infty} \Phi_{\beta} \left(\beta^n T_{\beta}^{-n}(x) \right)$$

(cf. Thurston 1989, Akiyama 1999).

We have $\mathbf{t} \in \mathcal{R}_{\beta}(x)$ if and only if there exist $c_i \in \mathbb{Z}$ with

$$\mathbf{t} = \Phi_{\beta}(x) + \sum_{i=0}^{\infty} \Phi_{\beta}(\beta^{i}c_{i}), \ \frac{c_{n-1}}{\beta} + \cdots + \frac{c_{0}}{\beta^{n}} + \frac{x}{\beta^{n}} \in [0,1) \ \forall n \geq 0.$$

(Integral) β -tiles

Let $\beta_0 = \beta, \beta_1, \ldots, \beta_d$ be the Galois conjugates of β , $\beta_1, \ldots, \beta_r \in \mathbb{R}$, $\beta_{r+1} = \overline{\beta_{r+s+1}}, \ldots, \beta_{r+s} = \overline{\beta_{r+2s}} \in \mathbb{C}$, d = r+2s, $x^{(j)}$ be the corresponding conjugate of $x \in \mathbb{Q}(\beta)$, $1 \leq j \leq d$,

$$\Phi_{\beta}: \mathbb{Q}(\beta) \to \mathbb{R}^{d}, x \mapsto (x^{(1)}, \dots, x^{(r)}, \Re(x^{(r+1)}), \Im(x^{(r+1)}), \dots, \Re(x^{(r+s)}), \Im(x^{(r+s)})).$$

For $x \in \mathbb{Z}[\beta] \cap [0,1)$, the integral β -tile is the (compact) set

$$S_{\beta}(x) = \lim_{n \to \infty} \Phi_{\beta} \left(\beta^{n} \left(T_{\beta}^{-n}(x) \cap \mathbb{Z}[\beta] \right) \right).$$

We have $\mathbf{t} \in \mathcal{S}_{\beta}(x)$ if and only if there exist $c_i \in \mathbb{Z}$ with

$$\mathbf{t} = \Phi_{\beta}(x) + \sum_{i=0}^{\infty} \Phi_{\beta}(\beta^{i} c_{i}), \ \frac{c_{n-1}}{\beta} + \cdots + \frac{c_{0}}{\beta^{n}} + \frac{x}{\beta^{n}} \in [0,1) \cap \mathbb{Z}[\beta] \ \forall n.$$

Relation between SRS tiles and integral β -tiles

Theorem

Let
$$X^d + r_{d-1}X^{d-1} + \dots + r_0 = (X - \beta_j)(X^{d-1} + q_{d-2}^{(j)}X^{d-2} + \dots + q_0^{(j)}), \ 1 \le j \le d$$
,

$$U = \begin{pmatrix} q_0^{(1)} & q_1^{(j)} & \cdots & q_{d-2}^{(1)} & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ q_0^{(r)} & q_1^{(j)} & \cdots & q_{d-2}^{(r)} & 1 \\ \Re(q_0^{(r)} & q_1^{(j)} & \cdots & \Re(q_{d-2}^{(r+1)}) & 1 \\ \Im(q_0^{(r+1)}) & \Re(q_1^{(r+1)}) & \cdots & \Re(q_{d-2}^{(r+2)}) & 1 \\ \Im(q_0^{(r+1)}) & \Im(q_1^{(r+1)}) & \cdots & \Im(q_{d-2}^{(r+s)}) & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ \Re(q_0^{(r+s)}) & \Re(q_1^{(r+s)}) & \cdots & \Re(q_{d-2}^{(r+s)}) & 1 \\ \Im(q_0^{(r+s)}) & \Im(q_1^{(r+s)}) & \cdots & \Im(q_{d-2}^{(r+s)}) & 0 \end{pmatrix} \in \mathbb{R}^{d \times d},$$

 I_d be the identity matrix. For every $\mathbf{x} \in \mathbb{Z}^d$, we have

$$S_{\beta}(\{\mathbf{rx}\}) = U(M_{\mathbf{r}} - \beta I_{\mathbf{d}}) \mathcal{T}_{\mathbf{r}}(\mathbf{x}).$$

SRS tiles associated with Pisot numbers

The integral β -tiles are given by $S_{\beta}(\{\mathbf{rx}\}) = U(M_{\mathbf{r}} - \beta I_{d})\mathcal{T}_{\mathbf{r}}(\mathbf{x})$, but the "centers" of the integral β -tiles are given by $\Phi_{\beta}(\{\mathbf{rx}\}) = U(\tau_{\mathbf{r}}(\mathbf{x}) - \beta \mathbf{x}) = U(M_{\mathbf{r}} - \beta I_{d})\mathbf{x} + U(0, \dots, 0, \{\mathbf{rx}\})^{t}.$

Properties of β -tiles

If β is a Pisot unit $(\beta^{-1} \in \mathbb{Z}[\beta])$, then

- $\mathcal{R}_{\beta}(x) = \mathcal{S}_{\beta}(x)$ for every $x \in \mathbb{Z}[\beta] \cap [0,1)$,
- we have only finitely many tiles up to translation,
- the boundary of each tile has zero Lebesgure measure,
- each tile is the closure of its interior,
- ▶ $\{S_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap [0,1)\}$ forms a multiple tiling of \mathbb{R}^d ,
- ▶ $\{S_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap [0,1)\}$ forms a tiling if (F) holds,
- ▶ $\{S_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap [0,1)\}$ forms a tiling iff (W) holds: for every $x \in \mathbb{Z}[\beta] \cap [0,1)$ and every $\varepsilon > 0$, there exists some $y \in [0,\varepsilon)$ with finite β -expansion such that x+y has finite β -expansion,

see Akiyama 1999, 2002, Berthé-Siegel 2005.

Pisot conjecture

Conjecture

If β is a Pisot unit of degree d+1, then $\left\{\mathcal{R}_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap [0,1)\right\}$ forms a tiling of \mathbb{R}^d .

Proved for several classes of Pisot units. (Frougny–Solomyak 1992, Hollander 1996, Akiyama–Rao–St 2004, Barge–Kwapisz 2006)

Conjecture

If $\varrho(M_r) < 1$, then $\left\{ \mathcal{T}_r(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d \right\}$ forms a weak tiling of \mathbb{R}^d .

Proved for a dense set of \mathbf{r} , see above.

α -Shift Radix Systems

For $\mathbf{r}=(r_0,\ldots,r_{d-1})\in\mathbb{R}^d$, the $\alpha ext{-SRS}\ (\mathbb{Z}^d, au_{\mathbf{r},\alpha})$ is defined by

$$au_{\mathbf{r},\alpha}: \mathbb{Z}^d \to \mathbb{Z}^d, \ \mathbf{x} = (x_0,\ldots,x_{d-1}) \mapsto (x_1,\ldots,x_{d-1},-\lfloor \mathbf{r}\mathbf{x}+\alpha \rfloor).$$

For every $\mathbf{x} \in \mathbb{Z}^d$, the α -SRS tile is defined by

$$\mathcal{T}_{\mathbf{r},\alpha}(\mathbf{x}) = \lim_{n \to \infty} M_{\mathbf{r}}^n \tau_{\mathbf{r},\alpha}^{-n}(\mathbf{x}).$$

A 1/2-SRS is also called symmetric SRS.

Theorem (St-Thuswaldner)

Let $\mathbf{r} = \left(\frac{a_d}{a_0}, \frac{a_{d-1}}{a_0}, \dots, \frac{a_1}{a_0}\right) \in \mathbb{Q}^d$ be such that $\varrho(M_\mathbf{r}) < 1$ and $a_d X^d + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$ is irreducible. Then $\{\mathcal{T}_{\mathbf{r},1/2}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^d\}$ forms a weak tiling of \mathbb{R}^d , and these \mathbf{r} are dense in $\{\mathbf{r} \in \mathbb{R}^d \mid \varrho(M_\mathbf{r}) < 1\}$.

Theorem (Kalle-St)

Let β be the smallest Pisot number $(\beta^3 = \beta + 1)$, $\mathbf{r} = (1/\beta, \beta)$, or the Tribonacci number $(\beta^3 = \beta^2 + \beta + 1)$, $\mathbf{r} = (1/\beta, \beta - 1)$, then $\{\mathcal{T}_{\mathbf{r},1/2}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^2\}$ forms a 2-tiling of \mathbb{R}^2 .

Double tiling for a symmetric SRS

$$eta^3=eta^2+eta+1$$
, ${f r}=(1/eta,eta-1)$, $lpha=1/2$

Tiling for a symmetric SRS

$$eta^3=2eta^2-eta+1$$
, ${f r}=(1/eta,eta-2)$, $lpha=1/2$