Status update on deep underground neutrino facilities

Nigel Smith SNOLAB

with thanks to X. Bertou, A. Bettini, A. Habig, K. Lesko, N. Mondal, S. Paling, F Piquemal, Y. Suzuki, L. Votano, Y. Qian ...and many others

Outline

- Scope of talk:
 - Deep underground neutrino facilities
 - Focus on new/planned expansions to facilities
 - Detailed reviews of experiments and techniques in other talks this week....
- Why go underground?
 - Background suppression
 - Science capabilities of underground facilities
- Status update on underground facilities
 - Asia
 - Europe
 - America
- Review of expansion potential

Why go underground?

- Studies for rare events, either decays (eg proton or 0vββ) or weak interactions (dark matter, natural or generated neutrino), require very radio-quiet environments to undertake searches
- Deep underground facilities provide significant rock overburden and commensurate reduction in c.r. flux, and c.r.-spallation induced neutrons
 - Additional science programmes possible with such infrastructure - nuclear astrophysics, extreme biosystems, geology, geophysics, ...

Neutron backgrounds

- Neutron production from
 - c.r. muon spallation
 - U/Th fission
 - α , n reactions

OUR TROUVER ... L'EXCELLENC

- Spectrum in laboratory depends on local geology (rock composition)
 - both for fast and thermal neutrons
 - U/Th + moderators
 - muons + moderators
 - small levels of high neutron cross-section make a big difference

.

Gamma Backgrounds

- Reduction in gamma background at higher energies from c.r. and neutron reduction
- Below 3.5MeV dependent on local geology and rock material
 - Boulby (red)
 - Gran Sasso (blue)
 - surface (black)

Underground Facilities

INING FOR KNOWLEDGE

CREUSER POUR TROUVER... L'EXCELLENCE

Kamioka Observatory

- 1000 m underground
- 24 hours access by car
 Holizontal access
- 10 minutes from the ground facility

Location

- Northan part of Gifu pref.
- 40 minutes drive from Toyama airport, where is 1 hour flight from Tokyo Airport

Current Experiments in Kamioka (topics by red colored)

- LCGT (Large Cryogenic Gravitational Antenna)
 - Funded in 2010, ~\$100M
 - Construction till 2015
 - To be operated by diferent reserch center
- CLIO (prototype of LCGT)
- Geo physics
 - Laser strainmeter
 - Superconductive gravity meter
- NewAGE (Dark Matter: Direction)
- XMASS (Dark Matter: liq. Xenon)
 - Detector completed
 - Commissioning in 2011

- CANDLES (Double beta)
 Detector completed
 Commissioning
- Super-K Indication of electon appearance (by T2K) GAZOOKS Feasibility test by 200 ton test tank
- KamLAND (not under the kamioka Observatory, but operated by Tohoku University)
 KamLAND-ZEN (double beta decay of 136Xe)

Under construction

Yangyang Underground Laboratory

(Upper Dam)

Yangyang Pumped Storage Power Plant

er Dam)

Korea Middleland Power Co. → Korea Hydro and Nuclear Power Co.

700m (Power Plant)

양양양수발전소 Vertical depth : 700 m / Access to the lab by car (~2km) Constructed in 2003

Underground Lab. Space

- Jinping Mountain Peak: 4193m
- Maximum rock overburden: ~2500m
- Length of Jinping transportation tunnel: 17.5km
- Rock cover larger than 1500m:>70%

Visit of CJPL

Hallway to Exp. Hall

View of Experimental Hall

- 2006-2008, Propose for a National underground lab.
- Nov. 2008, CAS organized for deep underground laboratory discussion
- Feb.-Mar, 2009, support the funding application for Dark matter and Dark energy studies from government.
- Oct. 29-30, 2009 organized XiangShan workshop
- Mar. 2010, Developed underground laboratory proposal for the 12th 5 year planning, it didn't pass the last round of voting.
- 5 Institutions from CAS are included in the proposal:

Institute of Geodesy and Geophysics, Institute of High Energy Physics, Institute of Modern Physics, Institute of Physics and Mathematics, Institute of Rock and Soil Mechanics

India-based Neutrino Observatory (INO)

- Underground laboratory with ~1 km all-round rock cover accessed through a 2 km long tunnel. A large and several smaller caverns to facilitate many experimental programmes.
- A 50 Kton magnetised iron tracking calorimeter will be the first detector to come up. Frontline neutrino issues e.g., mass parameters and other properties, will be explored in a manner complementary to ongoing efforts worldwide.
- Distance from CERN (Switzerland) and JPARC (Japan) ~ 7000 km, close to "magic baseline" for experiments with neutrino beams in a few decade from now
- Will support several other experiments when operational. Neutrino-less Double Beta Decay and Dark Matter Search experiments foreseen in the immediate future.
- INO facility will be available for international community for setting up experiments.

INO Project

- Construction of the underground laboratory and surface facilities.
- Construction of the 50 kton magnetised Iron calorimeter (ICAL) detector to study properties of neutrinos.
- Construction of the INO centre- The National Centre for High Physics (NCHEP) at Madurai, India

Status

Environment & Forest clearances obtained. Administrative formalities for transfer of land completed. Waiting for the transfer of land by local Government.

Projected to be completed within Six Years (2011-2017)

INO Underground Laboratory Layout

Highlights from Gran Sasso Laboratory

Largest underground laboratory in the world

- Run by **INFN** under the Gran Sasso Mountain, Italy
- 120 km far from Rome, completed 1987
- International scientific community (1000 users per year)
- Permanent staff: 82 + 19 temporary positions

> Neutrino physics

- Neutrinoless double beta decay
- Solar, geo and supernova neutrinos
- CNGS neutrinos

Dark matter searches

- > Nuclear Astrophysics
- Geophysics and environmental physics
- ➢ Biology

Laboratoire Souterrain de Modane

Depth: 4800 m.w.e.

Surface:: 400 m2

Volume : 3500 m³

Muon flux: **4 10**⁻⁵ μ.m⁻².s⁻¹

Neutrons: Fast flux: 4 10⁻² n.m⁻².s⁻¹ Thermal flux: 1.6 10⁻² n.m⁻².s⁻¹

Radon: 15 Bq/m³

Access : horizontal

Budget (full cost): 1 M€/yr Staff: 3 Physicists 3 Engineers 7 Technicians

~100 users

International associated laboratory agreement with JINR Dubna (Russia) and CTU Prague (Czech Republic)

Present LSM

Fréjus roadway tunnej

LSM Extension project

New laboratory

Safety gallery é

- Safety gallery work started in October 2010

- 600 m excavated, TBM start September

- Laboratory digging end 2012

> New LSM in operation mid-2014

Centre for Underground Physics in Pyhäsalmi CUPP. Finland

Old mine - Operational 1962-2001 Cavities available at several levels from 95 m to 980 m Lab facilities may be excavated @ 1440 m, 4 km w.e.

Neutron flux being measured Personnel: 3 on site + 3 @ Oulu Offices, labs and guest rooms on surface Access via lifts or inclined road tunnel

EMMA experiment at 75m depth Composition of atmospheric μ @ knee Drift chamber and plastic scintillators

LSC. Underground structures

ISC. External building and Hall A

Headquarters & Administration Safety and Quality Assurance 16 offices for scientific users 7 offices for LSC personnel 4 specialised laboratories Mechanical workshop & storage room Meeting room & Library Conference room& Exhibitions room 2 apartments

Radio-link (64 MB/s) to RIA (Red de Investigación de Aragón) Support personnel: 12 (+1 in 2012) Users: 214 Visits (2011): 170

Experiments: approved and proposed

- Approved experiments (3 years running)
 - ✓ EXP-01-2008;LoI-2009 (ANAIS)
 - ✓ EXP-02-2008;LoI-2009 (ROSEBUD) [
 - ✓ EXP-03-2008;LoI-2009 (BiPo)
 - ✓ EXP-05-2008;LoI-2009 (NEXT)
 - ✓ EXP-06-2009 (SuperK-Gd)
 - ✓EXP-08-2010 (ArDM)
 - Approved observatory
 - ✓ EXP-07-2009 (GEODYN)
 - -Expressions of Interest
 - ✓ EoI-12-2009 (CUNA)

✓ Part of LAGUNA project

Dark Matter (Nal, Annual modulation)
Dark Matter (Scintillating bolometers)
0v2β decay (Ancillary to Super-NEMO)
0v2β decay (Enriched ¹³⁶Xe TPC)
Material screening for SuperK Gd
Dark Matter (Liquid Argon TPC)

Geodynamics (Underground & surface)

Nuclear astrophysics New 300 m² facility in project

Baksan Neutrino Observatory

ANDES

The Agua Negra deep underground laboratory

- Agua Negra tunnel between Argentina and Chile, linking MERCOSUR to Asia
- Possible laboratory location as deep (or deeper) than Modane
- Construction planned 2012-2018 (tunnel opening)
- $\circ~$ Horizontal access, size of ~4000 m^2 and ~65000 m^3 in 5 halls and pits

ANDES: Agua Negra Deep Experiment Site

Vertical depth: 1775 m, omnidirectional: 1675 m

Rock Studies (from test samples ~600 m deep)

Preliminary data (Bq/kg)

	Basalt	Andesite	Rhyolite 1	Rhyolite 2
²³⁸ U	2.6 ± 0.5	$\textbf{9.2}\pm\textbf{0.9}$	14.7 ± 2.0	11.5 ± 1.3
²³² Th	$\textbf{0.94} \pm \textbf{0.09}$	$\textbf{5.2} \pm \textbf{0.5}$	$\textbf{4.5}\pm\textbf{0.4}$	$\textbf{4.8} \pm \textbf{0.5}$
⁴⁰ K	50 ± 3	$\textbf{47} \pm \textbf{3}$	57 ± 3	52 ± 3

- ✓ Final location to be determined once geology is known (ventilation tunnel)
- ✓ Work on White papers (lab, science)
- Proposed as a Latin American laboratory (CLES: Argentina, Brazil, Chile, Mexico)
- \checkmark Open to host international experiments
- ✓ Final approval of tunnel and lab expected for within a few months

Soudan Mine Underground Lab

- Soudan Iron Mine has been a state historical park since the 1960's
- Soudan I proton decay experiments started the science in the 1980's
 - Soudan II, MINOS excavated new caverns
- Operated by Univ. of Minnesota, main funding from DoE via Fermilab
 - 700 m (2070 mwe) deep
 - Vertical access
 - Good ventilation, low radon, strong old rock

Large Experiments

- Fermilab operates the Lab's main tenants – So pays the vast bulk of the ~\$1.2M/yr budget
- MINOS will run through March 2012

 Plans for "MINOS+" extension well received (~2016?)
- CDMS will run through 2013
- Lab is active, open for business, and fills a need complementary to DUSEL

Sanford Underground Research Facility

- Vertice and the second second
- Davis Campus will begin installing experiments in winter 2011/2012
- Director William Brinkman at the DPF Conference directed US's efforts in Dark Matter and Neutrinoless Double Beta Decay to stay focused on Homestake (LUX and Majorana Demonstrator)
- Geotechnical site investigations and Conceptual design of 200kt Large Cavities advancing well - confidence in constructability of 65m dia. cavity
- Siting of LAr at 4850L advancing well cost and schedule neutral to a shallower site which would enhance the LBNE physics program

Plans B (and C) at the Sanford Lab (reduced scope options for DOE Physics Experiments)

- Reduce Facility Scope to safely support:
- LBNE 4850L (or 800L)
- Early Science in the Davis Campus (DLM, DTA) (LUX, MAJORANA DEMONSTRATOR, and perhaps a G2 Dark Matter Experiment, some Low Background Counting (CUBED))
- A single Laboratory Module (LM) at 4850L or 7400L supporting either/both
 - a single G3 Dark Matter experiment
 - a 1 tonne-scale neutrinoless double beta decay experiment
- Facility Design
- Single Laboratory Module & LBNE
- Safe, redundant, but not-significantly modified, access
- Preserves options for deeper LMs, additional LMs, and facility improvements
- Sanford supported Education & Outreach on the surface
- Preserves option for NSF participation in the science
 - 2nd DM experiment
 - Nuclear Astrophysics Facility and LM
 - participation in Long Baseline Neutrinos and/or Proton Decay, Neutrinoless Double Beta Decay
 - Biology, Geology, & Engineering program as self-sufficient efforts

SNOLAB Overall Status

Surface Facility (3100 m²)

- Operational from 2005 Provides offices, conference room, dry, warehousing, IT servers, clean-room labs, detector construction labs, chemical + assay lab
- 440m² class 1000 clean room for expt setup
- Underground Construction (Cube Hall, Cryopit, Ladder Labs)
 - Phase I excavation complete and outfitting began June 2007.
 - General outfitting in Phase I areas complete 2009, final clean 2010.
 - Phase-II excavation complete June 2008
 - Phase-II integration complete March 2011, final clean completed.
 - SNO cavity, Cube Hall and Ladder Labs hosting and developing experiments.

Experimental Programme

- Relocation / continued operation of DEAP-1 & PICASSO-III (and EXO-gas R&D).
- New experiment deployed: COUPP-4
- Construction support for HALO, SNO+, DEAP-3600, MiniCLEAN
- Current allocations to: PICASSO-III, DEAP-I, SNO+, DEAP-3600, MiniCLEAN, SuperCDMS TF, SuperCDMS, COUPP, HALO.
- Operational funding currently secured to 2013

Facility Programme Summary

Site	Depth (kmwe)	Scale	Status	Access	DM	Ονββ	LBL	Other v	BGE	Nuclear Astro	Gravity
ANDES	4.5	**	Planned	Н			\checkmark				
Baksan	4.8	*	Operational	Н	\checkmark	\checkmark		\checkmark			
Boulby	2.8	**	Operational	V					\checkmark		
CJPL	7.0	*	Op/Planned	Н							
CUPP	4.0	*	Planned	V*							
DUSEL/SUSEL	4.8/7.4	***	Op/Planned	V	\checkmark			\checkmark	\checkmark		
INO		**	Planned	Н				\checkmark			
Kamioka	3.3	***	Operational	Н				\checkmark	\checkmark		
LNGS	3.5	***	Operational	Н				\checkmark	\checkmark	\checkmark	
LSC (Canfranc)	2.4	**	Operational	Н					\checkmark		
LSM (Modane)	4.8	**	Operational	Н	\checkmark						
SNOLAB	6.0	***	Operational	V	\checkmark			\checkmark	\checkmark		
Soudan	2.3	**	Operational	V				\checkmark			
Y2L	2.3	*	Operational	Н							

When is 'deep enough'?

- Current generation experiments well served by current facilities and backgrounds achievable
- Additional shielding available from c.r's
 - Three orders magnitude suppression from current deepest labs
 - Limited by upward-going muons from neutrino prod.
- If 3G++ systems require greater depth then challenge for facilities
 - But not unsurmountable

Facility developments

 Several expansions of deep underground facilities completed, in construction or well progressed in planning

Site	Size	Status	Available	
Kamioka	+ 5.5x10 ³ m ³	Complete	2008	
SNOLAB	3x10 ⁴ m ³	Complete	2009	
LSC	8x10 ³ m ³	In Construction	2010	
SUSEL	>3x10 ⁴ m ³	In Construction	2010	
CJPL	1.7x10 ³ m ³	In Construction	2011	
Yangyang	1.6x10 ⁴ m ³	In Construction	2011+	
LSM	4x10 ⁴ m ³	Planned	2013	
DUSEL	>10 ⁵ m ³	Planned	2015	
ANDES	7.5x10 ⁴ m ³	Planned	2017	
Baksan	4x10 ⁴ m ³	Planned	Under Discussion	

Outlook

- SNOCKER FOUR TROUVER... L'EXCELLENCE
- Deep underground sites provide the required infrastructure for low background dark matter, neutrino and additional science programmes
- These physics programmes provide rich fields of study over the next decades
 - Complementary to other search/study techniques
 - Breadth of scale in detectors and infrastructures provides a wide portfolio of projects for physics and training
- Expansion of several deep underground facilities world-wide is completed, underway or well advanced in planning
 - Providing significant additional space world-wide in near to long term
- Exciting discoveries lay ahead!