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Motivation

N = 4 Super Yang-Mills theory ≡ Superstrings on AdS5 × S5

strong coupling (semi-)classical strings
nonperturbative physics or supergravity

very difficult ‘easy’
weak coupling highly quantum regime

‘easy’ very difficult

Goal:
Interpolate from strong to weak coupling to reach per-
turbative results staying on the string theory side of the
correspondence
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Anomalous dimensions

N = 4 SYM is an exact CFT

One can define dimensions ∆ of operators through two-point functions

〈O(x)O(y)〉 =
const

|x − y |2∆

Main example: the Konishi operator OKonishi = tr Φ2
i

∆ = 2 + 12g2 − 48g4 + 336g6 + . . .︸ ︷︷ ︸
anomalous dimension

g2≡ λ
16π2

A lot is known about long operators

tr Φ1Φ2ΨDFDΦ2Φ3Φ3Φ1Ψ . . .Φ5︸ ︷︷ ︸
length = no. of operators

For short operators, like the Konishi, very little is known → this talk.
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String theory side

∆ ≡ energy of a string state in AdS5 × S5

Goal:

Find anomalous dimensions
of all operators for all values
of the coupling

≡ Find energy levels of quan-
tized superstring in AdS5×S5

. . . in principle possible because of integrability. . .
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Integrability in AdS/CFT

Consider long operators in su(2) sector

tr ZZZZZZ︸ ︷︷ ︸
‘vacuum′

XZXXZZXZZZZXZZ XXXXXXX︸ ︷︷ ︸
excitations

ZZZZ

or better

tr ZZZZZZZZZZZZZZZZZXZZZZZZZZZZZZXZZZZZZZZZXZZZ

X ’s are excitations. . .

Fourier transform in position space −→ associate a momentum pi to each
excitation.

String side: excitations of string worldsheet with definite worldsheet
momentum (≡ magnons)

Integrability −→ reduces to 2→ 2 scattering

Scattering encoded in S(p1, p2)
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Asymptotic Bethe Ansatz

Solve Bethe equations

e ipiL =
∏
k 6=i

S(pi , pk)

Find the momenta {pk}Mk=1

Obtain the dimension (energy) from

∆− J = E =
M∑

k=1

√
1 + 16g2 sin2 pk

2

Caution: The answer is not exact!
Asymptotic Bethe Ansatz incorporates all graphs of the type

but not
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The Konishi operator

It is convenient to consider tr Z 2X 2 + . . . in the su(2) sector. Has equal
anomalous dimension to the original Konishi operator

Has J = 2 and two excitations with opposite momenta. Length L = 4.

Bethe equations

where e2iθ(p,−p) is the dressing factor and

u(p) =
1

2
cot

p

2

√
1 + 16g2 sin2 p

2

This gives the solution for the momentum:

p =
2π

3
−
√

3g2 +
9
√

3

2
g4 − 72

√
3 + 8 · 9

√
3ζ(3)

3
g6 + . . .
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Plug the momenta p,−p into the dispersion relation:

EBethe = 4 + 12g2 − 48g4 + 336g6 − (2820 + 288ζ(3))g8 + . . .

The result can be trusted only up to g2L where L is the length of the
operator. For higher orders wrapping interactions contribute!

In this case the result is valid up to 3-loop order (terms ∝ g6)

Results up to 3-loop order have been verified perturbatively

The formidable perturbative 4-loop computation has been undertaken by
several groups

Results can be parametrized as

E = EBethe + ∆wrappingE

Final result of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon] is

∆wrappingE = (324 + 864ζ(3)− 1440ζ(5))g8

(236→ 324 corrected after appearance of our paper)

Goal: How to compute the effects of wrapping interactions?
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Spin chains vs. worldsheet string sigma models

Bethe ansatz quantization appears in both formulations:

For conventional spin chains like Heisenberg XXX 1
2

Bethe ansatz is exact!

For integrable 2D QFT it appears for large values of the charges (∼ size of the
worldsheet cylinder)

The construction of the S-matrix based on su(2|2)× su(2|2) symmetry is
completely paralel in both cases

determines the S-matrix up to a scalar factor
fixes the form of Bethe equations

In order to fix the scalar factor (≡ dressing factor) one has to use a
field-theoretic ingredient – crossing symmetry

On the gauge theory (spin-chain) side it is extremely difficult to guess the
way that deviations from Bethe ansatz (≡ wrapping interactions) may be
computed

From the worldsheet QFT point of view the corrections to the Bethe ansatz
are in principle fixed uniquely
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Program:

Stay purely within the string sigma model on AdS5 × S5

Invoke symmetries to obtain the matrix part of the S-matrix ← done!

Use crossing equations to get the overall scalar factor of the S-matrix (one
uses some physical information to pick the specific solution) ← done!

Find bound states ← done! but quite subtle!

Question: What is the physical spectrum at finite size of such an integrable
QFT?

Large volume limit: Bethe equations – this approximation is the long range
spin chain

Look for leading corrections to the Bethe ansatz answer... ← this talk

. . .

Eventually find the exact answer...
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Deviations from Bethe ansatz

From the worldsheet QFT perspective, deviations from Bethe ansatz arise
due to
virtual particles circulating around the circumference of the worldsheet cylinder

For large sizes of the cylinder these effects are supressed and Bethe ansatz
works

One can estimate the magnitude of these corrections from the
Thermodynamic Bethe Ansatz perspective Ambjorn,RJ,Kristjansen
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The typical magnitude of these corrections is

magnitude ∼ e−ETBA(q)·L

where ETBA = ip, q = iE are the energy momenta in the space-time
interchanged ‘mirror’ theory
Start from the original dispersion relation

E =

√
1 + 16g2 sin2 p

2

Perform space-time interchange...

iq =

√
1− 16g2 sinh2 ETBA

2

16g2 sinh2 ETBA

2
= 1 + q2

ETBA = 2 arcsinh

√
1 + q2

4g

Finally we get for the magnitude of corrections

magnitude ∼ e−2L arcsinh

√
1+q2

4g
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Strong coupling:

e−2L arcsinh

√
1+q2

4g −→ e−
L

2g = e
− 2πL√

λ

Weak coupling:

e−2L arcsinh

√
1+q2

4g −→ 4Lg2L

(1 + q2)L

At low orders in g Bethe ansatz results are uncorrected!

For the Konishi operator one may expect a contribution at four loops (L = 4)

We may expect to get exact answer for 4-loop Konishi from the leading
correction

Caveats:
Prefactor . . .
What is L? In the light-cone quantized string sigma model it is more natural
to expect Lstring = J. This gives Lstring = J = 2
One could also have bound states circulating in the loop. At weak coupling we
have

EQ(p) =

r
Q2 + 16g 2 sin2 p

2
−→ 4Jg 2J

(Q2 + q2)J

. . . so they have to be taken into account
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Lüscher corrections

In relativistic theories leading corrections to single particle energies were
derived by Lüscher:

∆E =m cosh θ̂n −m

∫ ∞
−∞

dθ

2π

cosh(θ − θ̂n)

cosh θ̂n

(
S(

iπ

2
+ θ − θ̂n)− 1

)
e−mL cosh θ︸ ︷︷ ︸

F−term

+ residues︸ ︷︷ ︸
µ−term

This can be generalized to the AdS case (F-term given here) [RJ,Lukowski]

∆E = −
∫ ∞
−∞

dq

2π

(
1− ε′(p)

ε′(q∗)

)
· e−iq∗L ·

∑
b

(−1)Fb
(
Sba

ba (q∗, p)− 1
)

where q∗ is the momentum of the virtual particle (in the spacetime -
interchanged ‘mirror’ theory)
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In order to find corrections to the Konishi operator we have to generalize
these formulas to multiparticle states

Start from sinh-Gordon (or SLYM) theory where the exact finite size
spectrum is encoded in TBA integral equations [Dorey,Tateo;Teschner]

ε(θ) = mL cosh θ+
N∑

j=1

log S(θ− θj −
iπ

2
)−
∫ ∞
−∞

dθ
′

2π
φ(θ− θ

′
) log(1 + e−ε(θ

′
))

with

φ(θ) =
d log S(θ)

idθ
where θj are determined from

log(1 + e−ε(θj +
iπ
2 )) = 0

Then the energy is given by

E{nj}(L) = m
N∑

j=1

cosh θj −m

∫ ∞
−∞

dθ

2π
cosh θ log(1 + e−ε(θ))

Solve these equations by iteration (∼ large L expansion)
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If L is large we may self-consistently neglect the integral and set

ε(θ) = mL cosh θ +
N∑

j=1

log S(θ − θj −
iπ

2
) + . . .

Consider the consistency condition

1 + e−ε(θj +
iπ
2 ) = 0

Substituting the leading piece of ε(θ) gives

e im sinh θjL
∏
k 6=j

S(θj − θk) = 1

The energy at this order follows just from the first term

E{θj}(L) = m
N∑

j=1

cosh θj − m

∫ ∞
−∞

dθ

2π
cosh θ log(1 + e−ε(θ))︸ ︷︷ ︸

contributes only at subleading order

So at leading order Bethe ansatz quantization appears. . .
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At subleading order ε(θ) gets modified by the integral term

Two distinct effects arise:
1 The Bethe ansatz quantization gets modified

θ̂k → θ̂k + δθ̂k

2 There is an additional (direct) contribution to the energy

En(L) =
X

k

m cosh θ̂k| {z }
Bethe ansatz result

+
X

k

m sinh θ̂kδθ̂k+

−m

Z ∞
−∞

dθ

2π
cosh θ

Y
k

S(
iπ

2
+ θ − θ̂k)e−mL cosh θ

3 Multiparticle counterparts of µ-term arise by taking residues

A generalization to the AdS case can now be easily guessed. . .
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Finite size corrections to AdS multimagnon states

Consider a multimagnon state in a closed sector (e.g. su(2) or sl(2) )
made up of magnons with label a

Then the energy of an N-magnon state including the leading finite size
correction is

E j(L) =
∑

k

ε(pk)−
∑

k

dε(pk)

dpk
δpk+

−
∫ ∞
−∞

dp̃

2π

∑
a1,...,aN

(−1)F
[
Sa2a

a1a (p̃, p1)Sa3a
a2a (p̃, p2) . . . Sa1a

aNa(p, pN)
]
e−ε̃a1

(p̃)L

where ε̃a1 (p̃) is the energy in the mirror model of the virtual particle

Apply this formula to the Konishi operator!
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Ingredients of the Konishi computation

Start with the su(2) or sl(2) representative

Set the worldsheet length Lstring = J −→ Lstring = 2

Exponential factors appear as(
z−

z+

)2

−→ 16g4

(Q2 + q2)2

Additional factor of g4 have to arise from the prefactor

At weak coupling we have to include the contributions of bound states
(Q > 1 above). Two choices:

1 su(2) bound states – symmetric representation – physical in the original
theory

2 sl(2) bound states – antisymmetric representation – physical in the mirror
theory

Novel feature w.r.t. relativistic integrable theories...

Our conclusion is that sl(2) bound states should be used
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The Konishi computation

At weak coupling it turns out that the effect of the modification of the Bethe
quantization is subleading

We have to compute

∆E =
−1

2π

∞∑
Q=1

∫ ∞
−∞

dq

(
z−

z+

)2∑
b

(−1)Fb
[
SQ−1(z±, x±i )SQ−1(z±, x±ii )

]b(11)

b(11)

where

summation over Q ≡ summation over bound states in the antisymmetric
representation
summation over b ≡ summation over all ‘polarization’ states of these bound
states

Need to know the full Q-bound state - fundamental magnon S-matrix
SQ−1(z±, x±)
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SQ−1(z±, x±) factorizes into a scalar part and a matrix part

For su(2) (symmetric reps.) the scalar part is

S
su(2)
Q−1 (z±, x±) =

z+ − x−

z− − x+

1− 1
z+x−

1− 1
z−x+

· z+ − x+

z− − x−
1− 1

z+x+

1− 1
z−x−

and does not depend on the choice of constituent magnons

For sl(2) (antisymmetric reps.) the scalar part is

S
sl(2)
Q−1(z±, x±) =

Q∏
i=1

S
sl(2)
1−1 (z±i , x

±)

and does depend on the choice of constituent z±i
We adopt the choice such that z+

Q ∼ g , and all others ∼ 1/g

The matrix part of SQ−1 has only been worked out for Q = 1, 2 and
symmetric representations

But the method of [Arutyunov,Frolov] can be extended to any Q and both
types of representations. . .
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∆E =
−1

2π

∞∑
Q=1

∫ ∞
−∞

dq

(
z−

z+

)2∑
b

(−1)Fb
[
SQ−1(z±, x±i )SQ−1(z±, x±ii )

]b(11)

b(11)

We have (
z−

z+

)2

=
16g4

(Q2 + q2)2
+ . . .

The scalar part gives

S
scalar ,sl(2)
Q−1 =

3q2 − 6iQq + 6iq − 3Q2 + 6Q − 4

3q2 + 6iQq − 6iq − 3Q2 + 6Q − 4
·

16

9q4 + 6(3Q(Q + 2) + 2)q2 + (3Q(Q + 2) + 4)2

The matrix part evaluates to

S
matrix,sl(2)
Q−1 =

5184Q2(3q2 + 3Q2 − 4)2g4

(q2 + Q2)2((3q − 3iQ + 3i)2 − 3)2

‘String frame‘ phase factors of AFZ promote the sigma model length J to the
effective ‘spin-chain’ length. Total order of the correction is g8 as expected
from gauge theory
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The integral over q can be carried out analytically by residues

The result is

∞∑
Q=1

{
− num(Q)

(9Q4 − 3Q2 + 1)4 (27Q6 − 27Q4 + 36Q2 + 16)
+

864

Q3
− 1440

Q5

}

where

num(Q) =7776Q(19683Q18 − 78732Q16 + 150903Q14 − 134865Q12+

+ 1458Q10 + 48357Q8 − 13311Q6 − 1053Q4 + 369Q2 − 10)

Two last terms give at once 864 ζ(3)− 1440 ζ(5)

The remaining rational function remarkably sums up to an integer giving
finally

∆wrappingE = (324 + 864ζ(3)− 1440ζ(5))g8

Exactly agrees with the 4-loop perturbative computation of [F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon]
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Q5

}

where

num(Q) =7776Q(19683Q18 − 78732Q16 + 150903Q14 − 134865Q12+

+ 1458Q10 + 48357Q8 − 13311Q6 − 1053Q4 + 369Q2 − 10)

Two last terms give at once 864 ζ(3)− 1440 ζ(5)

The remaining rational function remarkably sums up to an integer giving
finally

∆wrappingE = (324 + 864ζ(3)− 1440ζ(5))g8

Exactly agrees with the 4-loop perturbative computation of [F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon]
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Conclusions

The appearance of the transcendentality structure of

∆wrappingE = (324 + 864ζ(3)− 1440ζ(5))g8

is far from obvious. A similar computation using su(2) bound states in the
symmetric representation leads to extremely complicated expressions

Finite size effects involve a loop integral over all states in the theory – thus
they form a nontrivial test of the completeness of the worldsheet theory

This is especially important at weak coupling, where e.g. all higher bound
states contribute equally

In particular, magnons and Q bound states seem to form a complete basis of
asymptotic states of the superstring worldsheet QFT
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Conclusions

The computation of the 4-loop gauge theory anomalous dimension through
Lüscher corrections is of a distinctly (2D) quantum field theoretical nature

Extremely nontrivial test of AdS/CFT!

Develop methods to deal with string sigma model computations for any λ...

Complete solution of the spectrum???

Can one use insight from Lüscher graphs for gauge theory perturbative
computations???
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Can one use insight from Lüscher graphs for gauge theory perturbative
computations???

Romuald A. Janik (Krakow) The Konishi operator from string sigma model 26 / 26



Conclusions

The computation of the 4-loop gauge theory anomalous dimension through
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