Back to the Iron age – the physics of Fe-pnictides

University of Wisconsin

KIAS, Dec. 16, 2009

Pnictides $\pi v i \gamma \epsilon v v$ (Greek for chocking, suffocation):

Pnictides – elements from Group V of Periodic Table: nitrogen, phosphorus, arsenic, antimony and bismuth III-V Semiconductors – formed by elements from Groups III and V:

Reviews:

M.R. Norman, Physics 1, 21 (2008); C. Xu and S. Sachdev, Nature Physics 4, 898 (2008); M.V. Sadovskii, Sov. Phys. Uspekhi.

I.I. Mazin and J. Schmalian, Physica C, 469, 614 (2009)

A.V. Chubukov, Physica C, 469, 640 (2009).

S. Graser, T. A. Maier, P.J. Hirschfeld and D.J. Scalapino, New J. Phys. **11**, 025016 (2009)

Fa Wang, Hui Zhai, Ying Ran, Ashvin Vishwanath, and Dung-Hai Lee, Phys. Rev. Lett. **102**, 047005 (2009).

2D Fe-As layers with As above and below a square lattice formed by Fe

Are pnictides similar to cuprates?

Pnictides

Cuprates

Parent compounds are antiferromagnets

Superconductivity emerges upon doping

TUG-OF-WAR

Similar

Different

Abrahams, Bernevig, Haule, Kivelson, Kotliar, Phillips, Sachdev, Si, Sushkov, Xu Bang, Carbotte, Gorkov, Hirschfeld, D-H Lee, Mazin, Scalapino, Schmalian, Tesanovic, Vishwanath,

Cuprate high Tc superconductors

Fe-Pnictides

I. Metallic behavior in the magnetic phase

II. Band theory calculations agree with experiments Lebegue, Mazin et al, Singh & Du, Cvetkovic & Tesanovic...

ARPES

dHVa

A simple way to understand the difference between cuprates and pnictides

Tesanovic, Physics 2, 60 (2009)

Fe:
$$[Ar] 3d^6 / x^2$$
, Cu: $[Ar] 3d^9 / x^4$

 Fe^{2+} , Cu^{2+}

Cuprates: $Cu^{2+} \Rightarrow 3d^9$ one hole in a filled d-shell (1 "free" fermion per cite: half-filling) In a half-filled band Coulomb repulsion $Un_{i\uparrow}n_{i\downarrow}$ $(U \gg t)$ keeps

holes in place \Rightarrow Mott insulator + Neel antiferomagnet !!

Only when doped with holes (or electrons) do cuprates turn into superconductors

4 holes per cite – multiband structure. chemical potential lies in the gap

Itinerant approach

Magnetism

The system remains a metal the magnetic phase

Magnetic order

Itinerant description: magnetism comes from nesting

Dong et al, Korshunov & Eremin, Raghu et al., K. Kuroki et al, ...

Nesting is a boost for an SDW antiferromagnetism

$$\chi_0(\mathbf{Q}) = \bigvee_{\mathbf{T}} (\mathbf{Q}) = \prod_{\mathbf{T}} \frac{d\omega \, d\varepsilon_k}{\omega^2 + \varepsilon_k^2} = \log \frac{\mathbf{E}_F}{\mathbf{T}} \quad \text{(ellipticity of electron} \\ \mathbf{FSs is not an obstacle})$$

For a perfect nesting, AFM instability occurs already at small U

M. Rice (for Cr), V. Cvetkovic and Z. Tesanovic,

Eremin & Korshunov

Questions

2. Why the system remains a metal?

1. Selection of a magnetic order

Introduce two SDW order parameters

$$\vec{W}_1$$
 with $Q_1 = (0, \pi)$,
 \vec{W}_2 with $Q_2 = (\pi, 0)$

$$E_{gr} = F(\vec{W}_1^2 + \vec{W}_2^2)$$

$$E_{gr} = F\left(\vec{W}_1^2 + \vec{W}_2^2\right) + a V (\vec{W}_1)^2 (\vec{W}_2)^2, \quad a > 0$$

Either W₁ =0, (0, π) state **Or W**₂ =0, (π ,0) state

2. Metallicity

Angular dependence of the interaction also plays an essential role (nodes, even when SDW order affects all Fermi surfaces) (Vishwanath et al, 2008) **Itinerant approach**

Electron-phonon interaction is too weak

Pairing due to el-el interaction

How about using the "analogy" with overdoped cuprates and assume that the pairing is mediated by spin fluctuations peaked at (π,π) Mazin et al, Kuroki et al Cuprates Pnictides Q (0, 0)0 $(\pi, 0)$ $\mathbf{0}$ 0

$$\Delta(\theta) = \Delta_0 \left(\cos k_x - \cos k_y\right)$$

sign-changing extended s-wave gap

 $\Delta(\theta) = \Delta_0 \left(\cos k_x + \cos k_y \right)$

Experiments

Some experiments are consistent with no-nodal s⁺⁻ gap

1. Photoemission in 1111 and 122 FeAs

Almost angle-independent gap

2. Neutron scattering - resonance peak below 2D

3. Penetration depth behavior in 1111 and 122 FeAs

"Exponential" behavior at low T (or, at least, a very flat behavior)

Other experiments, howecver, indicate that the gap may have nodes

1. NMR and Knight shift in 1111 FeAs

Knight shift

NMR relaxation rate

Matano et al

Non-exponential behavior!

2. The behavior of BaFe₂(As_{1-x}P_x)₂, Tc = 30K Y. Matsuda et al

2. The behavior of $BaFe_2(As_{1-x}P_x)_2$, Tc = 30K Y. Matsuda et al

Thermal conductivity

Back to simple reasoning There is a problem: how to get rid of an intra-band Hubbard repulsion ?

Cuprates

Pnictides

Hubbard repulsion cancels out, only d-wave, (π,π) interaction matters

Intra-band repulsion does not cancel and has to be overtaken by a (π,π) interaction

Theory

The two-band nested Fermi liquid with intra-band and inter-band interactions

$$\epsilon_p^c = E_F - \frac{p^2}{2m}, \ \ \epsilon_{p+Q}^f = \frac{(p+Q)^2}{2m} - E_F$$

$$\begin{split} H &= U_1^{(0)} \sum c^{\dagger}_{\mathbf{p}_3 \sigma} f^{\dagger}_{\mathbf{p}_4 \sigma'} f_{\mathbf{p}_2 \sigma'} c_{\mathbf{p}_1 \sigma} + U_2^{(0)} \sum f^{\dagger}_{\mathbf{p}_3 \sigma} c^{\dagger}_{\mathbf{p}_4 \sigma'} f_{\mathbf{p}_2 \sigma'} c_{\mathbf{p}_1 \sigma} \\ &+ \frac{U_3^{(0)}}{2} \sum \left[f^{\dagger}_{\mathbf{p}_3 \sigma} f^{\dagger}_{\mathbf{p}_4 \sigma'} c_{\mathbf{p}_2 \sigma'} c_{\mathbf{p}_1 \sigma} + h.c \right] + \frac{U_4^{(0)}}{2} \sum f^{\dagger}_{\mathbf{p}_3 \sigma} f^{\dagger}_{\mathbf{p}_4 \sigma'} f_{\mathbf{p}_2 \sigma'} f_{\mathbf{p}_1 \sigma} + \frac{U_5^{(0)}}{2} \sum c^{\dagger}_{\mathbf{p}_3 \sigma} c^{\dagger}_{\mathbf{p}_4 \sigma'} c_{\mathbf{p}_2 \sigma'} c_{\mathbf{p}_1 \sigma} \end{split}$$

$$u_i^{(0)} = U_i^{(0)} N_0$$
 $N_0 = m/(2\pi)$ = density of states in 2D

p3

 p_4

u₃

 p_4 p_2 p_1

Intra-band repulsion u₄ =u₅

Pair hopping (π,π) interaction

Inter-band forward and "back-scattering" Let's see how pair hoping and intra-band repulsion compete

1. Spin density wave

$$\chi^{\text{SDW}} = \frac{(\chi^{\text{SDW}})_0}{1 - (\Gamma^{\text{SDW}})_0 \Pi_{\text{sdw}}}$$

$$\Pi_{sdw} \propto \log \frac{E_F}{T}$$

nesting

$$\Gamma_0^{\text{SDW}} = \mathbf{u}_3 + \mathbf{u}_1 > 0,$$

The system surely favors an SDW instability

2. S+ superconductivity

$$\chi_{s+}^{\text{SC}} = \frac{(\chi_{s+}^{\text{SC}})_0}{1 - (\Gamma_{s+}^{\text{SC}})_0 \Pi_{\text{sc}}}$$

$$\Pi_{\rm sc} \propto \log \frac{\rm E_{\rm F}}{\rm T}$$

$$(\Gamma_{s+}^{\mathrm{SC}})_0 = \mathbf{u}_3 - \mathbf{u}_4,$$

If intra-band repulsion (u4) is stronger than the pair hopping (u3), the pairing interaction is repulsive **Orbital model -> band model:** $u_4 > u_3$

SDW magnetism, but no superconductivity (repulsion wins!)

Explore nesting AND the smallness of the pockets

Chubukov et al, Wang et al, Honerkamp et al, Tesanovic et al

The terms in the Hamiltonian are bare interactions, at energies comparable to a fermionic bandwidth

We, however, need interactions at energies smaller than the Fermi energy [we have log E_F/T]

Couplings flow due to renormalizations by particle-particle and particle-hole bubbles

We know this story for conventional (phonon) superconductors

In our case, there are renormalizations in both particle-particle AND particle hole channel. This implies that we need to construct parquet RG to analyze the system flow between W and EF (H. Shultz, Dzyaloshinskii & Yakovenko)

One-loop parquet RG

The fixed point: the pair hopping term u_3 is the largest

∧ u

$$u_1 = -u_4 = -u_5 = \frac{|u_3|}{\sqrt{5}}, \quad u_2 \propto |u_3|^{1/3}$$

Numerical RG : F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.- H. Lee C. Platt, C. Honerkamp, and W. Hanke

Perfect nesting – SDW wins

Non-perfect nesting –SDW vertex remains the strongest, but the SDW instability is cut, and a node-less s+ SC wins

However,

Parquet RG stops at $E \sim E_F$ $u_0 L_{max} = u_0 \log W/E_F$

Let's include momentum-dependent part of the pair hopping

The idea: if the gap averages to zero along either hole or electron FSs, or both, the effect of intra-pocket repulsion will be eliminated , at least partly

$$u_3(q-q')c_q^{\dagger}c_{-q}^{\dagger}f_{q'}f_{-q'}$$

$$u_{3}(p) = u_{3} + 2 \tilde{u}_{3} \cos \frac{p_{x}}{2} \cos \frac{p_{y}}{2} + \tilde{\tilde{u}}_{3} (\cos p_{x} + \cos p_{y}) + \dots$$

The expansion in the size of a Femi pocket

Conclusions:

Fe-pnictides are itinerant systems, no evidence for Mott physics

Magnetism is of SDW type, the system remains a metal

Superconductivity is the result of the interplay between intra-pocket repulsion and the pair hopping.

If the tendency towards SDW is strong, pair hopping increases in the RG flow, and the system develops an s⁺⁻ gap without nodes, once SDW order is eliminated by doping.

If the tendency towards SDW is weaker, intra-pocket repulsion remains the strongest. The system still becomes an s⁺⁻ supercnductor, but the gap has nodes along the two electron Fermi surfaces.

THANK YOU