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Brief historical overview

mid sixties: CSLs - grain boundaries

Ranganathan, Bollmann, Grimmer, . . .

mid ninties: quasicrystals → CSM

Baake, Pleasants, Warrington, . . .

2002: Quantizing Using Lattice Intersections

Sloane, Beferull–Lozano

2005: Zou: Cartan-Dieudonné

1997-present: Aragón, Rodriguez et.al.: Clifford algebras

20xy: Baake, Grimm, Heuer, Moody, Pleasants, Scharlau, Loquias,

Glied, Huck, PZ,. . .
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Modules and Lattices

◮ module M:

M =: 〈t1, . . . , tr 〉Z = {n1t1 + . . . + nr tr} ⊆ R
d

with t1, . . . , tr ∈ R
d rationally independent,

〈t1, . . . , tr 〉R = R
d , k ≥ d

◮ lattice Γ:= module with k = d

◮ submodule M1 ⊆ M: full rank k ⇐⇒ [M : M1] is finite
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Commensurate Modules

Lemma

The following are equivalent:

◮ M1 and M2 are commensurate.

◮ M1 ∩ M2 is a submodule of both M1 and M2.

◮ M1 ∩ M2 is a submodule of M1 or M2.

◮ There exists an m ∈ N such that mM1 ⊆ M2 and mM2 ⊆ M1.

◮ There exists an m ∈ N such that mM1 ⊆ M2 or mM2 ⊆ M1.
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Ordinary CSMs

Definition

Let M ⊂ R
d be a module, R ∈ O(d). Then

M(R) := M ∩ RM

is called a (simple,ordinary) coincidence site module (CSM),

if M and RM are commensurate. The index

ΣM(R) := [M : M(R)] < ∞

is called coincidence index.
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Example: Ammann-Beenker tiling
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R the rotation about the center by θ = tan−1
“

−2
√

2
”

≈ 109.5◦, Σ(R) = 9
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Coincidence isometries

Lemma

The set of all coincidence isometries

OC (M) := {R ∈ O(d)
∣

∣ΣM(R) < ∞}

forms a group, a subgroup of O(d).
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Ordinary CSLs

If M = Γ then

ΣΓ(R) =
vol(Γ(R))

vol(Γ)
=

dens(Γ)

dens(Γ(R))

OC (Γ) = OC (Γ∗)

ΣΓ(R) = ΣΓ∗(R)
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Symmetry Operations

Lemma

The following are equivalent:

1. R ∈ P(M)

2. ΣM(R) = 1

Corollary

P(M) = {R ∈ OC (M)
∣

∣ΣM(R) = 1} ⊆ OC (M)
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Properties of the Coincidence Index

Assume

◮ M = Γ

◮ M satisfies [M : M(R)] = [RM : M(R)] for all R

Lemma

For any coincidence isometry R

ΣM(R) = ΣM(R−1).
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Coincidences of Sublattices

Lemma

Let M1 ⊆ M with index m := [M : M1]. Then

OC (M1) = OC (M).

Let Σ1(R) be the coincidence index with respect to M1. Then

Σ(R)
∣

∣ mΣ1(R)

Σ1(R)
∣

∣ mΣ(R).
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Coincidence rotations of Z[i ]

coincidence rotations

e iϕ = ε
z

z̄
= ε

∏

p≡1 (4)

(

ωp

ω̄p

)np

ε unit, only finitely many np 6= 0

coincidence index

Σ(e iϕ) =
∏

p≡1 (4)

p|np |

spectrum

set of all integers that contain only prime factors p ≡ 1 (mod 4).
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CSLs of Z[i ]

ω(ϕ) :=
∏

p≡1 (4)
np>0

ω
np
p

∏

p≡1 (4)
np<0

ω̄
np
p

CSLs

Z[i ] ∩ e iϕ
Z[i ] = ω(ϕ)Z[i ]
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Example – Square lattice

number of CSLs

Φ(s) =
∞

∑

m=1

f (m)

ms
=

∏

p≡1(4)

1 + p−s

1 − p−s

= 1 +
2

5s
+

2

13s
+

2

17s
+

2

25s
+

2

29s
+

2

37s
+

2

41s

+
2

53s
+

2

61s
+

4

65s
+

2

73s
+ . . .
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Known CSLs

◮ Square lattice, hexagonal lattice

◮ certain planar modules with N–fold symmetry

◮ cubic lattices and related modules

◮ hypercubic lattices

◮ A4–lattice, ring of icosians
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Affine Coincidences of Modules

Definition

Let M ⊂ R
d be a module, R ∈ O(d), v ∈ R

d . Then

M(v , R) := M ∩ (v , R)M

is called an affine coincidence site module (CSM),

if M(v , R) is an (affine) submodule of full rank.

(v , R) is called an affine coincidence isometry.
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Affine Coincidences of Modules

Theorem

AC (M) = {(v , R) : R ∈ OC (M) and v ∈ M + RM}

Remark

AC (M) is not a group in general.
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Affine Coincidences of Lattices

Grimmer 1974

AC (Γ) = {(v , R) : R ∈ OC (Γ) and v ∈ Γ + RΓ}

Γ + RΓ . . . DSC lattice
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Coincidences of shifted lattices

Linear coincidences of shifted lattices:

(x + Γ) ∩ R(x + Γ)

Theorem

OC (x + Γ) = {R ∈ OC (Γ) : Rx − x ∈ Γ + RΓ}

◮ In general, OC (x + Γ) is not a group.

◮ Problem: Product of coincidence isometries need not be a

coincidence isometry
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Coincidences of shifted lattices

Linear coincidences of shifted lattices:

(x + Γ) ∩ R(x + Γ)

Theorem

OC (x + Γ) = {R ∈ OC (Γ) : Rx − x ∈ Γ + RΓ}

◮ In general, OC (x + Γ) is not a group.

◮ Problem: Product of coincidence isometries need not be a

coincidence isometry
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Groupoid

Definition

(G ,−1 , ∗), with −1 : G → G and ∗ : G × G → G a partial function,

is called a groupoid, if

◮ (a ∗ b) ∗ c = a ∗ (b ∗ c) if a ∗ b and b ∗ c are defined.

◮ a−1 ∗ a and a ∗ a−1 are defined.

◮ a ∗ b ∗ b−1 = a, a−1 ∗ a ∗ b = b, if a ∗ b is defined.

Manuel Loquias and Peter Zeiner Coincidences of lattices and beyond



Coincidence Site Modules
Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

Theorem

OC (x + Γ) is a groupoid ⇐⇒ OC (x + Γ) is a group
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Coincidence isometries of x + Z[i ]

Theorem

Let Γ = Z[i ] and x ∈ C.

1. SOC (x + Γ) is a subgroup of SOC (Γ)

2. OC (x + Γ) is a subgroup of OC (Γ) if and only if for any T1,

T2 ∈ OC (x + Γ) \ SOC (x + Γ), T1T2 ∈ SOC (x + Γ)
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Coincidence isometries of x + Z[i ]

◮ x =
r

q
where r , q ∈ Z[i ], r and q relatively prime

Lemma

If q has no prime factor ωp, then OC (x + Γ) is a group.
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Coincidence rotations of x + Z[i ]

Lemma

◮ SOC (x + Γ) = SOC
(

1
q

+ Γ
)

◮ SOC
(

1
q2

+ Γ
)

⊆ SOC
(

1
q1

+ Γ
)

if q1 | q2

◮ SOC
(

1
q1q2

+ Γ
)

= SOC
(

1
q1

+ Γ
)

∩ SOC
(

1
q2

+ Γ
)

if q1 and q2 are relatively prime

◮ SOC
(

1
q

+ Γ
)

= SOC
(

1
q̄

+ Γ
)

= SOC
(

1
lcm(q,q̄) + Γ

)
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Example:

-

61
2

1
2

�
�

�
�� x0

x1

◮ x0 = 1
5 , 2

5 and x1 = 1
5 + 1

5 i , 2
5 + 2

5 i ⇒ q = 5

◮ SOC (x0 + Γ) = SOC (x1 + Γ) = SOC
(

1
5 + Γ

)

◮ OC (x0 + Γ) and OC (x1 + Γ) are groups
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Example:

Φx(s) =
1 − 5−s

1 + 5−s
Φ(s)

= 1 + 2
13s + 2

17s + 2
29s + 2

37s + 2
41s + 2

53s + 2
61s + 2

73s + . . .

Φ(s) = 1 + 2
5s + 2

13s + 2
17s + 2

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 4

65s + 2
73s + . . .

=
∏

p≡1(4)

1 + p−s

1 − p−s
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Example:

-

61
2

1
2

�
�

�
��

◮ x = 2
5 + 1

5 i = i
1+2i

⇒ q = 1 + 2i

◮ SOC (x + Γ) = SOC
(

1
1+2i

+ Γ
)

= SOC
(

1
5 + Γ

)

◮ OC (x + Γ) is NOT a group!
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Example:

Φx(s) =
1

1 + 5−s
Φ(s)

= 1 + 1
5s + 2

13s + 2
17s + 1

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 2

65s + 2
73s + . . .

Φ(s) = 1 + 2
5s + 2

13s + 2
17s + 2

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 4

65s + 2
73s + . . .

Ψx(s) = 1 + 4
5s + 2

13s + 2
17s + 4

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 8

65s + 2
73s + . . .

=
1 + 3 · 5−s

1 + 5−s
Φ(s)

Manuel Loquias and Peter Zeiner Coincidences of lattices and beyond



Coincidence Site Modules
Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

Coincidence rotations of x + Z[ξn]

Mn = Z[ξn] with class number 1

Lemma

◮ SOC
(

r
q

+ Mn

)

= SOC
(

1
q

+ Mn

)

◮ SOC
(

1
q2

+ Mn

)

⊆ SOC
(

1
q1

+ Mn

)

if q1 | q2

◮ SOC
(

1
q1q2

+ Mn

)

= SOC
(

1
q1

+ Mn

)

∩ SOC
(

1
q2

+ Mn

)

if q1 and q2 are relatively prime

◮ SOC
(

1
q

+ Mn

)

= SOC
(

1
q̄

+ Mn

)

= SOC
(

1
lcm(q,q̄) + Mn

)
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Multilattices

Multilattice

L =
⋃n−1

i=0 (xi + Γ) with x0 = 0

Coincidences

L(R) := L ∩ RL

R coincidence isometry ⇐⇒ ΣL(R) := dens(L)
dens(L(R)) is finite

OC (L) := {R ∈ O(d)
∣

∣ΣL(R) < ∞}
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Lemma

◮ (xi + Γ) ∩ R(xj + Γ) is an affine sublattice of xi + Γ (or

R(xj + Γ)) if and only if R ∈ OC (Γ) and Rxj − xi ∈ Γ + RΓ

◮ (xi + Γ) ∩ R(xj + Γ) = xi + tij + Γ(R) with tij ∈ Γ
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Coincidences of Multilattices

Theorem

◮ OC (L) = OC (Γ)

◮ Let K := {(i , j) : Rxj − xi ∈ Γ + RΓ}. Then:

ΣL(R) = n
|K |ΣΓ(R)

L(R) =
⋃

(i ,j)∈K (xi + tij + Γ(R))
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Example n = 2

L = Γ ∪ (x + Γ)

1. ΣL(R) = 2ΣΓ(R) ⇐⇒ x , Rx , Rx − x 6∈ Γ + RΓ

2. ΣL(R) = 1
2ΣΓ(R) ⇐⇒ x , Rx , Rx − x ∈ Γ + RΓ

3. ΣL(R) = ΣΓ(R) ⇐⇒ exactly one of x , Rx , Rx − x in Γ + RΓ
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Example: diamond packing

L = Γfcc ∪
(

1
4(1, 1, 1) + Γfcc

)

Manuel Loquias and Peter Zeiner Coincidences of lattices and beyond
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Example: diamond packing

ΣL(R) = Σfcc(R), 2Σfcc(R)

ΦL(s) = (1 + 2−s)Φfcc(s) = (1 − 21−s)
∏

p

1 + p−s

1 − p1−s

= 1 + 1
2s + 4

3s + 6
5s + 4

6s + 8
7s + 12

9s + 6
10s + 12

11s + 14
13s + . . .

Φfcc(s) =
1 − 21−s

1 + 2−s

ζ(s)ζ(s − 1)

ζ(2s)
=

∏

p 6=2

1 + p−s

1 − p1−s

= 1 + 4
3s + 6

5s + 8
7s + 12

9s + 12
11s + 14

13s + 24
15s + 18

17s + . . .
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Example: lattice - sublattice relations

Γ2 ⊆ Γ1

Γ1 =

m−1
⋃

i=0

(xi + Γ2)

D ={j : Rxj ∈ Γ2 + RΓ2} I ={i : ∃xj : Rxj − xi ∈ Γ2 + RΓ2}

E ={i : xi ∈ Γ2 + RΓ2} J ={j : ∃xi : Rxj − xi ∈ Γ2 + RΓ2}
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Example: lattice - sublattice relations

Γ2 ⊆ Γ1

Γ1 =

m−1
⋃

i=0

(xi + Γ2)

D ={j : Rxj ∈ Γ2 + RΓ2} I ={i : ∃xj : Rxj − xi ∈ Γ2 + RΓ2}

E ={i : xi ∈ Γ2 + RΓ2} J ={j : ∃xi : Rxj − xi ∈ Γ2 + RΓ2}
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Example: lattice - sublattice relations

Theorem

Σ2(R) =
|D||I |

m
Σ1(R) =

|E ||J|

m
Σ1(R)

Lemma

u := |D| = [Γ2 ∩ Γ1(R) : Γ2(R)] t := |I | = [Γ1(R) : Γ2 ∩ Γ1(R)]

v := |E | = [RΓ2 ∩ Γ1(R) : Γ2(R)] s := |J| = [Γ1(R) : RΓ2 ∩ Γ1(R)]

u | s, v | t, s | m, t | m
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Example: lattice - sublattice relations

Theorem

Σ2(R) =
|D||I |

m
Σ1(R) =

|E ||J|

m
Σ1(R)

Lemma

u := |D| = [Γ2 ∩ Γ1(R) : Γ2(R)] t := |I | = [Γ1(R) : Γ2 ∩ Γ1(R)]

v := |E | = [RΓ2 ∩ Γ1(R) : Γ2(R)] s := |J| = [Γ1(R) : RΓ2 ∩ Γ1(R)]

u | s, v | t, s | m, t | m
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sublattice diagram

Γ2

Γ1

Γ2 ∩ Γ1(R)

Γ2(R)

Γ1(R)

RΓ2 ∩ Γ1(R)

RΓ2

RΓ1

m m

Σ1(R) Σ1(R)

Σ2(R)Σ2(R)

t s

u v
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Example: rectangular lattice Z × 4Z

Γ1 =
1

4
Z × Z

Γ2 = Z
2

ΦZ×4Z(s) = (1 + 4−s)ΦZ2 =

= 1 + 1
4s + 2

5s + 2
13s + 2

17s + 2
20s + 2

25s + 2
29s + 2

37s

+ 2
41s + 2

52s + 2
53s + 2

61s + 4
65s + 2

68s + 2
73s + . . .

ΦZ2(s) = 1 + 2
5s + 2

13s + 2
17s + 2

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 4

65s + 2
73s + . . .
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Example: rectangular lattice Z × 4Z

Γ1 =
1

4
Z × Z

Γ2 = Z
2

ΦZ×4Z(s) = (1 + 4−s)ΦZ2 =

= 1 + 1
4s + 2

5s + 2
13s + 2

17s + 2
20s + 2

25s + 2
29s + 2

37s

+ 2
41s + 2

52s + 2
53s + 2

61s + 4
65s + 2

68s + 2
73s + . . .

ΦZ2(s) = 1 + 2
5s + 2

13s + 2
17s + 2

25s + 2
29s + 2

37s + 2
41s + 2

53s

+ 2
61s + 4

65s + 2
73s + . . .
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Example Coulorings
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rotation about the origin (counterclockwise) by θ = arctan
(
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)
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colouring of Γ1(R
−1) colouring of Γ1(R)
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colouring of Γ1(R
−1) rotated by R colouring of Γ1(R)
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Γ2(R)
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In our example:

Σ1(R) = 5, m = t = s = 6, and u = v = 2

⇒ Σ2(R) = 10.
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Example: Ammann-Beenker tiling
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Example: Ammann-Beenker tiling
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Example: Ammann-Beenker tiling

R the rotation about the center by θ = tan−1
“

−2
√

2
”

≈ 109.5◦, Σ(R) = 9
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Example: Ammann-Beenker tiling

A
B

C D

E

T2 ∩ T1(R
−1)

A′B′

C ′

D′

E ′
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C D
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T2 ∩ T1(R)
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Example: Ammann-Beenker tiling

T2(R)

Manuel Loquias and Peter Zeiner Coincidences of lattices and beyond



Coincidence Site Modules
Affine Coincidences and Shifted Lattices

Coincidences of Multilattices

Thank you!
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