Totally Real Immersions

Howard Jacobowitz

February 10, 2011

A smooth immersion $f: M^n \to \mathbb{C}^N$ is called totally real if $f_*(TM)$ does not contain any complex line. This is equivalent to requiring that

 $f_*(TM) \cap i(f_*(TM)) = \{0\}.$

Theorem 1 There exists a totally real immersion of M^n into \mathbb{C}^N provided $N > \frac{3}{2}n - 1$.

This is proved by a straight-forward transversality argument.

Theorem 2 (Gromov) M^n has a totally real immersion into \mathbb{C}^n if and only if $\mathbb{C} \otimes (TM)$ is trivial.

Gromov's proof may be modified to yield necessary and sufficient conditions for all values of N between n and $\frac{3n}{2}$.

Theorem 3 M^n has a totally real immersion into \mathbb{C}^N if and only if there exists a bundle Q over M of rank N - n for which the bundle

$$(\mathbf{C}\otimes(TM))\oplus Q$$

is trivial.

Theorem 1 is not optimal, at least when restricted to compact and orientable manifolds. It is known that every such M^2 has a totally real immersion into \mathbf{C}^2 and every such M^3 has a totally real immersion into \mathbf{C}^3 , rather than requiring N = 3 and N = 4, respectively. This is in contrast with the case n = 4 where the value N = 6 cannot be improved.

Theorem 4 There exists a compact and orientable manifold M^4 which does not have a totally real immersion into \mathbb{C}^5 .