Tilings associated with shift radix systems

Wolfgang Steiner
(joint work with V. Berthé, A. Siegel, P. Surer and J. Thuswaldner)
LIAFA, CNRS, Université Paris Diderot - Paris 7
KIAS, September 30, 2010

SRS tiles, $\mathbf{r}=(1 / 2,-1 / 2)$

SRS tiles, $\mathbf{r}=(9 / 10,-11 / 20)$

SRS tiles, $\mathbf{r}=(-2 / 3)$

SRS tiles, $\mathbf{r}=(-2 / 3)$

SRS tiles, $\mathbf{r}=(1 / \beta, \beta-1), \beta^{3}=\beta^{2}+\beta+1$

SRS tiles, $\mathbf{r}=(1 / \beta, \beta-1), \beta^{3}=\beta^{2}+\beta+1$

SRS tiles

The shift radix system (SRS) associated with $\mathbf{r} \in \mathbb{R}^{d}$ is the dynamical system ($\mathbb{Z}^{d}, \tau_{\mathbf{r}}$) defined by

$$
\tau_{\mathbf{r}}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \mapsto\left(x_{2}, \ldots, x_{d},-\lfloor\mathbf{r x}\rfloor\right)
$$

(cf. Akiyama-Borbély-Brunotte-Pethő-Thuswaldner 2005).

SRS tiles

The shift radix system (SRS) associated with $\mathbf{r} \in \mathbb{R}^{d}$ is the dynamical system ($\mathbb{Z}^{d}, \tau_{\mathbf{r}}$) defined by

$$
\tau_{\mathbf{r}}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \mapsto\left(x_{2}, \ldots, x_{d},-\lfloor\mathbf{r x}\rfloor\right)
$$

(cf. Akiyama-Borbély-Brunotte-Pethő-Thuswaldner 2005).

$$
\tau_{\mathbf{r}}(\mathbf{x})=M_{\mathbf{r}} \mathbf{x}+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\{\mathbf{r} \mathbf{x}\}
\end{array}\right), M_{\left(r_{0}, \ldots, r_{d-1}\right)}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
-r_{0} & -r_{1} & \cdots & -r_{d-2} & -r_{d-1}
\end{array}\right)
$$

SRS tiles

The shift radix system (SRS) associated with $\mathbf{r} \in \mathbb{R}^{d}$ is the dynamical system ($\mathbb{Z}^{d}, \tau_{\mathbf{r}}$) defined by

$$
\tau_{\mathbf{r}}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \mapsto\left(x_{2}, \ldots, x_{d},-\lfloor\mathbf{r x}\rfloor\right)
$$

(cf. Akiyama-Borbély-Brunotte-Pethő-Thuswaldner 2005).
$\tau_{\mathbf{r}}(\mathbf{x})=M_{\mathbf{r}} \mathbf{x}+\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ \{\mathbf{r} \mathbf{x}\}\end{array}\right), M_{\left(r_{0}, \ldots, r_{d-1}\right)}=\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -r_{0} & -r_{1} & \cdots & -r_{d-2} & -r_{d-1}\end{array}\right)$
Assume $\varrho\left(M_{\mathbf{r}}\right)<1$. For $\mathbf{x} \in \mathbb{Z}^{d}$, the set

$$
\mathcal{T}_{\mathbf{r}}(\mathbf{x})=\lim _{n \rightarrow \infty} M_{\mathbf{r}}^{n} \tau_{\mathbf{r}}^{-n}(\mathbf{x})
$$

(limit with respect to the Hausdorff metric) is called SRS tile.

Basic properties of SRS tiles

$\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is compact, $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ is locally finite,

$$
\bigcup_{\mathrm{x} \in \mathbb{Z}^{d}} \mathcal{T}_{\mathbf{r}}(\mathrm{x})=\mathbb{R}^{d} .
$$

Basic properties of SRS tiles

$\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is compact, $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ is locally finite,

$$
\begin{gathered}
\bigcup_{\mathrm{x} \in \mathbb{Z}^{d}} \mathcal{T}_{\mathbf{r}}(\mathbf{x})=\mathbb{R}^{d} . \\
M_{\mathbf{r}}^{-1} \mathcal{T}_{\mathbf{r}}(\mathbf{x})=\bigcup_{\mathbf{y} \in \tau_{\mathrm{r}}^{-1}(\mathrm{x})} \mathcal{T}_{\mathbf{r}}(\mathbf{y}) .
\end{gathered}
$$

Basic properties of SRS tiles

$\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is compact, $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ is locally finite,

$$
\begin{gathered}
\bigcup_{\mathrm{x} \in \mathbb{Z}^{d}} \mathcal{T}_{\mathrm{r}}(\mathbf{x})=\mathbb{R}^{d} . \\
M_{\mathbf{r}}^{-1} \mathcal{T}_{\mathbf{r}}(\mathbf{x})=\bigcup_{\mathbf{y} \in \tau_{\mathrm{r}}^{-1}(\mathrm{x})} \mathcal{T}_{\mathbf{r}}(\mathbf{y}) .
\end{gathered}
$$

$\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ is not necessarily the closure of its interior. (Example:
$\mathcal{T}_{\mathbf{r}}(\mathbf{x})=\{\mathbf{0}\}$ for $\mathbf{r}=\left(\frac{9}{10},-\frac{11}{20}\right), \mathbf{x}=(1,-1)$, since $\left.\tau_{\mathbf{r}}^{-5}(\mathbf{x})=\{\mathbf{x}\}.\right)$
Conjecture
The boundary of $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ has zero Lebesgue measure.

Periodic sequences and finiteness property

Each sequence $\left(\tau_{\mathbf{r}}^{n}(\mathbf{x})\right)_{n \geq 0}$ is eventually periodic. $\left(\mathbb{Z}^{d}, \tau_{\mathbf{r}}\right)$ satisfies the finiteness property if

$$
\forall \mathbf{x} \in \mathbb{Z}^{d} \exists n \in \mathbb{N} \text { such that } \tau_{\mathbf{r}}^{n}(\mathbf{x})=\mathbf{0}
$$

Periodic sequences and finiteness property

Each sequence $\left(\tau_{\mathbf{r}}^{n}(\mathbf{x})\right)_{n \geq 0}$ is eventually periodic. $\left(\mathbb{Z}^{d}, \tau_{\mathbf{r}}\right)$ satisfies the finiteness property if

$$
\forall \mathbf{x} \in \mathbb{Z}^{d} \exists n \in \mathbb{N} \text { such that } \tau_{\mathbf{r}}^{n}(\mathbf{x})=\mathbf{0}
$$

$\mathbf{0} \in \mathcal{T}_{\mathbf{r}}(\mathbf{x})$ iff $\left(\tau_{\mathbf{r}}^{n}(\mathbf{x})\right)_{n \geq 0}$ is purely periodic.
(\mathbb{Z}^{d}, τ_{r}) has the finiteness property iff $\mathbf{0}$ is an exclusive point of $\mathcal{T}_{\mathbf{r}}(\mathbf{0})$, i.e., $\mathbf{0} \notin \bigcup_{\mathbf{x} \neq \mathbf{0}} \mathcal{T}_{\mathbf{r}}(\mathbf{x})$.

Periodic sequences and finiteness property

Each sequence $\left(\tau_{r}^{n}(\mathbf{x})\right)_{n \geq 0}$ is eventually periodic. ($\mathbb{Z}^{d}, \tau_{\mathbf{r}}$) satisfies the finiteness property if

$$
\forall \mathbf{x} \in \mathbb{Z}^{d} \exists n \in \mathbb{N} \text { such that } \tau_{\mathbf{r}}^{n}(\mathbf{x})=\mathbf{0}
$$

$\mathbf{0} \in \mathcal{T}_{\mathbf{r}}(\mathbf{x})$ iff $\left(\tau_{\mathbf{r}}^{n}(\mathbf{x})\right)_{n \geq 0}$ is purely periodic.
(\mathbb{Z}^{d}, τ_{r}) has the finiteness property iff $\mathbf{0}$ is an exclusive point of $\mathcal{T}_{\mathbf{r}}(\mathbf{0})$, i.e., $\mathbf{0} \notin \bigcup_{\mathbf{x} \neq \mathbf{0}} \mathcal{T}_{\mathbf{r}}(\mathbf{x})$.

Characterization of SRS with finiteness property is complicated, see figure on the right for $\mathbf{r} \in \mathbb{R}^{2}$. (Akiyama-Brunotte-Pethő-Thuswaldner 2006, Surer 2007)

Weak tilings

Lemma

Let $\mathbf{t} \in \mathcal{T}_{\mathbf{r}}(\mathbf{x})$, then $\mathbf{t}=\lim _{n \rightarrow \infty} M_{\mathbf{r}}^{n} \mathbf{z}_{n}$ with $\tau_{\mathbf{r}}^{n}\left(\mathbf{z}_{n}\right)=\mathbf{x}$. \mathbf{t} is an exclusive point of $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$, i.e., $\mathbf{t} \notin \bigcup_{\mathbf{y} \neq \mathbf{0}} \mathcal{T}_{\mathbf{r}}(\mathbf{y})$, iff

$$
\exists n: \tau_{\mathbf{r}}^{n}\left(\mathbf{z}_{n}+\mathbf{y}\right)=\mathbf{x} \quad \forall \mathbf{y} \in \mathbb{Z}^{d} \text { with }\|\mathbf{y}\| \leq 2 R
$$

where $R=\sum_{n=0}^{\infty}\left\|M_{r}^{n}(0, \ldots, 0,1)^{t}\right\|<\infty$.
Theorem
Assume that one of the following conditions hold.

- $\mathbf{r} \in \mathbb{Q}^{d}$,
- $(X-\beta)\left(X^{d}+r_{d-1} X^{d-1}+\cdots+r_{0}\right) \in \mathbb{Z}[X]$ for some $\beta>1$,
- r_{0}, \ldots, r_{d-1} are algebraically independent over \mathbb{Q}.

Then $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ forms a weak tiling of \mathbb{R}^{d} (i.e., any two distinct tiles have disjoint interiors) iff there exists an exclusive point, in particular if $\left(\mathbb{Z}^{d}, \tau_{\mathbf{r}}\right)$ satisfies the finiteness property.

Weak m-tilings

$\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ forms a weak m-tiling of \mathbb{R}^{d} if every point of \mathbb{R}^{d} is contained in at least m different tiles $\mathcal{T}_{\mathbf{r}}(\mathbf{x})$ and no point is in the interior of $m+1$ different tiles $\mathcal{T}_{\mathbf{r}}(\mathbf{x}) .(m=1$: weak tiling $)$
Theorem
Assume that one of the following conditions hold.

- $\mathbf{r} \in \mathbb{Q}^{d}$,
- $(X-\beta)\left(X^{d}+r_{d-1} X^{d-1}+\cdots+r_{0}\right) \in \mathbb{Z}[X]$ for some $\beta>1$,
- r_{0}, \ldots, r_{d-1} are algebraically independent over \mathbb{Q}.

Then $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ forms a weak m-tiling of \mathbb{R}^{d} for some $m \geq 1$.
Conjecture
For any $\mathbf{r} \in \mathbb{R}^{d}$ (with $\varrho\left(M_{\mathbf{r}}\right)<1$), $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ forms a weak m-tiling of \mathbb{R}^{d} for some $m \geq 1$.

Rational bases

Akiyama-Frougny-Sakarovitch 2008 considered expansions of positive integers in rational bases p / q, with coprime integers $p>q \geq 1$, of the form

$$
N=\frac{1}{q} \sum_{n=0}^{\infty} b_{n}\left(\frac{p}{q}\right)^{n} \quad\left(b_{n} \in \mathcal{N}=\{0, \ldots, p-1\}\right)
$$

These number systems correspond to SRS with $\mathbf{r}=(-q / p)$.
Theorem
The tiling $\left\{\mathcal{T}_{-2 / 3}(N) \mid N \in \mathbb{Z}\right\}$ consists of intervals with infinitely many different lengths.

Expanding algebraic numbers and CNS

Let β be an expanding algebraic number (i.e., all its Galois conjugates lie outside the unit circle) with minimal polynomial $a_{d} X^{d}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X], a_{0} \geq 2$, and $\mathcal{N}=\left\{0, \ldots, a_{0}-1\right\}$. If, for each $x \in \mathbb{Z}[\beta]$,

$$
x=c_{0}+c_{1} \beta+\ldots+c_{\ell} \beta^{\ell} \quad\left(c_{i} \in \mathcal{N}\right)
$$

then we call (β, \mathcal{N}) a canonical number system (CNS).

Expanding algebraic numbers and CNS

Let β be an expanding algebraic number (i.e., all its Galois conjugates lie outside the unit circle) with minimal polynomial $a_{d} X^{d}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X], a_{0} \geq 2$, and $\mathcal{N}=\left\{0, \ldots, a_{0}-1\right\}$. If, for each $x \in \mathbb{Z}[\beta]$,

$$
x=c_{0}+c_{1} \beta+\ldots+c_{\ell} \beta^{\ell} \quad\left(c_{i} \in \mathcal{N}\right)
$$

then we call (β, \mathcal{N}) a canonical number system (CNS).
Let $\Lambda_{\beta}=\mathbb{Z}[\beta] \cap \beta^{-1} \mathbb{Z}\left[\beta^{-1}\right]$. Λ_{β} is a \mathbb{Z}-module generated by $W_{0}=a_{d}$ and $W_{k}=\beta W_{k-1}+a_{d-k}, 1 \leq k<d$.
If β is an algebraic integer, i.e., $\left|a_{d}\right|=1$, then $\Lambda_{\beta}=\mathbb{Z}[\beta]$.

Expanding algebraic numbers and CNS

Let β be an expanding algebraic number (i.e., all its Galois conjugates lie outside the unit circle) with minimal polynomial $a_{d} X^{d}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X], a_{0} \geq 2$, and $\mathcal{N}=\left\{0, \ldots, a_{0}-1\right\}$. If, for each $x \in \mathbb{Z}[\beta]$,

$$
x=c_{0}+c_{1} \beta+\ldots+c_{\ell} \beta^{\ell} \quad\left(c_{i} \in \mathcal{N}\right)
$$

then we call (β, \mathcal{N}) a canonical number system (CNS).
Let $\Lambda_{\beta}=\mathbb{Z}[\beta] \cap \beta^{-1} \mathbb{Z}\left[\beta^{-1}\right]$. Λ_{β} is a \mathbb{Z}-module generated by $W_{0}=a_{d}$ and $W_{k}=\beta W_{k-1}+a_{d-k}, 1 \leq k<d$.
If β is an algebraic integer, i.e., $\left|a_{d}\right|=1$, then $\Lambda_{\beta}=\mathbb{Z}[\beta]$.
For every $x \in \mathbb{Z}[\beta]$, there exist unique $c_{0} \in \mathcal{N}, y \in \mathbb{Z}[\beta]$ such that

$$
x=c_{0}+\beta y
$$

If $x \in \Lambda_{\beta}$, then $y \in \Lambda_{\beta}$. Let $x=\sum_{k=0}^{d-1} x_{k} W_{k}, \mathbf{x}=\left(x_{0}, \ldots, x_{d-1}\right)$,
$y=\sum_{k=0}^{d-1} y_{k} W_{k}, \mathbf{y}=\left(y_{0}, \ldots, y_{d-1}\right)$, then

$$
\mathbf{y}=\tau_{\mathbf{r}}(\mathbf{x}) \quad \text { with } \quad \mathbf{r}=\left(\frac{a_{d}}{a_{0}}, \frac{a_{d-1}}{a_{0}}, \ldots, \frac{a_{1}}{a_{0}}\right) .
$$

(β, \mathcal{N}) is a CNS iff $\left(\mathbb{Z}^{d}, \tau_{\mathbf{r}}\right)$ has the finiteness property.

Tiles associated with expanding algebraic numbers

For $x \in \Lambda_{\beta}=\mathbb{Z}[\beta] \cap \beta^{-1} \mathbb{Z}\left[\beta^{-1}\right], x=\sum_{k=0}^{d-1} p_{k} \beta^{k}$, define the tile
$\mathcal{G}_{\beta}(x)=\left(p_{0}, \ldots, p_{d-1}\right)^{t}$
$+\left\{\sum_{i=1}^{\infty} B^{-i}\left(c_{i}, 0, \ldots, 0\right)^{t} \mid c_{i} \in \mathcal{N}, \beta^{n} x+\sum_{i=1}^{n} c_{i} \beta^{n-i} \in \Lambda_{\beta} \forall n \geq 0\right\}$,
where B is a companion matrix of $X^{d}+\frac{a_{d-1}}{a_{d}} X^{d-1}+\cdots+\frac{a_{0}}{a_{d}}$.
If $\left|a_{d}\right|=1$, then $\Lambda_{\beta}=\mathbb{Z}[\beta]$, thus

$$
\mathcal{G}_{\beta}(x)=\left(p_{0}, \ldots, p_{d-1}\right)^{t}+\left\{\sum_{i=1}^{\infty} B^{-i}\left(c_{i}, 0, \ldots, 0\right)^{t} \mid c_{i} \in \mathcal{N}\right\} .
$$

The tiles are only self affine if $\left|a_{d}\right|=1$.

Tiles associated with expanding algebraic numbers

For $x \in \Lambda_{\beta}=\mathbb{Z}[\beta] \cap \beta^{-1} \mathbb{Z}\left[\beta^{-1}\right], x=\sum_{k=0}^{d-1} p_{k} \beta^{k}$, define the tile
$\mathcal{G}_{\beta}(x)=\left(p_{0}, \ldots, p_{d-1}\right)^{t}$
$+\left\{\sum_{i=1}^{\infty} B^{-i}\left(c_{i}, 0, \ldots, 0\right)^{t} \mid c_{i} \in \mathcal{N}, \beta^{n} x+\sum_{i=1}^{n} c_{i} \beta^{n-i} \in \Lambda_{\beta} \forall n \geq 0\right\}$,
where B is a companion matrix of $X^{d}+\frac{a_{d-1}}{a_{d}} X^{d-1}+\cdots+\frac{a_{0}}{a_{d}}$.
If $\left|a_{d}\right|=1$, then $\Lambda_{\beta}=\mathbb{Z}[\beta]$, thus

$$
\mathcal{G}_{\beta}(x)=\left(p_{0}, \ldots, p_{d-1}\right)^{t}+\left\{\sum_{i=1}^{\infty} B^{-i}\left(c_{i}, 0, \ldots, 0\right)^{t} \mid c_{i} \in \mathcal{N}\right\} .
$$

The tiles are only self affine if $\left|a_{d}\right|=1$.
Theorem
For any $x \in \Lambda_{\beta}$, we have

$$
\mathcal{G}_{\beta}(x)=V \mathcal{T}_{\mathbf{r}}(\mathbf{x})
$$

where $x=\sum_{k=0}^{d-1} x_{k} W_{k}, \mathbf{x}=\left(x_{0}, \ldots, x_{d-1}\right)$, and V is the matrix realizing the base change from $\left\{W_{0}, \ldots, W_{d-1}\right\}$ to $\left\{\beta^{0}, \ldots, \beta^{d-1}\right\}$.

SRS tiles associated with CNS

Relation with p-adic tiles

Let \mathcal{O} bet the ring of integers of $\mathbb{Q}(\beta)$, write $\beta \mathcal{O}=\frac{\mathfrak{a}}{\mathfrak{b}}$ with ideals $\mathfrak{a}, \mathfrak{b}$ in \mathcal{O} such that $(\mathfrak{a}, \mathfrak{b})=\mathcal{O}$, and set

$$
\mathbb{K}_{\beta}=\mathbb{R}^{d} \times \prod_{\mathfrak{p} \mid \mathfrak{b}} K_{\mathfrak{p}},
$$

where $K_{\mathfrak{p}}$ is the completion of $\mathbb{Q}(\beta)$ with respect to $|\cdot|_{\mathfrak{p}}$. Let

$$
\begin{aligned}
\Phi_{\beta}: \mathbb{Q}(\beta) \rightarrow \mathbb{K}_{\beta}, x=\sum_{k=0}^{d-1} p_{k} \beta^{k} \mapsto\left(p_{0}, \ldots, p_{d-1}, x, \ldots, x\right) \\
\mathcal{F}_{\beta}=\left\{\sum_{i=1}^{\infty} c_{i} \Phi_{\beta}\left(\beta^{-i}\right) \mid c_{i} \in \mathcal{N}\right\}
\end{aligned}
$$

$\mathcal{G}_{\beta}^{\prime}(x)=\Phi_{\beta}(x)+\left\{\sum_{i=1}^{\infty} c_{i} \Phi_{\beta}\left(\beta^{-i}\right) \mid c_{i} \in \mathcal{N}, \beta^{n} x+\sum_{i=1}^{n} c_{i} \beta^{n-i} \in \Lambda_{\beta} \forall n \geq 0\right\}$.
Theorem
For any $x \in \Lambda_{\beta}$, we have $\mathcal{G}_{\beta}^{\prime}(x)=\mathcal{G}_{\beta}(x) \times \prod_{\mathfrak{p} \mid \mathfrak{6}}\{0\}$, and

$$
\mathcal{F}_{\beta}=\overline{\bigcup_{x \in \Lambda_{\beta}}\left(\mathcal{G}_{\beta}^{\prime}(x)-\Phi_{\beta}(x)\right)}
$$

SRS tiles, $\mathbf{r}=(-2 / 3)$, and $\mathcal{F}_{\beta}+\Phi_{\beta}(\mathbb{Z}[\beta]), \beta=3 / 2$

Tiling theorem

Theorem (St-Thuswaldner)
$\left\{\Phi_{\beta}(x)+\mathcal{F}_{\beta} \mid x \in \mathbb{Z}[\beta]\right\}$ forms a tiling of \mathbb{K}_{β}.

Corollary
Let $\mathbf{r}=\left(\frac{a_{d}}{a_{0}}, \frac{a_{d-1}}{a_{0}}, \ldots, \frac{a_{1}}{a_{0}}\right) \in \mathbb{Q}^{d}$ be such that $\varrho\left(M_{\mathbf{r}}\right)<1$ and $a_{d} X^{d}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X]$ is irreducible.
Then $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ contains an exclusive point, thus it forms a weak tiling of \mathbb{R}^{d}.

Therefore, the set of $\mathbf{r} \in \mathbb{R}^{d}$ such that $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ forms a weak tiling of \mathbb{R}^{d} is dense in $\left\{\mathbf{r} \in \mathbb{R}^{d} \mid \varrho\left(M_{r}\right)<1\right\}$.

Pisot numbers and β-transformation

A Pisot number is an algebraic integer $\beta>1$ with $\left|\beta_{j}\right|<1$ for every conjugate β_{j} of β. Write the minimal polynomial of β as

$$
(X-\beta)\left(X^{d}+r_{d-1} X^{d-1}+\cdots+r_{0} X^{0}\right) \in \mathbb{Z}[X]
$$

and let $\mathbf{r}=\left(r_{0}, \ldots, r_{d-1}\right)$. Then $\varrho\left(M_{\mathbf{r}}\right)<1$.

Pisot numbers and β-transformation

A Pisot number is an algebraic integer $\beta>1$ with $\left|\beta_{j}\right|<1$ for every conjugate β_{j} of β. Write the minimal polynomial of β as

$$
(X-\beta)\left(X^{d}+r_{d-1} X^{d-1}+\cdots+r_{0} X^{0}\right) \in \mathbb{Z}[X]
$$

and let $\mathbf{r}=\left(r_{0}, \ldots, r_{d-1}\right)$. Then $\varrho\left(M_{\mathbf{r}}\right)<1$.
The β-transformation is defined by

$$
T_{\beta}:[0,1) \rightarrow[0,1), x \mapsto\{\beta x\}=\beta x-\lfloor\beta x\rfloor .
$$

We have

$$
T_{\beta}(\{\mathbf{r} \mathbf{x}\})=\left\{\mathbf{r} \tau_{\mathbf{r}}(\mathbf{x})\right\}
$$

and the map $\mathbb{Z}^{d} \rightarrow \mathbb{Z}[\beta] \cap[0,1), \mathbf{x} \mapsto\{\mathbf{r x}\}$ is a bijection. Hence, the restriction of T_{β} to $\mathbb{Z}[\beta] \cap[0,1)$ is conjugate to $\tau_{\mathbf{r}}$.
($\mathbb{Z}^{d}, \tau_{\mathbf{r}}$) has the finiteness property iff β has the property
(F) : $\forall x \in \mathbb{Z}\left[\beta^{-1}\right] \cap[0,1) \exists n \geq 0$ such that $T_{\beta}^{n}(x)=0$.

(Integral) β-tiles

Let $\beta_{0}=\beta, \beta_{1}, \ldots, \beta_{d}$ be the Galois conjugates of β, $\beta_{1}, \ldots, \beta_{r} \in \mathbb{R}, \beta_{r+1}=\overline{\beta_{r+s+1}}, \ldots, \beta_{r+s}=\overline{\beta_{r+2 s}} \in \mathbb{C}, d=r+2 s$, $x^{(j)}$ be the corresponding conjugate of $x \in \mathbb{Q}(\beta), 1 \leq j \leq d$,

$$
\begin{aligned}
& \Phi_{\beta}: \mathbb{Q}(\beta) \rightarrow \mathbb{R}^{d}, x \mapsto \\
& \left(x^{(1)}, \ldots, x^{(r)}, \Re\left(x^{(r+1)}\right), \Im\left(x^{(r+1)}\right), \ldots, \Re\left(x^{(r+s)}\right), \Im\left(x^{(r+s)}\right)\right) .
\end{aligned}
$$

For $x \in \mathbb{Z}[\beta] \cap[0,1)$, the β-tile is the (compact) set

$$
\mathcal{R}_{\beta}(x)=\lim _{n \rightarrow \infty} \Phi_{\beta}\left(\beta^{n} T_{\beta}^{-n}(x)\right)
$$

(cf. Thurston 1989, Akiyama 1999).
We have $\mathbf{t} \in \mathcal{R}_{\beta}(x)$ if and only if there exist $c_{i} \in \mathbb{Z}$ with
$\mathbf{t}=\Phi_{\beta}(x)+\sum_{i=0}^{\infty} \Phi_{\beta}\left(\beta^{i} c_{i}\right), \frac{c_{n-1}}{\beta}+\cdots+\frac{c_{0}}{\beta^{n}}+\frac{x}{\beta^{n}} \in[0,1) \forall n \geq 0$.

(Integral) β-tiles

Let $\beta_{0}=\beta, \beta_{1}, \ldots, \beta_{d}$ be the Galois conjugates of β, $\beta_{1}, \ldots, \beta_{r} \in \mathbb{R}, \beta_{r+1}=\overline{\beta_{r+s+1}}, \ldots, \beta_{r+s}=\overline{\beta_{r+2 s}} \in \mathbb{C}, d=r+2 s$, $x^{(j)}$ be the corresponding conjugate of $x \in \mathbb{Q}(\beta), 1 \leq j \leq d$,

$$
\begin{aligned}
& \Phi_{\beta}: \mathbb{Q}(\beta) \rightarrow \mathbb{R}^{d}, x \mapsto \\
& \left(x^{(1)}, \ldots, x^{(r)}, \Re\left(x^{(r+1)}\right), \Im\left(x^{(r+1)}\right), \ldots, \Re\left(x^{(r+s)}\right), \Im\left(x^{(r+s)}\right)\right) .
\end{aligned}
$$

For $x \in \mathbb{Z}[\beta] \cap[0,1)$, the integral β-tile is the (compact) set

$$
\mathcal{S}_{\beta}(x)=\lim _{n \rightarrow \infty} \Phi_{\beta}\left(\beta^{n}\left(T_{\beta}^{-n}(x) \cap \mathbb{Z}[\beta]\right)\right)
$$

We have $\mathbf{t} \in \mathcal{S}_{\beta}(x)$ if and only if there exist $c_{i} \in \mathbb{Z}$ with
$\mathbf{t}=\Phi_{\beta}(x)+\sum_{i=0}^{\infty} \Phi_{\beta}\left(\beta^{i} c_{i}\right), \frac{c_{n-1}}{\beta}+\cdots+\frac{c_{0}}{\beta^{n}}+\frac{x}{\beta^{n}} \in[0,1) \cap \mathbb{Z}[\beta] \forall n$.

Relation between SRS tiles and integral β-tiles

Theorem
Let $X^{d}+r_{d-1} X^{d-1}+\cdots+r_{0}=\left(X-\beta_{j}\right)\left(X^{d-1}+q_{d-2}^{(j)} X^{d-2}+\cdots+q_{0}^{(j)}\right), 1 \leq j \leq d$,

$$
U=\left(\begin{array}{ccccc}
q_{0}^{(1)} & q_{1}^{(j)} & \cdots & q_{d-2}^{(1)} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
q_{0}^{(r)} & q_{1}^{(j)} & \cdots & q_{d-2}^{(r)} & 1 \\
\Re\left(q_{0}^{(r+1)}\right) & \Re\left(q_{1}^{(r+1)}\right) & \cdots & \Re\left(q_{d-2}^{(r+1)}\right) & 1 \\
\Im\left(q_{0}^{(r+1)}\right) & \Im\left(q_{1}^{(r+1)}\right) & \cdots & \Im\left(q_{d-2}^{(r+1)}\right) & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
\Re\left(q_{0}^{(r+s)}\right) & \Re\left(q_{1}^{(r+s)}\right) & \cdots & \Re\left(q_{d-2}^{(r+s)}\right) & 1 \\
\Im\left(q_{0}^{(r+s)}\right) & \Im\left(q_{1}^{(r+s)}\right) & \cdots & \Im\left(q_{d-2}^{(+5)}\right) & 0
\end{array}\right) \in \mathbb{R}^{d \times d},
$$

I_{d} be the identity matrix. For every $\mathbf{x} \in \mathbb{Z}^{d}$, we have

$$
\mathcal{S}_{\beta}(\{\mathbf{r} \mathbf{x}\})=U\left(M_{\mathbf{r}}-\beta I_{d}\right) \mathcal{T}_{\mathbf{r}}(\mathbf{x}) .
$$

SRS tiles associated with Pisot numbers

$\beta^{3}=3 \beta^{2}-1, \mathbf{r}=(-1 / \beta, \beta-3)$

$$
\beta^{3}=2 \beta^{2}+2 \beta+2, \mathbf{r}=(2 / \beta, \beta-2)
$$

The integral β-tiles are given by $\mathcal{S}_{\beta}(\{\mathbf{r} \mathbf{x}\})=U\left(M_{\mathbf{r}}-\beta I_{d}\right) \mathcal{T}_{\mathbf{r}}(\mathbf{x})$, but the "centers" of the integral β-tiles are given by $\Phi_{\beta}(\{\mathbf{r} \mathbf{x}\})=U\left(\tau_{\mathbf{r}}(\mathbf{x})-\beta \mathbf{x}\right)=U\left(M_{\mathbf{r}}-\beta I_{d}\right) \mathbf{x}+U(0, \ldots, 0,\{\mathbf{r x}\})^{t}$.

Properties of β-tiles

If β is a Pisot unit $\left(\beta^{-1} \in \mathbb{Z}[\beta]\right)$, then

- $\mathcal{R}_{\beta}(x)=\mathcal{S}_{\beta}(x)$ for every $x \in \mathbb{Z}[\beta] \cap[0,1)$,
- we have only finitely many tiles up to translation,
- the boundary of each tile has zero Lebesgure measure,
- each tile is the closure of its interior,
- $\left\{\mathcal{S}_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap[0,1)\right\}$ forms a multiple tiling of \mathbb{R}^{d},
- $\left\{\mathcal{S}_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap[0,1)\right\}$ forms a tiling if (F) holds,
- $\left\{\mathcal{S}_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap[0,1)\right\}$ forms a tiling iff (W) holds: for every $x \in \mathbb{Z}[\beta] \cap[0,1)$ and every $\varepsilon>0$, there exists some $y \in[0, \varepsilon)$ with finite β-expansion such that $x+y$ has finite β-expansion,
see Akiyama 1999, 2002, Berthé-Siegel 2005.

Pisot conjecture

Conjecture
If β is a Pisot unit of degree $d+1$, then $\left\{\mathcal{R}_{\beta}(x) \mid x \in \mathbb{Z}[\beta] \cap[0,1)\right\}$ forms a tiling of \mathbb{R}^{d}.
Proved for several classes of Pisot units.
(Frougny-Solomyak 1992, Hollander 1996, Akiyama-Rao-St 2004, Barge-Kwapisz 2006)

Conjecture
If $\varrho\left(M_{\mathbf{r}}\right)<1$, then $\left\{\mathcal{T}_{\mathbf{r}}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ forms a weak tiling of \mathbb{R}^{d}.
Proved for a dense set of \mathbf{r}, see above.

α-Shift Radix Systems

For $\mathbf{r}=\left(r_{0}, \ldots, r_{d-1}\right) \in \mathbb{R}^{d}$, the α-SRS $\left(\mathbb{Z}^{d}, \tau_{\mathbf{r}, \alpha}\right)$ is defined by

$$
\tau_{\mathbf{r}, \alpha}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}, \mathbf{x}=\left(x_{0}, \ldots, x_{d-1}\right) \mapsto\left(x_{1}, \ldots, x_{d-1},-\lfloor\mathbf{r x}+\alpha\rfloor\right)
$$

For every $\mathbf{x} \in \mathbb{Z}^{d}$, the α-SRS tile is defined by

$$
\mathcal{T}_{\mathbf{r}, \alpha}(\mathbf{x})=\lim _{n \rightarrow \infty} M_{\mathbf{r}}^{n} \tau_{\mathbf{r}, \alpha}^{-n}(\mathbf{x}) .
$$

A $1 / 2-$ SRS is also called symmetric SRS.
Theorem (St-Thuswaldner)
Let $\mathbf{r}=\left(\frac{a_{d}}{a_{0}}, \frac{a_{d-1}}{a_{0}}, \ldots, \frac{a_{1}}{a_{0}}\right) \in \mathbb{Q}^{d}$ be such that $\varrho\left(M_{\mathbf{r}}\right)<1$ and $a_{d} X^{d}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X]$ is irreducible.
Then $\left\{\mathcal{T}_{\mathbf{r}, 1 / 2}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{d}\right\}$ forms a weak tiling of \mathbb{R}^{d}, and these \mathbf{r} are dense in $\left\{\mathbf{r} \in \mathbb{R}^{d} \mid \varrho\left(M_{\mathbf{r}}\right)<1\right\}$.
Theorem (Kalle-St)
Let β be the smallest Pisot number $\left(\beta^{3}=\beta+1\right), \mathbf{r}=(1 / \beta, \beta)$, or the Tribonacci number $\left(\beta^{3}=\beta^{2}+\beta+1\right), \mathbf{r}=(1 / \beta, \beta-1)$, then $\left\{\mathcal{T}_{\mathbf{r}, 1 / 2}(\mathbf{x}) \mid \mathbf{x} \in \mathbb{Z}^{2}\right\}$ forms a 2-tiling of \mathbb{R}^{2}.

Double tiling for a symmetric SRS

$$
\beta^{3}=\beta^{2}+\beta+1, \mathbf{r}=(1 / \beta, \beta-1), \alpha=1 / 2
$$

Tiling for a symmetric SRS

