Part 1

Anisotropic High Conductivity of Delafossite PdCoO₂ Investigated by ARPES and Polarization-dependent XAS

Han-Jin Noh¹, Jinwon Jeong¹, Jinhwan Jeong¹, Hojin Sung¹, Kyoung Ja Park¹, E.-J. Cho¹, H.-D. Kim², J.-Y. Kim², S. B. Kim³, K. Kim³, B. I. Min³

¹Department of Physics, Chonnam National University ²Pohang Accelerator Laboratory, POSTECH ³Department of Physics, POSTECH

Motivation

Delafossite?

- Transparent conducting p-type and n-type materials: CuAlO₂, AgInO₂
- Magnetic frustration: CuFeO₂
- Highly conducting compounds: PdCoO₂, PtCoO₂, PdCrO₂, PdRhO₂
- Why are they so good conductors? [Shannon *et al.*, Inorg. Chem. **10** 713 (1971)] ρ =4.7 $\mu\Omega$ cm (cf: ρ_{Pd} =11 $\mu\Omega$ cm) at RT.

P-type electrical conduction in transparent thin films of CuAIO₂

Hiroshi Kawazoe, Masahiro Yasukawa∗, Hiroyuki Hyodo, Masaaki Kurita, Hiroshi Yanagi & Hideo Hosono

Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226, Japan

NATURE VOL 389 30 OCTOBER 1997

Basic Properties of PdCoO₂

- Rhomboheral structure (R_{3m})
- Valence states: A+B³⁺O²⁻₂
- · Very good in-plane conductivity: better than that of Pd metal at RT
- High anisotropy in electric conductivity: $\sigma_{ab}/\sigma_c > 140$
- Curie-Weiss law (Θ=10.6 K) in magnetic susceptibility, but cannot exclude impurity effect: spin state of Co³⁺? 2000

Hiroshi TAKATSU^{1*}, Shingo YONEZAWA¹, Shinichiro MOURI¹, Satoru NAKATSUJI^{1,2}, Koichiro TANAKA1, and Yoshiteru MAENO1

300

(a)

(b)

500

400

Previous spectroscopic studies

M. Tanaka et al. / Physica B 245 (1998) 157-

Recent Electronic Structure Calculation

- Detailed electronic structure has been recently reported.
 [V. Eyert *et al.*, Chem Mater. 20, 2370 (2008)]
- The conduction band has exclusively Pd 4d characters.
- Nearly two dimensional Fermi surface.
- Insulating CoO₂ layers.

Crystal Growth and Experiments

- First reported by Shannon et al.. [Inorg. Chem. 10, 719 (1971)]
- Xtals were grown at PLS *lab*PEM by the metathetical reaction method

$$PdCl_2 + 2CoO \rightarrow PdCoO_2 + CoCl_2$$

- The mixture was heated at 700 °C for 40 hrs in an evacuated quartz tube.
- The phase was checked by XRD
- ARPES was performed at PLS 3A1 (U10)
 beamline under the pressure of 5x10⁻¹¹ Torr.
- XAS was performed at PLS 2A (EPU6) beamline under the pressure of 2x10⁻⁹ Torr.

Polarization-Dependent X-ray Absorption Spectroscopy (XAS)

• Absorption coefficient:

$$\sigma(\hbar\omega) \sim \sum_{f} \left| c_{if} \vec{\varepsilon} \cdot \left\langle \phi_{i} \left| \vec{r} \right| \phi_{f} \right\rangle \right|^{2} \delta(E_{i} + \hbar\omega - E_{f})$$

Valence States of the Co Cations in PdCoO₂

Stöhr and König, PRL 75 3478 (1995)

 No photon polarization dependence: empty e_g^σ states, low spin config. (S=0)

Orbital Character of the Conduction Band

O 1s XAS \approx O 2p-projected UDOS

 $I_{\rm XAS} \propto \Sigma V_{\rm pd}^2$

- No photon polarization dependence of Co 3d e_g^σ.
- Prominent polarization dependence of Pd 4d(3z²-r²).
- The difference spectrum contains only the character of Pd $4d(3z^2-r^2)$.
- Good agreement with the LDA calculated O 2p_z partial DOS.

Contrasting pol. dependence in O 1s XAS

$$I(E \parallel ab) \propto \left| \left\langle p_{x}^{1} \left| H \right| d_{x^{2} - y^{2}} \right\rangle \right|^{2} + \left| \left\langle p_{x}^{1} \left| H \right| d_{3z^{2} - r^{2}} \right\rangle \right|^{2}$$
$$I(E \parallel c) \propto \frac{2}{3} \left| \left\langle p_{x}^{1} \left| H \right| d_{x^{2} - y^{2}} \right\rangle \right|^{2} + \frac{1}{3} \left| \left\langle p_{z}^{3} \left| H \right| d_{3z^{2} - r^{2}} \right\rangle \right|^{2}$$
$$+ \frac{2}{3} \left| \left\langle p_{x}^{1} \left| H \right| d_{3z^{2} - r^{2}} \right\rangle \right|^{2}$$

(cf) $|\langle p_z^3 | H | d_{3z^2 - r^2} \rangle|^2 = |\langle p_x^1 | H | d_{x^2 - y^2} \rangle|^2 + |\langle p_x^1 | H | d_{3z^2 - r^2} \rangle|^2$

 \therefore I(E//ab) = I(E//c)

Vs. Pd $4d^9$ (S=1/2) states

:. I(E//ab) << I(E//c)

Angle-Resolved Photoemission Spectroscopy (ARPES)

Core Level PES Study of PdCoO₂

- Prominent charge-transferred satellite structures in configuration interaction model.
- Trivalent low spin Co³⁺ (3*d*⁶, S=0)
- Insulating CoO₂ layers in ZSA phase diagram:

U=5.5, Δ=3.5, W=3 eV (T= 1.0 eV)

Core Level PES Study of PdCoO₂

- Prominent asymmetric Doniach-Sunjic line shape: asymmetric parameter α =0.26 (cf) α_{Pd} =0.25/0.11
- Plasmon structure
- Metallic PdO₂ layers

PHYSICAL REVIEW B <u>11</u> 678 S. Hüfner* and G. K. Wertheim

 $\alpha = 2\sum_{l} (2l+1)(\delta_l/\pi)^2$

Stack structure of metallic Pd and insulating CoO₂ layers!

ARPES data of PdCoO₂

[Noh et al., PRL 102 256404 (2009)]

Surface States of PdCoO₂

Conductivity of PdCoO₂ from ARPES

Under the relaxation time approximation, conductivity tensor is

$$\sigma_{ij} = e^2 \sum_{\vec{k}}^{BZ} \left(-\frac{\partial f_0}{\partial \varepsilon} \right) \tau_{\vec{k}} v_{\vec{k}_i} v_{\vec{k}_j}, \quad v_{\vec{k}} = \frac{1}{\hbar} \frac{\partial \varepsilon}{\partial \vec{k}}$$

$$f_0 \text{ Fermi-Dirac distribution}$$

$$\tau_{\vec{k}} \text{ relaxation time}$$

$$v_{\vec{k}} \text{ electron velocity in band}$$

Seebeck coefficient:

$$S_{ij} = ek_B \sigma^{-1} \sum_{\vec{k}}^{BZ} \left(-\frac{\partial f_0}{\partial \varepsilon}\right) \tau_{\vec{k}} v_{\vec{k}_i} v_{\vec{k}_j} \frac{\varepsilon_{\vec{k}} - \mu}{k_B T}$$

Electronic thermal conductivity:

$$\kappa_{ij} = k_B^2 T \sum_{\vec{k}}^{BZ} \left(-\frac{\partial f_0}{\partial \varepsilon} \right) \tau_{\vec{k}} v_{\vec{k}_i} v_{\vec{k}_j} \left[\frac{\varepsilon_{\vec{k}} - \mu}{k_B T} \right]^2 - T\sigma SS$$

T. Thonhauser et al., PRB 68 085201 (2003)

Estimation of relaxation time from ARPES

Spectral function:

$$A(\vec{k},\omega) = \frac{1}{\pi} \frac{\Sigma''(\vec{k},\omega)}{[\omega - \varepsilon_{\vec{k}} - \Sigma'(\vec{k},\omega)]^2 + [\Sigma''(\vec{k},\omega)]^2}$$

where $\Sigma'(\vec{k},\omega)$ real part of electron self energy $\Sigma''(\vec{k},\omega)$ imaginary part of electron self energy

From energy distribution curve (EDC)

$$\tau_{\vec{k}} = \hbar / \left| 2\Sigma''(\vec{k}, \omega) \right|$$

From momentum distribution curve (MDC)

$$\tau_{\vec{k}} = 1/v_{\vec{k}}\Delta k$$

where $v_{\vec{k}} = \frac{1}{\hbar}\frac{\partial \varepsilon}{\partial \vec{k}}$
 Δk : peak width in MDC

T. Valla,1 VOL 285 SCIENCE 2110

Estimation of relaxation time from ARPES

Summary

- PdCoO₂ can be regarded as a natural two-dimensional metal-insulator superlattice structure.
 - > The Co ions are in low spin trivalent state ($3d^6$, S=0).
 - > The CoO_2 layers are insulating.
 - > PdO_2 layers are metallic.
- The Fermi surface is in very good agreement with the LDA calculation result.
 - > The electronic structure is nearly two-dimensional.
 - > The conduction band has Pd $4d(3z^2-r^2)$ character.
- ρ_{ARPES} is very consistent with $\rho_{\text{transport}}$
 - High carrier velocity, large two-dimensional Fermi surface, and long life time of the carriers.
- The surface states are well explained by the CoO₂ terminated surface with relaxation of Co and O position at the surface.

Part 2

Electronic Origin of Giant Magnetic Anisotropy in Multiferroic LuFe₂O₄

Han-Jin Noh*, Kyung Tae Ko¹, B.-G. Park¹, J.-H. Park¹, Jae-Young Kim², A. Tanaka³, S. B. Kim¹, C. L. Zhang⁴, S.-W. Cheong⁴

* Dep. of Phys. Chonnam National University. 1 Dep. of Phys. POSTECH. 2 Pohang Accelerator lab., POSTECH. 3 Dep. Of Quantum Matter, ADSM, Hiroshima University. 4 Rutgers Center for Emergent Materials, Rutgers University.

LuFe₂O₄, New type of ferroelectric material

• Electronic ferroelectricity:

inversion symmetry breaking by charge ordering.

[N. Ikeda et al., Nature 436 1136 (2005)]

Electronic and local magnetic structure?

 Coupling between charge, spin, and possibly orbitals degrees of freedoms.

Giant Magnetic Coercivity

- Giant magnetic coercivity: ~10 T at 4.2 K.
- Ising domains: collective
 magnetic freezing
- Microscopic origin?

[PRL 101, 137203 (2008), Wu et al.]

- Rhombohedral (R<u>3</u>m)
- Mixed valence and mixed spins of Fe ions: Fe³⁺ S₁=5/2, Fe²⁺ S₂=2
- Spin structure?

Neutron Scattering Study on LuFe₂O₄

[PRL 100, 107601 (2008), Christianson et al.]

- Ferrimagnetic structure: an excess of 1/3 of the spins points along the c axis.
- Averaged spin model (Fe^{2.5+} ions)
- The saturation moment:

 $1/3 \times 4.5 \mu_B \times 2$ Fe/*f.u.* = $3\mu_B / f.u.$

(cf) measured value: $2.9\mu_B/f.u$.

L₂₃ XAS and X-ray Magnetic Circular Dichroism

K. Cho et al., PRB 63 155203 (2001)

Sum rule analysis

$$m_{orb} = -\frac{4}{3}(10 - n_d)\frac{q}{I_0}$$
$$\frac{m_{orb}}{m_{spin}} \approx \frac{2q}{9p - 6q}$$
$$p = \int_{L_3} (\mu_+ - \mu_-)d\omega$$
$$q = \int_{L_3 + L_2} (\mu_+ - \mu_-)d\omega$$
$$I_0 = \int_{L_3 + L_2} (\mu_+ + \mu_-)d\omega$$

B. T. Thole *et al.*, PRL **68** 1943 (1992)C. T. Chen *et al.*, PRL **75** 152 (1995)

Fe 2p XMCD of LuFe₂O₄

[PRL **103**, 207202 (2009), Ko, Noh *et al*.]

- Net S₁ from Fe²⁺ is parallel to the external field B, net S₂ from Fe³⁺ is antiparallel to B; the total spin is parallel to B.
- The orbital moment is parallel to the net spin moment.
- Net S_1 is larger than net S_2 .
- Sum rule analysis: $M_o/M_s = 0.34 \pm 0.05$

Saturation magnetic moment

Per 3 formula units,

$$m_{s1,net} = 4\mu_B \times 3 = 12\mu_B$$

$$m_{s2,net} = 2 \times \frac{5}{2}\mu_B(2-1) = 5\mu_B$$

$$m_s = m_{s1,net} - m_{s1,net} = 7\mu_B$$

$$m_{orb} = m_s \times (\sim 0.34) = 2.4\mu_B$$

$$m_{tot} = m_s + m_{orb} = 9.4\mu_B$$

Per 1 formula unit,

 $m_{spin} = 7.0 \mu_B / 3 = 2.3 \mu_B$ $m_{orb} = 2.3 \mu_B / 3 = 0.8 \mu_B$ $m_{tot} = 9.4 \mu_B / 3 = 3.1 \mu_B$ (cf) measured moment: $m_{sat} = 2.9 \mu_B$

Upper Layer
Lower Layer

$$Spin \int or$$

 $S=2$ $S=5/2$
 $S=2$ $S=5/2$
 Fe^{2+}
 Fe^{3+}
 $S=2$ $S=5/2$

Fo2+ Fo3+

Origin of the large orbital moment

[PRL 103, 207202 (2009), Ko, Noh et al.]

- Fe³⁺ ions have perfect orbital quenching.
- Spin-orbit coupling splits the degenerate e_a " states into m=1 and m=-1 states in the Fe^{2+} (d⁶) ions.

O K-edge XAS and Orbital Selectivity

- Absorption coefficient: $\sigma(\hbar\omega) \sim \left|\vec{\varepsilon} \cdot \langle \vec{r} \rangle\right|^2$
- Photon polarization dependence

Spin alignment

 Cluster model calculation + Madelung potential difference for Fe²⁺-rich plane and Fe³⁺-rich plane shows that the anti-parallel Fe³⁺ spin alignment in Fe³⁺-rich plane is more plausible.

- The spin of Fe²⁺ is pinned by the spinorbit coupling.
- The spin of Fe³⁺ is dominated by the super-exchange interaction via interlayer Fe³⁺-O-Fe³⁺.

[PRL 103, 207202 (2009), Ko, Noh et al.]

- The XMCD shows that the system has the large unquenched orbital magnetic moment, which originates the giant magnetic anisotropy and coercivity.
- The combined analysis by the XMCD sum-rule and cluster model calculation definitely determines the ferrimagnetic spin alignment of LuFe₂O₄.
- Polarization dependent O 1s XAS reveals that the e_g " (d_{zx} , d_{yz}) states are the lowest, which are split by the spin-orbit coupling and results in the large orbital moment at the Fe²⁺ sites.