Novel spin-orbit coupled electronic states in Ir oxides

Heungsik Kim, Choong H. Kim, Hogyun Jeong, Hosub Jin, and Jaejun Yu

Center for Strongly Correlated Materials Research Department of Physics and Astronomy Seoul National University

Experiment:

B. J. Kim (Michigan), J. H. Park (POSTECH) Soon Jae Moon, Prof. T. W. Noh (SNU) Changyoung Kim (Yonsei U.) Se-Jung Oh (SNU)

> 2009. 12.19 Frontiers in Condensed Matter Physics, KIAS, Seoul

Outline

- Background: why 5d transition metal oxide?
- Sr₂IrO₄
 - ✓ Novel spin-orbit integrated J_{eff} =1/2 state
 - \checkmark Anisotropic exchange interaction

Kim et al., PRL 101, 076402 (2008) Jin et al., Phys. Rev. B 80, 075112(2009) Moon et al., PRL 101, 226402 (2008)

- Na_2IrO_3
 - $\checkmark\,$ anti-ferromagnetic order with spin-orbit Zeeman field
 - \checkmark Z₂ topological number?

Jin et al., arXiv:0907.0743 Kim et al., (to be published)

Why 4d and 5d Transition Metal Oxides?

- Close to metal-insulator transition instability
 - \checkmark 4d and 5d orbitals are more extended than 3d's
 - \checkmark reduced on-site Coulomb interaction strength
 - \checkmark sensitive to <u>lattice distortion, magnetic order</u>, etc.
- Strong spin-orbit (SO) couplings
 - ✓ large atomic numbers: relativistic effect
 - $V_{\rm SO}~(\rm 3d) \leq 50~meV$
 - $V_{\rm SO}$ (5d) \approx 500 meV

Physics driven by spin-orbit (SO) coupling

- Anisotropic magnetic exchange interactions:
 - \checkmark Dzyaloshinskii-Moriya interaction
 - ✓ Multiferroic physics ...
- Anomalous Hall effect:
 - ✓ SrRuO₃
- Quantum spin Hall effect:
 - ✓ Spintronics
- Topological insulator
 - ✓ Magneto-electric effect, axion, ...

Anomalous Hall effect and magnetic monopoles in momentum space

Z. Fang et al., Science 302, 92 (2003)

Quantum spin Hall effect and Topological insulators

а

layer

Topological insulators in Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃ with a single Dirac cone on the surface

Zhang et al., Nat. Physics (10 May 2009)

Dzyaloshinskii-Moriya interactions in La₂CuO₄

Cheong et al., PRB 39 (1989)

Metal-Insulator Transition

3d transition metal oxides (TMO)

Localized 3d orbital \rightarrow a narrow band!

4d and 5d transition metal oxides

Extended 4d, 5d orbitals \rightarrow wider band!

4d and 5d transition metal oxides? For the same K₂NiF₄ structure: La₂CuO₄

So why is Sr₂IrO₄ insulating?

Even more puzzling is that Sr₂IrO₄ exhibits weak ferromagnetism! Cao et al., PRB 57, R11039 (1998)

Calculation methods

- OpenMX code (<u>http://www.openmx-square.org</u>)
- LDA+U methods
- Relativistic pseudo-potential including spin-orbit terms: LDA+U+SO calculations
- LDA exchange-correlation potential
- Non-collinear spin configurations

Sr₂IrO₄ band structure

Tight-binding t_{2g} bands of Sr_2IrO_4

Evolution of t_{2g} bands by SO coupling and on-site U

 $LDA \rightarrow LDA+SO \rightarrow LDA+U+SO$

Comparison with ARPES Experiment

Insulator-to-metal transition in $Sr_{n+1}Ir_nO_{3n+1}$

Moon et al., PRL 101, 226402 (2008)

Large λ_{so} coupling in the atomic limit

$$\mathcal{H}_{\rm SO} = \lambda \mathbf{L} \cdot \mathbf{S} = \lambda \left[L_z S_z + \frac{1}{2} (L_+ S_- + L_- S_+) \right]$$

Small λ_{so} in the band limit

Localized and Itinerant Pictures

 $Ir^{4+} d^{5}$

t2g tight-binding model and Wannier functions

 Sr_2IrO_4 : $J_{eff}=1/2$ Mott insulator

 $|j_{\text{eff}} = 1/2, \pm 1/2\rangle = \mp \frac{1}{\sqrt{3}} |xy\rangle |\pm\rangle - \frac{1}{\sqrt{3}} (|yz\rangle \pm i|zx\rangle) |\mp\rangle$

Kim et al., PRL 101, 076402 (2008)

Now what about magnetism in Sr₂IrO₄?

Cao et al., PRB 57, R11039 (1998)

Canted Antiferromagnetic State: Sr₂IrO₄

LDA+U+SO calculation predicts canted AF ordering $m_{ m AFM}=0.36~\mu_{ m B}$ $m_C=0.063~\mu_{ m B}$

One-band J_{eff}=1/2 Hubbard model for Sr₂IrO₄

$$\mathcal{H} = \sum_{\langle ij\rangle m_j} t_{ij} d^+_{im_j} d_{jm_j} + U \sum_i n_{im_j=\pm 1/2} n_{im_j=\pm 1/2} d_{im_j=\pm 1/2} d_{im_j} d_{jm_j} + U \sum_i n_{im_j=\pm 1/2} d_{im_j=\pm 1/2} d_{im_j=\pm 1/2} d_{im_j} d_{jm_j} d_{jm_j}$$

Effective exchange Hamiltonian for the doublet subspace

Rotation of IrO₆ octahedron by
$$\alpha$$

 $\mathcal{H}_{ij} = I_0 \mathbf{J}_i \cdot \mathbf{J}_j + I_1 J_{zi} J_{zj} + \mathbf{D}_{ij} \cdot \mathbf{J}_i \times \mathbf{J}_j$
 $I_0 = 4(\bar{t}_0^2 - \bar{t}_1^2)/\bar{U}$ $\mathbf{D}_{ij} = D_z \hat{\mathbf{z}}$
 $I_1 = 8\bar{t}_1^2/\bar{U}$ $D_z = 8\bar{t}_0\bar{t}_1/\bar{U}$
 $\bar{t}_0 \approx \frac{2t_0}{3}$ $\bar{t}_1 \approx -\frac{2t_0}{3}\sin\alpha$
Dzyaloshinskii-Moriya interaction: $\left|\frac{D_z}{I_0}\right| \approx \left|\frac{2t_1}{t_0}\right| \sim 2\alpha$
Jin et al., Phys. Rev. B (2009)

Effective Pseudo-Spin Hamiltonian

$$\mathcal{H}_{\text{eff}} = \langle \gamma | \mathcal{H}_{\text{SO}} + \mathcal{H}_{\text{SO}} \frac{1}{\varepsilon - \mathcal{H}'} \mathcal{H}_{\text{SO}} + \dots | \gamma \rangle$$
$$= \sum_{i\mu, j\nu} d_{i\mu, j\nu} J_{i\mu} J_{j\nu} + \dots$$

Unquenched orbital degrees of freedom:

$$J_{\text{eff}}=1/2 \text{ state}$$

 $\mathcal{H}_{\text{eff}}=\sum_{\langle ij \rangle} \vec{\mathbf{D}}_{ij} \cdot \vec{\mathbf{S}}_i imes \vec{\mathbf{S}}_j$

Summary

- New form of Mott insulator Sr₂IrO₄: spin-orbit entangled j_{eff}=1/2 ground state
 - ✓ Strong anisotropic magnetic interactions:
 Dzyaloshinskii-Moriya interactions driven by the J_{eff}=1/2 state
- Proximity to spin-orbit or topological insulator in Na₂IrO₃
 - ✓ Not j_{eff} =1/2 but SO-entangled e_g ' state
 - \checkmark AFM insulator with strong anisotropy
- Both on-site Coulomb and spin-orbit interactions contribute to the non-trivial spin and orbital orderings.