Coincidences of lattices and beyond

Manuel Loquias and Peter Zeiner

University of Bielefeld Bielefeld, Germany

<ロト <回ト < 回ト < 回ト

Coincidence Site Modules

Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

イロン イヨン イヨン イヨン

Brief historical overview

mid sixties: CSLs - grain boundaries

Ranganathan, Bollmann, Grimmer, ...

mid ninties: quasicrystals \rightarrow CSM

Baake, Pleasants, Warrington, ...

2002: Quantizing Using Lattice Intersections

Sloane, Beferull-Lozano

2005: Zou: Cartan-Dieudonné

1997-present: Aragón, Rodriguez et.al.: Clifford algebras

20xy: Baake, Grimm, Heuer, Moody, Pleasants, Scharlau, Loquias,

Glied, Huck, PZ,...

・ロン ・回 と ・ ヨン ・ ヨン

Coincidence Site Modules

Coincidence Site Modules

Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

イロト イヨト イヨト -

Modules and Lattices

▶ module *M*:

$$M := \langle t_1, \dots, t_r \rangle_{\mathbb{Z}} = \{ n_1 t_1 + \dots + n_r t_r \} \subseteq \mathbb{R}^d$$

with $t_1, \dots, t_r \in \mathbb{R}^d$ rationally independent,
 $\langle t_1, \dots, t_r \rangle_{\mathbb{R}} = \mathbb{R}^d$, $k \ge d$

- lattice Γ := module with k = d
- ▶ submodule $M_1 \subseteq M$: full rank $k \iff [M : M_1]$ is finite

イロン イヨン イヨン イヨン

Commensurate Modules

Lemma

The following are equivalent:

- M_1 and M_2 are commensurate.
- $M_1 \cap M_2$ is a submodule of both M_1 and M_2 .
- $M_1 \cap M_2$ is a submodule of M_1 or M_2 .
- There exists an $m \in \mathbb{N}$ such that $mM_1 \subseteq M_2$ and $mM_2 \subseteq M_1$.
- There exists an $m \in \mathbb{N}$ such that $mM_1 \subseteq M_2$ or $mM_2 \subseteq M_1$.

イロト イポト イヨト イヨト

Ordinary CSMs

Definition

Let $M \subset \mathbb{R}^d$ be a module, $R \in O(d)$. Then

 $M(R) := M \cap RM$

is called a (simple,ordinary) *coincidence site module* (CSM), if *M* and *RM* are commensurate. The index

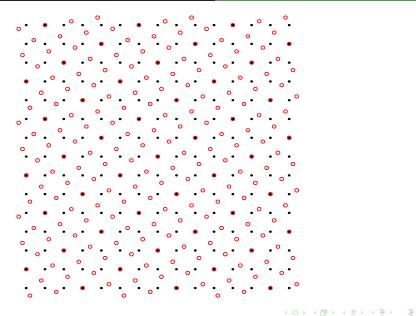
$$\Sigma_M(R) := [M:M(R)] < \infty$$

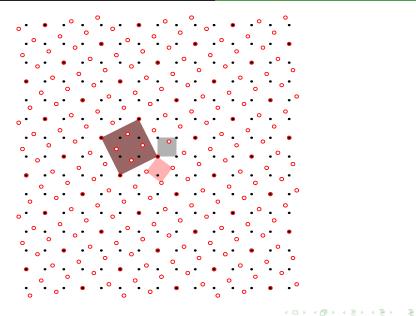
is called *coincidence index*.

イロト イポト イヨト イヨト

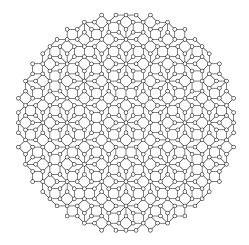
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣



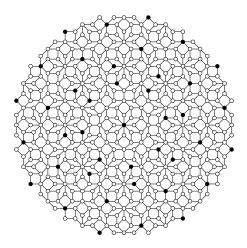


Example: Ammann-Beenker tiling



ヘロン 人間 とくほど 人間 と

Э



R the rotation about the center by $\theta = \tan^{-1}\left(-2\sqrt{2}\right) \approx 109.5^{\circ}$, $\Sigma(R) = 9$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coincidence isometries

Lemma

The set of all coincidence isometries

$$OC(M) := \{R \in O(d) | \Sigma_M(R) < \infty\}$$

forms a group, a subgroup of O(d).

イロト イポト イラト イラト

Ordinary CSLs

If $M = \Gamma$ then

$$\Sigma_{\Gamma}(R) = \frac{\operatorname{vol}(\Gamma(R))}{\operatorname{vol}(\Gamma)} = \frac{\operatorname{dens}(\Gamma)}{\operatorname{dens}(\Gamma(R))}$$
$$OC(\Gamma) = OC(\Gamma^*)$$
$$\Sigma_{\Gamma}(R) = \Sigma_{\Gamma^*}(R)$$

イロト イポト イヨト イヨト 二日

Symmetry Operations

Lemma

The following are equivalent:

- 1. $R \in P(M)$
- 2. $\Sigma_M(R) = 1$

Corollary

```
P(M) = \{R \in OC(M) | \Sigma_M(R) = 1\} \subseteq OC(M)
```

イロト イポト イヨト イヨト

Properties of the Coincidence Index

Assume

► M = Γ

• M satisfies [M : M(R)] = [RM : M(R)] for all R

Lemma

For any coincidence isometry R

$$\Sigma_M(R) = \Sigma_M(R^{-1}).$$

・ロト ・回ト ・ヨト ・ヨト

Coincidences of Sublattices

Lemma

Let $M_1 \subseteq M$ with index $m := [M : M_1]$. Then

 $OC(M_1) = OC(M).$

Let $\Sigma_1(R)$ be the coincidence index with respect to M_1 . Then

 $\Sigma(R) \mid m\Sigma_1(R)$ $\Sigma_1(R) \mid m\Sigma(R).$

(ロ) (同) (E) (E) (E)

Coincidence rotations of $\mathbb{Z}[i]$

coincidence rotations

$$e^{i\varphi} = \varepsilon \frac{z}{\bar{z}} = \varepsilon \prod_{p \equiv 1(4)} \left(\frac{\omega_p}{\bar{\omega}_p}\right)^{n_p}$$

 ε unit, only finitely many $n_p \neq 0$

coincidence index

$$\Sigma(e^{iarphi}) = \prod_{p\equiv 1\,(4)} p^{|n_p|}$$

spectrum

set of all integers that contain only prime factors $p \equiv 1 \pmod{4}$.

イロト イポト イヨト イヨト

CSLs of $\mathbb{Z}[i]$

$$\omega(\varphi) := \prod_{\substack{p \equiv 1 \, (4) \\ n_p > 0}} \omega_p^{n_p} \prod_{\substack{p \equiv 1 \, (4) \\ n_p < 0}} \bar{\omega}_p^{n_p}$$

CSLs

$$\mathbb{Z}[i] \cap e^{i\varphi}\mathbb{Z}[i] = \omega(\varphi)\mathbb{Z}[i]$$

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Example – Square lattice

number of CSLs

$$\Phi(s) = \sum_{m=1}^{\infty} \frac{f(m)}{m^s} = \prod_{p \equiv 1(4)} \frac{1+p^{-s}}{1-p^{-s}}$$
$$= 1 + \frac{2}{5^s} + \frac{2}{13^s} + \frac{2}{17^s} + \frac{2}{25^s} + \frac{2}{29^s} + \frac{2}{37^s} + \frac{2}{41^s}$$
$$+ \frac{2}{53^s} + \frac{2}{61^s} + \frac{4}{65^s} + \frac{2}{73^s} + \dots$$

イロト イロト イヨト イヨト 三日

Known CSLs

- Square lattice, hexagonal lattice
- certain planar modules with N-fold symmetry
- cubic lattices and related modules
- hypercubic lattices
- ► A₄-lattice, ring of icosians

Affine Coincidences and Shifted Lattices

Coincidence Site Modules

Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

Manuel Loquias and Peter Zeiner Coincidences of lattices and beyond

イロト イポト イヨト イヨト

Affine Coincidences of Modules

Definition

Let $M \subset \mathbb{R}^d$ be a module, $R \in O(d)$, $v \in \mathbb{R}^d$. Then

$$M(v,R) := M \cap (v,R)M$$

is called an *affine coincidence site module* (CSM), if M(v, R) is an (affine) submodule of full rank. (v, R) is called an affine coincidence isometry.

・ロン ・回 と ・ ヨン ・ ヨン

Affine Coincidences of Modules

Theorem

$$AC(M) = \{(v, R) : R \in OC(M) \text{ and } v \in M + RM\}$$

Remark

AC(M) is not a group in general.

・ロト ・回ト ・ヨト ・ヨト

Affine Coincidences of Lattices

Grimmer 1974

$$AC(\Gamma) = \{(v, R) : R \in OC(\Gamma) \text{ and } v \in \Gamma + R\Gamma\}$$

 $\Gamma + R\Gamma \dots DSC$ lattice

イロン イヨン イヨン イヨン

Coincidences of shifted lattices

Linear coincidences of shifted lattices:

 $(x + \Gamma) \cap R(x + \Gamma)$

Theorem

 $OC(x + \Gamma) = \{R \in OC(\Gamma) : Rx - x \in \Gamma + R\Gamma\}$

• In general, $OC(x + \Gamma)$ is not a group.

 Problem: Product of coincidence isometries need not be a coincidence isometry

・ロト ・回ト ・ヨト ・ヨト

Coincidences of shifted lattices

Linear coincidences of shifted lattices:

 $(x + \Gamma) \cap R(x + \Gamma)$

Theorem

 $OC(x + \Gamma) = \{R \in OC(\Gamma) : Rx - x \in \Gamma + R\Gamma\}$

- In general, $OC(x + \Gamma)$ is not a group.
- Problem: Product of coincidence isometries need not be a coincidence isometry

・ロット (日本) (日本) (日本)

Groupoid

Definition

$$(G,^{-1},*)$$
, with $^{-1}: G \to G$ and $*: G \times G \to G$ a partial function, is called a *groupoid*, if

•
$$(a * b) * c = a * (b * c)$$
 if $a * b$ and $b * c$ are defined.

•
$$a^{-1} * a$$
 and $a * a^{-1}$ are defined.

•
$$a * b * b^{-1} = a$$
, $a^{-1} * a * b = b$, if $a * b$ is defined.

・ロン ・回 と ・ ヨン ・ ヨン

E

Theorem

$OC(x + \Gamma)$ is a groupoid $\iff OC(x + \Gamma)$ is a group

Manuel Loquias and Peter Zeiner Coincidences of lattices and beyond

イロト イヨト イヨト イヨト

Coincidence isometries of $x + \mathbb{Z}[i]$

Theorem

- Let $\Gamma = \mathbb{Z}[i]$ and $x \in \mathbb{C}$.
 - 1. $SOC(x + \Gamma)$ is a subgroup of $SOC(\Gamma)$
 - 2. $OC(x + \Gamma)$ is a subgroup of $OC(\Gamma)$ if and only if for any T_1 , $T_2 \in OC(x + \Gamma) \setminus SOC(x + \Gamma)$, $T_1T_2 \in SOC(x + \Gamma)$

イロト イポト イヨト イヨト

Coincidence isometries of $x + \mathbb{Z}[i]$

•
$$x = \frac{r}{q}$$
 where $r, q \in \mathbb{Z}[i]$, r and q relatively prime

Lemma

If q has no prime factor ω_p , then $OC(x + \Gamma)$ is a group.

・ロン ・四 と ・ ヨ と ・ ヨ と

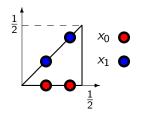
Coincidence rotations of $x + \mathbb{Z}[i]$

Lemma

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Э

Example:



- $x_0 = \frac{1}{5}, \frac{2}{5}$ and $x_1 = \frac{1}{5} + \frac{1}{5}i, \frac{2}{5} + \frac{2}{5}i \Rightarrow q = 5$
- ► $SOC(x_0 + \Gamma) = SOC(x_1 + \Gamma) = SOC(\frac{1}{5} + \Gamma)$
- $OC(x_0 + \Gamma)$ and $OC(x_1 + \Gamma)$ are groups

イロト イヨト イヨト -

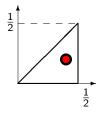
Example:

$$\begin{split} \Phi_{x}(s) &= \frac{1-5^{-s}}{1+5^{-s}} \Phi(s) \\ &= 1 + \frac{2}{13^{s}} + \frac{2}{17^{s}} + \frac{2}{29^{s}} + \frac{2}{37^{s}} + \frac{2}{41^{s}} + \frac{2}{53^{s}} + \frac{2}{61^{s}} + \frac{2}{73^{s}} + \dots \\ \Phi(s) &= 1 + \frac{2}{5^{s}} + \frac{2}{13^{s}} + \frac{2}{17^{s}} + \frac{2}{25^{s}} + \frac{2}{29^{s}} + \frac{2}{37^{s}} + \frac{2}{41^{s}} + \frac{2}{53^{s}} \\ &+ \frac{2}{61^{s}} + \frac{4}{65^{s}} + \frac{2}{73^{s}} + \dots \\ &= \prod_{p \equiv 1(4)} \frac{1+p^{-s}}{1-p^{-s}} \end{split}$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

E

Example:



►
$$x = \frac{2}{5} + \frac{1}{5}i = \frac{i}{1+2i} \Rightarrow q = 1+2i$$

► $SOC(x + \Gamma) = SOC\left(\frac{1}{1+2i} + \Gamma\right) = SOC\left(\frac{1}{5} + \Gamma\right)$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

E

Example:

$$\begin{split} \Phi_{\mathsf{x}}(s) &= \frac{1}{1+5^{-s}} \Phi(s) \\ &= 1 + \frac{1}{5^{s}} + \frac{2}{13^{s}} + \frac{2}{17^{s}} + \frac{1}{25^{s}} + \frac{2}{29^{s}} + \frac{2}{37^{s}} + \frac{2}{41^{s}} + \frac{2}{53^{s}} \\ &+ \frac{2}{61^{s}} + \frac{2}{65^{s}} + \frac{2}{73^{s}} + \dots \\ \Phi(s) &= 1 + \frac{2}{5^{s}} + \frac{2}{13^{s}} + \frac{2}{17^{s}} + \frac{2}{25^{s}} + \frac{2}{29^{s}} + \frac{2}{37^{s}} + \frac{2}{41^{s}} + \frac{2}{53^{s}} \\ &+ \frac{2}{61^{s}} + \frac{4}{65^{s}} + \frac{2}{73^{s}} + \dots \\ \Psi_{\mathsf{x}}(s) &= 1 + \frac{4}{5^{s}} + \frac{2}{13^{s}} + \frac{2}{17^{s}} + \frac{4}{25^{s}} + \frac{2}{29^{s}} + \frac{2}{37^{s}} + \frac{2}{41^{s}} + \frac{2}{53^{s}} \\ &+ \frac{2}{61^{s}} + \frac{8}{65^{s}} + \frac{2}{73^{s}} + \dots \\ &= \frac{1+3\cdot 5^{-s}}{1+5^{-s}} \Phi(s) \end{split}$$

æ

Coincidence rotations of $x + \mathbb{Z}[\xi_n]$

 $M_n = \mathbb{Z}[\xi_n]$ with class number 1

Lemma

・ロト ・回ト ・ヨト ・ヨト

Coincidences of Multilattices

Coincidence Site Modules

Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

イロト イポト イヨト イヨト

Multilattices

Multilattice

$$L = \bigcup_{i=0}^{n-1} (x_i + \Gamma) \quad \text{with } x_0 = 0$$

Coincidences

 $L(R) := L \cap RL$

 $\begin{array}{l} R \text{ coincidence isometry} \iff \Sigma_L(R) := \frac{\operatorname{dens}(L)}{\operatorname{dens}(L(R))} \text{ is finite} \\ OC(L) := \{R \in O(d) \big| \Sigma_L(R) < \infty\} \end{array}$

・ロト ・回ト ・ヨト ・ヨト

Lemma

(x_i + Γ) ∩ R(x_j + Γ) is an affine sublattice of x_i + Γ (or R(x_j + Γ)) if and only if R ∈ OC(Γ) and Rx_j - x_i ∈ Γ + RΓ
(x_i + Γ) ∩ R(x_j + Γ) = x_i + t_{ij} + Γ(R) with t_{ij} ∈ Γ

(ロ) (同) (E) (E) (E)

Coincidences of Multilattices

Theorem

•
$$OC(L) = OC(\Gamma)$$

• Let $K := \{(i, j) : Rx_j - x_i \in \Gamma + R\Gamma\}$. Then:
 $\Sigma_L(R) = \frac{n}{|K|} \Sigma_{\Gamma}(R)$
 $L(R) = \bigcup_{(i,j) \in K} (x_i + t_{ij} + \Gamma(R))$

イロト イヨト イヨト イヨト

Example n = 2

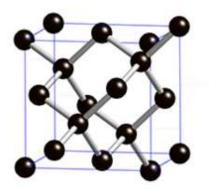
$$L = \Gamma \cup (x + \Gamma)$$

1. $\Sigma_L(R) = 2\Sigma_{\Gamma}(R) \iff x, Rx, Rx - x \notin \Gamma + R\Gamma$
2. $\Sigma_L(R) = \frac{1}{2}\Sigma_{\Gamma}(R) \iff x, Rx, Rx - x \in \Gamma + R\Gamma$
3. $\Sigma_L(R) = \Sigma_{\Gamma}(R) \iff$ exactly one of $x, Rx, Rx - x$ in $\Gamma + R\Gamma$

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Example: diamond packing

 $L = \Gamma_{fcc} \cup \left(\frac{1}{4}(1,1,1) + \Gamma_{fcc}\right)$



・ロト ・回ト ・ヨト ・ヨト

Example: diamond packing

$$\begin{split} \Sigma_L(R) &= \Sigma_{fcc}(R), 2\Sigma_{fcc}(R) \\ \Phi_L(s) &= (1+2^{-s}) \Phi_{fcc}(s) = (1-2^{1-s}) \prod_p \frac{1+p^{-s}}{1-p^{1-s}} \\ &= 1+\frac{1}{2^s} + \frac{4}{3^s} + \frac{6}{5^s} + \frac{4}{6^s} + \frac{8}{7^s} + \frac{12}{9^s} + \frac{6}{10^s} + \frac{12}{11^s} + \frac{14}{13^s} + \dots \\ \Phi_{fcc}(s) &= \frac{1-2^{1-s}}{1+2^{-s}} \frac{\zeta(s)\zeta(s-1)}{\zeta(2s)} = \prod_{p\neq 2} \frac{1+p^{-s}}{1-p^{1-s}} \\ &= 1+\frac{4}{3^s} + \frac{6}{5^s} + \frac{8}{7^s} + \frac{12}{9^s} + \frac{12}{11^s} + \frac{14}{13^s} + \frac{24}{15^s} + \frac{18}{17^s} + \dots \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Example: lattice - sublattice relations

$$egin{aligned} & \Gamma_2 \subseteq \Gamma_1 \ & \Gamma_1 = igcup_{i=0}^{m-1} (x_i + \Gamma_2) \end{aligned}$$

 $D = \{j : Rx_j \in \Gamma_2 + R\Gamma_2\} \quad I = \{i : \exists x_j : Rx_j - x_i \in \Gamma_2 + R\Gamma_2\}$ $E = \{i : x_i \in \Gamma_2 + R\Gamma_2\} \quad J = \{j : \exists x_i : Rx_j - x_i \in \Gamma_2 + R\Gamma_2\}$

・ロト ・回ト ・ヨト ・ヨト

Example: lattice - sublattice relations

$$egin{aligned} & \Gamma_2 \subseteq \Gamma_1 \ & \Gamma_1 = igcup_{i=0}^{m-1} (x_i + \Gamma_2) \end{aligned}$$

$$D = \{j : Rx_j \in \Gamma_2 + R\Gamma_2\} \quad I = \{i : \exists x_j : Rx_j - x_i \in \Gamma_2 + R\Gamma_2\}$$
$$E = \{i : x_i \in \Gamma_2 + R\Gamma_2\} \quad J = \{j : \exists x_i : Rx_j - x_i \in \Gamma_2 + R\Gamma_2\}$$

・ロト ・回ト ・ヨト ・ヨト

Example: lattice - sublattice relations

Theorem

$$\Sigma_2(R) = \frac{|D||I|}{m} \Sigma_1(R) = \frac{|E||J|}{m} \Sigma_1(R)$$

Lemma

 $u := |D| = [\Gamma_2 \cap \Gamma_1(R) : \Gamma_2(R)] \qquad t := |I| = [\Gamma_1(R) : \Gamma_2 \cap \Gamma_1(R)]$ $v := |E| = [R\Gamma_2 \cap \Gamma_1(R) : \Gamma_2(R)] \quad s := |J| = [\Gamma_1(R) : R\Gamma_2 \cap \Gamma_1(R)]$

 $u \mid s, v \mid t, s \mid m, t \mid m$

・ロト ・回ト ・ヨト ・ヨト

Example: lattice - sublattice relations

Theorem

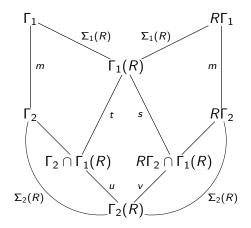
$$\Sigma_2(R) = \frac{|D||I|}{m} \Sigma_1(R) = \frac{|E||J|}{m} \Sigma_1(R)$$

Lemma

$$u := |D| = [\Gamma_2 \cap \Gamma_1(R) : \Gamma_2(R)] \qquad t := |I| = [\Gamma_1(R) : \Gamma_2 \cap \Gamma_1(R)]$$
$$v := |E| = [R\Gamma_2 \cap \Gamma_1(R) : \Gamma_2(R)] \quad s := |J| = [\Gamma_1(R) : R\Gamma_2 \cap \Gamma_1(R)]$$
$$u \mid s, v \mid t, s \mid m, t \mid m$$

・ロト ・回ト ・ヨト ・ヨト

sublattice diagram



・ロト ・回ト ・ヨト ・ヨト

Example: rectangular lattice $\mathbb{Z} \times 4\mathbb{Z}$

$$\Gamma_1 = \frac{1}{4}\mathbb{Z} \times \mathbb{Z}$$
$$\Gamma_2 = \mathbb{Z}^2$$

$$\begin{split} \Phi_{\mathbb{Z}\times 4\mathbb{Z}}(s) &= (1+4^{-s})\Phi_{\mathbb{Z}^2} = \\ &= 1 + \frac{1}{4^s} + \frac{2}{5^s} + \frac{2}{13^s} + \frac{2}{17^s} + \frac{2}{20^s} + \frac{2}{25^s} + \frac{2}{29^s} + \frac{2}{37^s} \\ &+ \frac{2}{41^s} + \frac{2}{52^s} + \frac{2}{53^s} + \frac{2}{61^s} + \frac{4}{65^s} + \frac{2}{68^s} + \frac{2}{73^s} + \dots \\ \Phi_{\mathbb{Z}^2}(s) &= 1 + \frac{2}{5^s} + \frac{2}{13^s} + \frac{2}{17^s} + \frac{2}{25^s} + \frac{2}{29^s} + \frac{2}{37^s} + \frac{2}{41^s} + \frac{2}{53^s} \\ &+ \frac{2}{61^s} + \frac{4}{65^s} + \frac{2}{73^s} + \dots \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

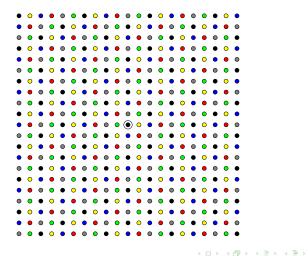
Example: rectangular lattice $\mathbb{Z} \times 4\mathbb{Z}$

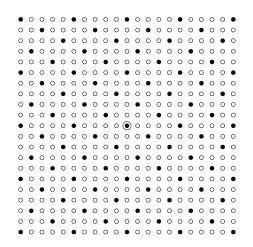
$$\Gamma_1 = \frac{1}{4}\mathbb{Z} \times \mathbb{Z}$$
$$\Gamma_2 = \mathbb{Z}^2$$

$$\begin{split} \Phi_{\mathbb{Z}\times 4\mathbb{Z}}(s) &= (1+4^{-s})\Phi_{\mathbb{Z}^2} = \\ &= 1 + \frac{1}{4^s} + \frac{2}{5^s} + \frac{2}{13^s} + \frac{2}{17^s} + \frac{2}{20^s} + \frac{2}{25^s} + \frac{2}{29^s} + \frac{2}{37^s} \\ &+ \frac{2}{41^s} + \frac{2}{52^s} + \frac{2}{53^s} + \frac{2}{61^s} + \frac{4}{65^s} + \frac{2}{68^s} + \frac{2}{73^s} + \dots \\ \Phi_{\mathbb{Z}^2}(s) &= 1 + \frac{2}{5^s} + \frac{2}{13^s} + \frac{2}{17^s} + \frac{2}{25^s} + \frac{2}{29^s} + \frac{2}{37^s} + \frac{2}{41^s} + \frac{2}{53^s} \\ &+ \frac{2}{61^s} + \frac{4}{65^s} + \frac{2}{73^s} + \dots \end{split}$$

・ロン ・四 と ・ ヨ と ・ ヨ と

Example Coulorings





rotation about the origin (counterclockwise) by $\theta = \arctan\left(\frac{3}{4}\right)$

イロン 不同 とくほど 不同と

0 O 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 **0** 0 0 0 0 **0** 0 0 0 0 **0** 0 0 0 **0** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000 0 0 000 000000 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 •

colouring of $\Gamma_1(R^{-1})$

0 0 0 0 • 0 0 0 0 • 0 0 0 0 0000000000000 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 O 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0000 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 00 • 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 000 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0

colouring of $\Gamma_1(R)$

▲□ → ▲圖 → ▲ 国 → ▲ 国 → →

0000 • 0000 • 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 000 0 0000 0 0 0 0 0 o 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 0 00 • 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0 0 0 0 000000000000000000000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 • 0000 • 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0

colouring of $\Gamma_1(R^{-1})$ rotated by R

colouring of $\Gamma_1(R)$

イロン イヨン イヨン イヨン

0 0 000

 $\Gamma_2(R)$

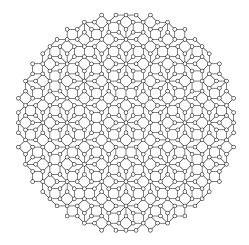
・ロト ・回ト ・ヨト ・ヨト

In our example:

$$\Sigma_1(R) = 5$$
, $m = t = s = 6$, and $u = v = 2$
 $\Rightarrow \Sigma_2(R) = 10$.

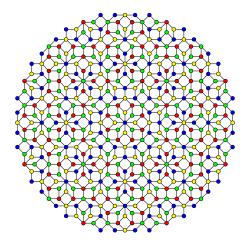
・ロト ・回ト ・ヨト ・ヨト ・ヨ

Example: Ammann-Beenker tiling



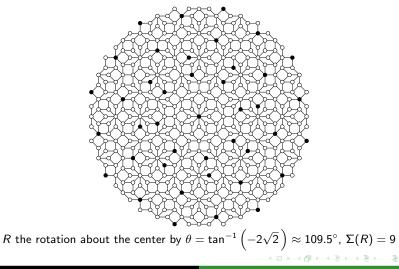
< ロ > < 回 > < 回 > < 回 > < 回 > <

Example: Ammann-Beenker tiling

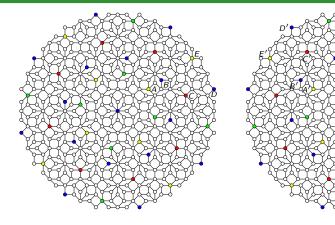


・ロト ・回ト ・ヨト ・ヨト

Example: Ammann-Beenker tiling



Example: Ammann-Beenker tiling

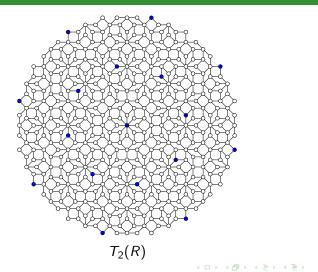


 $T_2 \cap T_1(R^{-1})$

 $T_2 \cap T_1(R)$

(ロ) (同) (E) (E) (E)

Example: Ammann-Beenker tiling



Thank you!

Manuel Loquias and Peter Zeiner Coincidences of lattices and beyond

・ロン ・御 と ・ ヨ と ・ ヨ と

E