Topology of Large Scale Structure as a Cosmic Ruler

Extended Workshop on DM, LHC and Cosmology
The KIAS-KAIST-YITP Joint Workshop
27 Aug. - 4 Sept. 2009
Changbom Park
(Korea Institute for Advanced Study)
Why is the topology study useful?

1. Direct intuitive meanings

2. At large/linear scales
 Gaussianity of the primordial density field (Gott et al. 1986)

3. At small non-linear scales
 Galaxy distribution at non-linear scales sensitive to cosmological parameters & galaxy formation mechanism (Park, Kim & Gott 2005)
Measures of topology - Minkowski Functionals

3D
1. 3d genus (Euler characteristic)
2. mean curvature
3. contour surface area
4. volume fraction

→ 3d galaxy redshift survey data

2D
1. 2d genus (Euler characteristic)
2. contour length
3. area fraction

→ 2d galaxy surveys, CMB temperature/polarization fluctuations

1D
1. level crossings
2. length fraction

→ pencil beam galaxy surveys, Lyα clouds, deep HI surveys
The 3D Genus

Definition

\[G = \# \text{ of holes} - \# \text{ of isolated regions in iso-density contour surfaces} \]

\[= \frac{1}{4\pi} \int_S \kappa \, dA \text{ (Gauss-Bonnet Theorem)} \]

[ex. \(G(\text{sphere}) = -1 \), \(G(\text{torus}) = 0 \), \(G(\text{two tori}) = +1 \)]

: 2 holes – 1 body = +1
Gaussian Field

Genus/unit volume \(g(\nu) = A (1-\nu^2) \exp(- \nu^2/2) \)

where \(A=1/(2\pi)^2 \langle k^2/3 \rangle^{3/2} \)

does not depend on the amplitude of power spectrum
Non-Gaussian Field (Toy models)

Clusters

Voids

24% low 50% low

24% high 50% high

24% low 50% low

24% high 50% high

(Weinberg, Gott & Melott 1987)
I. History of LSS Topology Study

I. Early Works

- 1986: Hamilton, Gott, Weinberg; Gott, Melott, Dickinson
 - smooth small-scale NL clustering to recover initial topology
- 1987-8: GWM, WGM, MWG, Gott et al.
 - cosmological & toy models. $R_G > 3r_c$ to recover initial topology
- 1989: Gott et al. – observed galaxies, dwarfs, clusters
- 1991: Park & Gott – NL gravitational evolution & biasing effects
- 1992: Weinberg, Cole – PS, initial skewness, biasing effects
- 1994: Matsubara – 2nd order perturbation in weakly NL regime
- 1996: Matsubara – redshift space distortion in L regime
 Matsubara & Suto – NL gravitational evolution & z-space distortion
 Matsubara & Yokoyama - non-Gaussian fields
II. Recent Works

- 2000: Colley et al. – Simulation of SDSS
- 2003: Matsubara – 2nd order perturbation theory
- Minkowski functionals
 Gott et al. (1990) - CMB
 Mecke, Buchert & Wagner (1994); Schmalzing & Buchert (1997)
 Matsubara(2008) - perturbation theory of halo bias & redshift-space distortion

III. 3D genus analysis of observational data

- 1989: Gott et al. - CfA 1 etc.
- 1992: Park, Gott, & da Costa - SSRS 1
- 1992: Moore et al. - IRAS QDOT
- 1994: Rhoads et al. - Abell Clusters
- 1994: Vogeley et al. - CfA 1+2
- 1997: Protogeros & Weinbergs - IRAS 1.2Jy
- 1998: Springel et al. - IRAS 1.2Jy
- 1998: Canavezeces et al. - IRAS PSCz
- 2002: Hikage et al. - SDSS EDR
- 2003: Hikage et al. - SDSS LSS Sample 12
- 2004: Canavezes & Efstathiou - 2dFRGS
- 2005: Park et al. - SDSS LSS Sample 14
- 2008: Gott et al. - SDSS DR4plus

→ consistent with Gaussian

"Luminosity bias in topology"
Observational samples

Gott et al. (1986): CfA1

Vogeley et al. (1994): CfA2

Gott et al. (2006): SDSS DR4plus
Voids (blue - 7% low), filaments/clusters (red - 7% high) \Rightarrow Sponge !! (Gott et al. 2008)
Final SDSS DR7 Main Galaxy Sample (2008)

[Choi et al. 2009]
3-D genus curve

[Sample DR7: Choi et al. 2009]

$G(\nu)$

$R_a = 6 \ h^{-1}\text{Mpc}$

BEST

[Sample 14: Park et al. 2005]
Large-scale structure
as a cosmic ruler

Use the sponge topology of LSS or the overall shape of $P(k)$ at large scales as a standard ruler to measure the expansion history of the universe
\rightarrow cosmological parameters like $\Omega_m h$, w, etc.
LSS as a cosmic ruler

Filament-dominated Cosmic Web

Bond et al. (1996): Final-state web is present in embryonic form in the overdensity pattern of the initial fluctuations with NL dynamics just sharpening the image.
Cosmic sponge theory

Not just overdensity patterns but all large-scale structures including voids maintain their initial topology (sponge) till the present

[Initial density field] [Matter density field at z=0]

flat LCDM
R_G=25h^{-1}Mpc
The LSS are in the (quasi-)linear regime, & maintain the primordial sponge topology at all redshifts! (= the original idea of using topology for the test for the Gaussianity of the primordial density field by Gott et al. in 1986)

Now, the LSS can be used as a cosmic ruler for cosmological parameter estimation!
Scale dependence of PS encoded in the LSS

The PS of each universe model has a specific scale dependence. The whole shape of PS, not just the BAO wiggle on top of the smooth PS, can be used as a cosmic ruler. The genus measures the slope of the PS near the smoothing scale.

![Graph showing scale dependence of PS](image)

- **subhalo PS at z=0**
- **matter PS at z=0 & 0.5**

Kim et al. (2009)
The Horizon Run
The overall shapes of the PS and CF are conserved properties of LSS good for mapping the expansion history of the universe.

Advantage of the topology method over the direct PS or CF methods

The genus, as an intrinsic topology, is independent of all non-linear effects at least to the 1st order because it is independent of simple deformation and amplitude changes of LSS [gravitational evolution - 2nd order (Matsubara 1994), monotonic biasing, linear redshift-space distortion]
Using the LSS topology to measure the expansion history

Strategy

- choose a reference cosmology with a certain $w = P/\rho$
- convert z of galaxies into $r(z)$ assuming the reference cosmology
- calculate the genus
- compare the measured genus with the predicted genus in the reference cosmology
 (the w-dependence originated from the different expansion history of space)
Suppose the true cosmology is x (expansion history varied by w of DE)

Looking at a larger smoothing scale + taking a larger unit volume

- (w= -0.5)
- (w= -1)
- (w= -1.5)

Genus per unit volume in a wrong cosmology

$= \frac{\text{genus of true cosmology at scaled smoothing length}}{\text{volume factor of true cosmology}} \times \frac{1}{\text{volume factor of wrong cosmology}}$

(Park & YR Kim 2009)
Measured genus density when a wrong cosmology 'a' is adopted

\[= \text{genus of true cosmology at scaled } R_G \]

\[\times \left(\text{volume factor of true cosmology} \div \text{volume factor of wrong cosmology} \right) \]

\[= g(R_G') \times D_V(\text{cosmology x}) / D_V(\text{cosmology a}) \]

where \(D_V = \frac{d_A^2}{H(z)} \), \(R_G' = R_G \times [D_V(x)/D_V(a)]^{1/3} \)

\[
H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_X \exp \left[3 \int_0^z \frac{1+w(z)}{1+z} \, dz \right]} \]

\[d_A(z) = (1+z)^{-1} \, r(z) \quad \text{and} \quad r(z) = \int_0^z \frac{dz'}{H(z')} \]
LSS Genus & Constraining Dark Energy

Suppose we live in a universe with \((\Omega_m, w) = (0.26, -1.0)\).

Let's choose a wrong \(w\) when \(z\) is converted to \(r(z)\).

Difference between the predicted and measured genus as \(z\) changes. (the \(w\)-dependence originates from different expansion history of space)

(Park & YR Kim 2009)
Luminous Red Galaxies: SDSS DR4plus

[Image of a scatter plot showing shallow and deep regions with the text "dark subhalos from LCDM" pointing to a graph with "SHALLOW" and "DEEP" regions, and [Gott et al. 2008] at the top right corner.]
Observational constraints on the PS shape

$\Omega_{m} h^2 = 0.133$
$\Delta g = 7.5\%$ (DEEP)
$\Delta g = 4\%$ (SHALLOW)

$\Omega_{m} h^2 = 0.128$

SDSS LRG
SDSS Main
$\Delta g = 7.5\%$ (DEEP)
$\Delta g = 4\%$ (SHALLOW)
LRGs in SDSS DR4plus

\[\Delta g = 4\% \ (R_G = 21h^{-1}\text{Mpc}) \ & 7.5\% \ (R_G = 34h^{-1}\text{Mpc}) \]
\[\Omega_m = 0.241 \pm 0.014 \ \text{(if flat LCDM & } h=0.72) \]
Future surveys

Constraint on PS shape using only the genus statistic

1. DR7 of SDSS I+II : # of LRGs ~ 100K
 \(\Delta g = \sim 3\% \) & \(\Delta \Omega_m = \sim 0.010 \)

2. LRGs in SDSS-III :
 # of LRGs ~ 1.5M
 \(\Delta g = \sim 0.8\% \) & \(\Delta \Omega_m \sim 0.004 \)
Constraint on 'w' using the genus statistic only:

LRGs in SDSS DR4plus

\[\Delta g = 4\% \ (R_G=21h^{-1}\text{Mpc}) \ & \ 7.5\% \ (R_G=34h^{-1}\text{Mpc}) \rightarrow \Delta w \sim 0.4 \]

LRGs in SDSS-III : # of LRGs ~ 1.5M

\[\Delta g = \sim 1.0\% \ \text{in each of 3 z-bins} \rightarrow \Delta w \sim 0.08 \]

The Horizon Run (Kim et al. 2009)
Needs to deal with non-linear effects
from NL gravitational evolution, galaxy biasing, redshift-space distortion
[Kim et al. 2009]

The Horizon Run (Kim et al. 2008): 4120^3 particles in 6592h^{-1}Mpc box
All sky past light cone SDSS-III mock surveys - subhalos available on the web!
Effects of NL gravitational evolution, biasing, redshift-space distortion, discreteness, & finite pixel size

Matter in real & redshift spaces

Dark subhalos in real & redshift spaces

<table>
<thead>
<tr>
<th>space / R_g</th>
<th>difference wrt linear g</th>
</tr>
</thead>
<tbody>
<tr>
<td>real 25h^{-1}Mpc</td>
<td>-0.02%</td>
</tr>
<tr>
<td>redshift 25</td>
<td>-1.7%</td>
</tr>
<tr>
<td>real 35</td>
<td>+0.5%</td>
</tr>
<tr>
<td>redshift 35</td>
<td>-0.8%</td>
</tr>
</tbody>
</table>
History of the Universe

LAMOST Main Deep SDSS III

SDSS Main

CfA2

Here Now

Expansion of human view of our Universe

T H E H O R I Z O N R U N

Kim, Park, Gott & Dubinski (2009)
http://astro.kias.re.kr/Horizon_Run
Summary

1. Topology of LSS has been used to examine the Gaussianity of galaxy distribution at large scales. This was used to test for the Gaussianity of the primordial density field, which is one of the major predictions of the simple inflationary scenarios.

2. Recently, topology of galaxy distribution at small non-linear scales is being used to constrain the galaxy formation mechanisms and cosmological parameters.

3. Here we propose to use the sponge topology of LSS to measure the shape of power spectrum $P(k)$ & the expansion history of space.

4. 2D and 1D LSS topology studies too!
 - Redshift slices from the deep imaging surveys - 2d topology
 - Line-of-sight level crossings of Ly-a forest clouds, HI gas distribution - 1d topology