# Coincidences of lattices and beyond 

# Manuel Loquias and Peter Zeiner 

University of Bielefeld
Bielefeld, Germany

## Coincidence Site Modules

## Affine Coincidences and Shifted Lattices

## Coincidences of Multilattices

## Brief historical overview

mid sixties: CSLs - grain boundaries
Ranganathan, Bollmann, Grimmer, ...
mid ninties: quasicrystals $\rightarrow$ CSM
Baake, Pleasants, Warrington, ...
2002: Quantizing Using Lattice Intersections
Sloane, Beferull-Lozano
2005: Zou: Cartan-Dieudonné
1997-present: Aragón, Rodriguez et.al.: Clifford algebras
20xy: Baake, Grimm, Heuer, Moody, Pleasants, Scharlau, Loquias,
Glied, Huck, PZ,...

## Coincidence Site Modules

## Coincidence Site Modules

## Affine Coincidences and Shifted Lattices

## Coincidences of Multilattices

## Modules and Lattices

- module $M$ :

$$
M=:\left\langle t_{1}, \ldots, t_{r}\right\rangle_{\mathbb{Z}}=\left\{n_{1} t_{1}+\ldots+n_{r} t_{r}\right\} \subseteq \mathbb{R}^{d}
$$

with $t_{1}, \ldots, t_{r} \in \mathbb{R}^{d}$ rationally independent,
$\left\langle t_{1}, \ldots, t_{r}\right\rangle_{\mathbb{R}}=\mathbb{R}^{d}, k \geq d$

- lattice $\Gamma:=$ module with $k=d$
- submodule $M_{1} \subseteq M$ : full rank $k \Longleftrightarrow\left[M: M_{1}\right]$ is finite


## Commensurate Modules

## Lemma

The following are equivalent:

- $M_{1}$ and $M_{2}$ are commensurate.
- $M_{1} \cap M_{2}$ is a submodule of both $M_{1}$ and $M_{2}$.
- $M_{1} \cap M_{2}$ is a submodule of $M_{1}$ or $M_{2}$.
- There exists an $m \in \mathbb{N}$ such that $m M_{1} \subseteq M_{2}$ and $m M_{2} \subseteq M_{1}$.
- There exists an $m \in \mathbb{N}$ such that $m M_{1} \subseteq M_{2}$ or $m M_{2} \subseteq M_{1}$.


## Ordinary CSMs

## Definition

Let $M \subset \mathbb{R}^{d}$ be a module, $R \in O(d)$. Then

$$
M(R):=M \cap R M
$$

is called a (simple,ordinary) coincidence site module (CSM),
if $M$ and $R M$ are commensurate. The index

$$
\Sigma_{M}(R):=[M: M(R)]<\infty
$$

is called coincidence index.



## Example: Ammann-Beenker tiling



Manuel Loquias and Peter Zeiner
Coincidences of lattices and beyond

$R$ the rotation about the center by $\theta=\tan ^{-1}(-2 \sqrt{2}) \approx 109.5^{\circ}, \Sigma(R)=9$

## Coincidence isometries

## Lemma

The set of all coincidence isometries

$$
O C(M):=\left\{R \in O(d) \mid \Sigma_{M}(R)<\infty\right\}
$$

forms a group, a subgroup of $O(d)$.

## Ordinary CSLs

If $M=\Gamma$ then

$$
\begin{aligned}
& \Sigma_{\Gamma}(R)=\frac{\operatorname{vol}(\Gamma(R))}{\operatorname{vol}(\Gamma)}=\frac{\operatorname{dens}(\Gamma)}{\operatorname{dens}(\Gamma(R))} \\
& O C(\Gamma)=O C\left(\Gamma^{*}\right) \\
& \Sigma_{\Gamma}(R)=\Sigma_{\Gamma^{*}}(R)
\end{aligned}
$$

## Symmetry Operations

## Lemma

The following are equivalent:

1. $R \in P(M)$
2. $\Sigma_{M}(R)=1$

## Corollary

$P(M)=\left\{R \in O C(M) \mid \Sigma_{M}(R)=1\right\} \subseteq O C(M)$

## Properties of the Coincidence Index

Assume

- $M=\Gamma$
- $M$ satisfies $[M: M(R)]=[R M: M(R)]$ for all $R$


## Lemma

For any coincidence isometry $R$

$$
\Sigma_{M}(R)=\Sigma_{M}\left(R^{-1}\right)
$$

## Coincidences of Sublattices

## Lemma

Let $M_{1} \subseteq M$ with index $m:=\left[M: M_{1}\right]$. Then

$$
O C\left(M_{1}\right)=O C(M)
$$

Let $\Sigma_{1}(R)$ be the coincidence index with respect to $M_{1}$. Then

$$
\begin{gathered}
\Sigma(R) \mid m \Sigma_{1}(R) \\
\Sigma_{1}(R) \mid m \Sigma(R)
\end{gathered}
$$

## Coincidence rotations of $\mathbb{Z}[i]$

coincidence rotations

$$
e^{i \varphi}=\varepsilon \frac{z}{\bar{z}}=\varepsilon \prod_{p \equiv 1(4)}\left(\frac{\omega_{p}}{\bar{\omega}_{p}}\right)^{n_{p}}
$$

$\varepsilon$ unit, only finitely many $n_{p} \neq 0$
coincidence index

$$
\Sigma\left(e^{i \varphi}\right)=\prod_{p \equiv 1(4)} p^{\left|n_{p}\right|}
$$

spectrum
set of all integers that contain only prime factors $p \equiv 1(\bmod 4)$.

## CSLs of $\mathbb{Z}[i]$

$$
\omega(\varphi):=\prod_{\substack{p=1 \\ p_{p}(4)}} \omega_{\substack{p_{p} \\ p_{0}}}^{\substack{p=1(4) \\ p_{p}<0}} \mid \tilde{\omega}_{p}^{r_{p}}
$$

CSLs

$$
\mathbb{Z}[i] \cap e^{i \varphi} \mathbb{Z}[i]=\omega(\varphi) \mathbb{Z}[i]
$$

## Example - Square lattice

## number of CSLs

$$
\begin{aligned}
\Phi(s) & =\sum_{m=1}^{\infty} \frac{f(m)}{m^{s}}=\prod_{p \equiv 1(4)} \frac{1+p^{-s}}{1-p^{-s}} \\
& =1+\frac{2}{5^{s}}+\frac{2}{13^{s}}+\frac{2}{17^{s}}+\frac{2}{25^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}}+\frac{2}{41^{s}} \\
& +\frac{2}{53^{s}}+\frac{2}{61^{s}}+\frac{4}{65^{s}}+\frac{2}{73^{s}}+\ldots
\end{aligned}
$$

## Known CSLs

- Square lattice, hexagonal lattice
- certain planar modules with $N$-fold symmetry
- cubic lattices and related modules
- hypercubic lattices
- $A_{4}$-lattice, ring of icosians


## Affine Coincidences and Shifted Lattices

## Coincidence Site Modules

## Affine Coincidences and Shifted Lattices

## Coincidences of Multilattices

## Affine Coincidences of Modules

## Definition

Let $M \subset \mathbb{R}^{d}$ be a module, $R \in O(d), v \in \mathbb{R}^{d}$. Then

$$
M(v, R):=M \cap(v, R) M
$$

is called an affine coincidence site module (CSM),
if $M(v, R)$ is an (affine) submodule of full rank.
$(v, R)$ is called an affine coincidence isometry.

## Affine Coincidences of Modules

Theorem
$A C(M)=\{(v, R): R \in O C(M)$ and $v \in M+R M\}$
Remark
$A C(M)$ is not a group in general.

## Affine Coincidences of Lattices

Grimmer 1974

$$
A C(\Gamma)=\{(v, R): R \in O C(\Gamma) \text { and } v \in \Gamma+R \Gamma\}
$$

$\Gamma+R \Gamma \ldots$ DSC lattice

## Coincidences of shifted lattices

## Linear coincidences of shifted lattices:

$$
(x+\Gamma) \cap R(x+\Gamma)
$$

Theorem
$O C(x+\Gamma)=\{R \in O C(\Gamma): R x-x \in \Gamma+R \Gamma\}$

- In general, $O C(x+\Gamma)$ is not a group.
- Problem: Product of coincidence isometries need not be a
coincidence isometry


## Coincidences of shifted lattices

## Linear coincidences of shifted lattices:

$$
(x+\Gamma) \cap R(x+\Gamma)
$$

Theorem
$O C(x+\Gamma)=\{R \in O C(\Gamma): R x-x \in \Gamma+R \Gamma\}$

- In general, $O C(x+\Gamma)$ is not a group.
- Problem: Product of coincidence isometries need not be a coincidence isometry


## Groupoid

## Definition

$\left(G,{ }^{-1}, *\right)$, with ${ }^{-1}: G \rightarrow G$ and $*: G \times G \rightarrow G$ a partial function, is called a groupoid, if

- $(a * b) * c=a *(b * c)$ if $a * b$ and $b * c$ are defined.
- $a^{-1} * a$ and $a * a^{-1}$ are defined.
- $a * b * b^{-1}=a, a^{-1} * a * b=b$, if $a * b$ is defined.

Theorem
$O C(x+\Gamma)$ is a groupoid $\Longleftrightarrow O C(x+\Gamma)$ is a group

## Coincidence isometries of $x+\mathbb{Z}[i]$

## Theorem

Let $\Gamma=\mathbb{Z}[i]$ and $x \in \mathbb{C}$.

1. $\operatorname{SOC}(x+\Gamma)$ is a subgroup of $\operatorname{SOC}(\Gamma)$
2. $O C(x+\Gamma)$ is a subgroup of $O C(\Gamma)$ if and only if for any $T_{1}$, $T_{2} \in O C(x+\Gamma) \backslash S O C(x+\Gamma), T_{1} T_{2} \in S O C(x+\Gamma)$

## Coincidence isometries of $x+\mathbb{Z}[i]$

- $x=\frac{r}{q}$ where $r, q \in \mathbb{Z}[i], r$ and $q$ relatively prime


## Lemma

If $q$ has no prime factor $\omega_{p}$, then $O C(x+\Gamma)$ is a group.

## Coincidence rotations of $x+\mathbb{Z}[i]$

## Lemma

- $\operatorname{SOC}(x+\Gamma)=\operatorname{SOC}\left(\frac{1}{q}+\Gamma\right)$
- $\operatorname{SOC}\left(\frac{1}{q_{2}}+\Gamma\right) \subseteq \operatorname{SOC}\left(\frac{1}{q_{1}}+\Gamma\right)$ if $q_{1} \mid q_{2}$
- $\operatorname{SOC}\left(\frac{1}{q_{1} q_{2}}+\Gamma\right)=\operatorname{SOC}\left(\frac{1}{q_{1}}+\Gamma\right) \cap \operatorname{SOC}\left(\frac{1}{q_{2}}+\Gamma\right)$
if $q_{1}$ and $q_{2}$ are relatively prime
- $\operatorname{SOC}\left(\frac{1}{q}+\Gamma\right)=\operatorname{SOC}\left(\frac{1}{\bar{q}}+\Gamma\right)=\operatorname{SOC}\left(\frac{1}{\operatorname{cm}(q, \bar{q})}+\Gamma\right)$


## Example:



- $x_{0}=\frac{1}{5}, \frac{2}{5}$ and $x_{1}=\frac{1}{5}+\frac{1}{5} i, \frac{2}{5}+\frac{2}{5} i \Rightarrow q=5$
- $\operatorname{SOC}\left(x_{0}+\Gamma\right)=\operatorname{SOC}\left(x_{1}+\Gamma\right)=\operatorname{SOC}\left(\frac{1}{5}+\Gamma\right)$
- $O C\left(x_{0}+\Gamma\right)$ and $O C\left(x_{1}+\Gamma\right)$ are groups


## Example:

$$
\begin{aligned}
\Phi_{x}(s)= & \frac{1-5^{-s}}{1+5^{-s}} \Phi(s) \\
= & 1+\frac{2}{13^{s}}+\frac{2}{17^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}}+\frac{2}{41^{s}}+\frac{2}{5^{s}}+\frac{2}{61^{s}}+\frac{2}{73^{s}}+\ldots \\
\Phi(s)= & 1+\frac{2}{5^{s}}+\frac{2}{11^{s}}+\frac{2}{17^{s}}+\frac{2}{25^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}}+\frac{2}{41^{s}}+\frac{2}{53^{s}} \\
& +\frac{2}{61^{s}}+\frac{4}{65^{s}}+\frac{2}{73^{s}}+\ldots \\
= & \prod_{p \equiv 1(4)} \frac{1+p^{-s}}{1-p^{-s}}
\end{aligned}
$$

## Example:



- $x=\frac{2}{5}+\frac{1}{5} i=\frac{i}{1+2 i} \Rightarrow q=1+2 i$
- $\operatorname{SOC}(x+\Gamma)=\operatorname{SOC}\left(\frac{1}{1+2 i}+\Gamma\right)=\operatorname{SOC}\left(\frac{1}{5}+\Gamma\right)$
- $O C(x+\Gamma)$ is NOT a group!


## Example:

$$
\begin{aligned}
\Phi_{x}(s)= & \frac{1}{1+5^{-s}} \Phi(s) \\
= & 1+\frac{1}{5^{s}}+\frac{2}{13^{s}}+\frac{2}{17^{s}}+\frac{1}{25^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}}+\frac{2}{41^{s}}+\frac{2}{53^{s}} \\
& +\frac{2}{61^{s}}+\frac{2}{65^{s}}+\frac{2}{73^{s}}+\ldots \\
\Phi(s)= & 1+\frac{2}{5^{s}}+\frac{2}{13^{s}}+\frac{2}{17^{s}}+\frac{2}{25^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}}+\frac{2}{41^{s}}+\frac{2}{53^{s}} \\
& +\frac{2}{61^{s}}+\frac{4}{65^{s}}+\frac{2}{73^{s}}+\ldots \\
\Psi_{x}(s)= & 1+\frac{4}{5^{s}}+\frac{2}{13^{s}}+\frac{2}{17^{s}}+\frac{4}{25^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}}+\frac{2}{41^{s}}+\frac{2}{53^{s}} \\
& +\frac{2}{61^{s}}+\frac{8}{65^{s}}+\frac{2}{73^{s}}+\ldots \\
= & \frac{1+3 \cdot 5^{-s}}{1+5^{-s}} \Phi(s)
\end{aligned}
$$

## Coincidence rotations of $x+\mathbb{Z}\left[\xi_{n}\right]$

$M_{n}=\mathbb{Z}\left[\xi_{n}\right]$ with class number 1

## Lemma

- $\operatorname{SOC}\left(\frac{r}{q}+M_{n}\right)=\operatorname{SOC}\left(\frac{1}{q}+M_{n}\right)$
- $\operatorname{SOC}\left(\frac{1}{q_{2}}+M_{n}\right) \subseteq \operatorname{SOC}\left(\frac{1}{q_{1}}+M_{n}\right)$ if $q_{1} \mid q_{2}$
- $\operatorname{SOC}\left(\frac{1}{q_{1} q_{2}}+M_{n}\right)=\operatorname{SOC}\left(\frac{1}{q_{1}}+M_{n}\right) \cap \operatorname{SOC}\left(\frac{1}{q_{2}}+M_{n}\right)$
if $q_{1}$ and $q_{2}$ are relatively prime
$-\operatorname{SOC}\left(\frac{1}{q}+M_{n}\right)=\operatorname{SOC}\left(\frac{1}{\bar{q}}+M_{n}\right)=\operatorname{SOC}\left(\frac{1}{\operatorname{lcm}(q, \bar{q})}+M_{n}\right)$


## Coincidences of Multilattices

## Coincidence Site Modules

Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

## Multilattices

## Multilattice

$L=\bigcup_{i=0}^{n-1}\left(x_{i}+\Gamma\right) \quad$ with $x_{0}=0$

## Coincidences

$L(R):=L \cap R L$
$R$ coincidence isometry $\Longleftrightarrow \Sigma_{L}(R):=\frac{\operatorname{dens}(L)}{\operatorname{dens}(L(R))}$ is finite $O C(L):=\left\{R \in O(d) \mid \Sigma_{L}(R)<\infty\right\}$

## Lemma

- $\left(x_{i}+\Gamma\right) \cap R\left(x_{j}+\Gamma\right)$ is an affine sublattice of $x_{i}+\Gamma$ (or $R\left(x_{j}+\Gamma\right)$ ) if and only if $R \in O C(\Gamma)$ and $R x_{j}-x_{i} \in \Gamma+R \Gamma$
- $\left(x_{i}+\Gamma\right) \cap R\left(x_{j}+\Gamma\right)=x_{i}+t_{i j}+\Gamma(R)$ with $t_{i j} \in \Gamma$


## Coincidences of Multilattices

## Theorem

- $O C(L)=O C(\Gamma)$
- Let $K:=\left\{(i, j): R x_{j}-x_{i} \in \Gamma+R \Gamma\right\}$. Then:
$\Sigma_{L}(R)=\frac{n}{|K|} \Sigma_{\Gamma}(R)$
$L(R)=\bigcup_{(i, j) \in K}\left(x_{i}+t_{i j}+\Gamma(R)\right)$


## Example $n=2$

$$
\begin{aligned}
& L=\Gamma \cup(x+\Gamma) \\
& \text { 1. } \Sigma_{L}(R)=2 \Sigma_{\Gamma}(R) \Longleftrightarrow x, R x, R x-x \notin \Gamma+R \Gamma \\
& \text { 2. } \Sigma_{L}(R)=\frac{1}{2} \Sigma_{\Gamma}(R) \Longleftrightarrow x, R x, R x-x \in \Gamma+R \Gamma \\
& \text { 3. } \Sigma_{L}(R)=\Sigma_{\Gamma}(R) \Longleftrightarrow \text { exactly one of } x, R x, R x-x \text { in } \Gamma+R \Gamma
\end{aligned}
$$

## Example: diamond packing

$$
L=\Gamma_{f c c} \cup\left(\frac{1}{4}(1,1,1)+\Gamma_{f c c}\right)
$$



## Example: diamond packing

$$
\begin{aligned}
\Sigma_{L}(R) & =\Sigma_{f c c}(R), 2 \Sigma_{f c c}(R) \\
\Phi_{L}(s) & =\left(1+2^{-s}\right) \Phi_{f c c}(s)=\left(1-2^{1-s}\right) \prod_{p} \frac{1+p^{-s}}{1-p^{1-s}} \\
& =1+\frac{1}{2^{s}}+\frac{4}{3^{s}}+\frac{6}{5^{s}}+\frac{4}{6^{s}}+\frac{8}{7^{s}}+\frac{12}{9^{s}}+\frac{6}{10^{s}}+\frac{12}{11^{s}}+\frac{14}{13^{s}}+\ldots \\
\Phi_{f c c}(s) & =\frac{1-2^{1-s}}{1+2^{-s}} \frac{\zeta(s) \zeta(s-1)}{\zeta(2 s)}=\prod_{p \neq 2} \frac{1+p^{-s}}{1-p^{1-s}} \\
& =1+\frac{4}{3^{s}}+\frac{6}{5^{s}}+\frac{8}{7^{s}}+\frac{12}{9^{s}}+\frac{12}{11^{s}}+\frac{14}{13^{s}}+\frac{24}{15^{s}}+\frac{18}{17^{s}}+\ldots
\end{aligned}
$$

## Example: lattice - sublattice relations

$$
\begin{aligned}
& \Gamma_{2} \subseteq \Gamma_{1} \\
& \Gamma_{1}=\bigcup_{i=0}^{m-1}\left(x_{i}+\Gamma_{2}\right)
\end{aligned}
$$



## Example: lattice - sublattice relations

$$
\begin{aligned}
& \Gamma_{2} \subseteq \Gamma_{1} \\
& \Gamma_{1}=\bigcup_{i=0}^{m-1}\left(x_{i}+\Gamma_{2}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
D=\left\{j: R x_{j} \in \Gamma_{2}+R \Gamma_{2}\right\} & I=\left\{i: \exists x_{j}: R x_{j}-x_{i} \in \Gamma_{2}+R \Gamma_{2}\right\} \\
E=\left\{i: x_{i} \in \Gamma_{2}+R \Gamma_{2}\right\} & J=\left\{j: \exists x_{i}: R x_{j}-x_{i} \in \Gamma_{2}+R \Gamma_{2}\right\}
\end{array}
$$

## Example: lattice - sublattice relations

## Theorem

$$
\Sigma_{2}(R)=\frac{|D||I|}{m} \Sigma_{1}(R)=\frac{|E||J|}{m} \Sigma_{1}(R)
$$

Lemma


## Example: lattice - sublattice relations

## Theorem

$$
\Sigma_{2}(R)=\frac{|D||I|}{m} \Sigma_{1}(R)=\frac{|E||J|}{m} \Sigma_{1}(R)
$$

## Lemma

$u:=|D|=\left[\Gamma_{2} \cap \Gamma_{1}(R): \Gamma_{2}(R)\right] \quad t:=|I|=\left[\Gamma_{1}(R): \Gamma_{2} \cap \Gamma_{1}(R)\right]$
$v:=|E|=\left[R \Gamma_{2} \cap \Gamma_{1}(R): \Gamma_{2}(R)\right] \quad s:=|J|=\left[\Gamma_{1}(R): R \Gamma_{2} \cap \Gamma_{1}(R)\right]$
$u|s, v| t, s|m, t| m$

## sublattice diagram



## Example: rectangular lattice $\mathbb{Z} \times 4 \mathbb{Z}$

$$
\begin{array}{r}
\Gamma_{1}=\frac{1}{4} \mathbb{Z} \times \mathbb{Z} \\
\Gamma_{2}=\mathbb{Z}^{2}
\end{array}
$$



## Example: rectangular lattice $\mathbb{Z} \times 4 \mathbb{Z}$

$$
\begin{array}{r}
\Gamma_{1}=\frac{1}{4} \mathbb{Z} \times \mathbb{Z} \\
\Gamma_{2}=\mathbb{Z}^{2}
\end{array}
$$

$$
\begin{aligned}
\Phi_{\mathbb{Z} \times 4 \mathbb{Z}}(s)= & \left(1+4^{-s}\right) \Phi_{\mathbb{Z}^{2}}= \\
= & 1+\frac{1}{4^{s}}+\frac{2}{5^{s}}+\frac{2}{13^{s}}+\frac{2}{17^{s}}+\frac{2}{20^{s}}+\frac{2}{25^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}} \\
& +\frac{2}{41^{s}}+\frac{2}{52^{s}}+\frac{2}{53^{s}}+\frac{2}{61^{s}}+\frac{4}{65^{s}}+\frac{2}{68^{s}}+\frac{2}{73^{s}}+\ldots \\
\Phi_{\mathbb{Z}^{2}}(s)= & 1+\frac{2}{5^{s}}+\frac{2}{13^{s}}+\frac{2}{17^{s}}+\frac{2}{25^{s}}+\frac{2}{29^{s}}+\frac{2}{37^{s}}+\frac{2}{41^{s}}+\frac{2}{53^{s}} \\
& +\frac{2}{61^{s}}+\frac{4}{65^{s}}+\frac{2}{73^{s}}+\ldots
\end{aligned}
$$

## Example Coulorings



rotation about the origin (counterclockwise) by $\theta=\arctan \left(\frac{3}{4}\right)$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

colouring of $\Gamma_{1}\left(R^{-1}\right)$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

colouring of $\Gamma_{1}(R)$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

colouring of $\Gamma_{1}\left(R^{-1}\right)$ rotated by $R$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

colouring of $\Gamma_{1}(R)$

| $\circ$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

$$
\Gamma_{2}(R)
$$

In our example:

$$
\begin{aligned}
& \Sigma_{1}(R)=5, m=t=s=6, \text { and } u=v=2 \\
& \Rightarrow \Sigma_{2}(R)=10 .
\end{aligned}
$$

## Example: Ammann-Beenker tiling



Manuel Loquias and Peter Zeiner
Coincidences of lattices and beyond

## Example: Ammann-Beenker tiling



## Example: Ammann-Beenker tiling


$R$ the rotation about the center by $\theta=\tan ^{-1}(-2 \sqrt{2}) \approx 109.5^{\circ}, \Sigma(R)=9$

## Example: Ammann-Beenker tiling


$T_{2} \cap T_{1}\left(R^{-1}\right)$

$T_{2} \cap T_{1}(R)$

## Example: Ammann-Beenker tiling



Manuel Loquias and Peter Zeiner
Coincidences of lattices and beyond

## Thank you!

